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Hybrid systems are specified in a heterogeneous form, with discrete and continuous parts. Simulating such systems requires precise data and synchronization of continuous changes and discrete transitions. However, in the early design stages, missing information forbids numerical simulation. We present here a symbolic execution model for the qualitative simulation of hybrid systems, which consists in computing only qualities of the behavior. This model is implemented in the Diversity symbolic execution engine to build the qualitative behaviors of the system. We apply this approach to the analysis of SysML models, using an M2M transformation from SysML to a pivot language and an M2T transformation from this language to Diversity.

INTRODUCTION

Embedded software has become essential in most industrial sectors, leading to heterogeneous models of a whole system, with discrete and continuous parts. Simulating such hybrid systems requires precise data and computational power for detecting changes in the continuous values and synchronizing them with discrete transitions. However, in the early stages of the design, the exact value of some parameters is not known yet, while it is already necessary to analyze the behavior of the system to make design decisions.

For continuous variables, the laws of evolution are often described by differential equations. Qualitative simulation can be an alternative to numerical simulation for such models. Its principle is the discretization of the domain of variation of the continuous variables and their derivatives, leading to a qualitative description of their evolution: positive, negative, null, increasing, decreasing, constant, at a maximum etc. In this way, one can get a tree of abstract behaviors, each node describing the qualitative evolution of the variables during a phase of the behavior. Combined with a model of the discrete part of the system, this yields a discrete model of the behavior of the whole system to which formal techniques can be applied.

When the exact differential equations are not known, an abstract qualitative model of the laws of evolution of the continuous variable, described as an automaton, can be used.

In this article, we present a new symbolic execution model for qualitative simulation, which relies on a qualitative model of the continuous behavior of the system, and on symbolic integration of the first two derivatives of the state variables. This model of execution is implemented in the Diversity [START_REF] Gallois | Le test structurel pour la vérification de spécifications de systèmes industriels: L'outil agatha[END_REF] [START_REF] Rapin | Behavioural unfolding of formal specifications based on communicating automata[END_REF] tool in order to compute the qualitative behavior of hybrid systems. We use SysML to model the qualitative behavior of our system, and model driven engineering techniques such as QVTop (Eclipse Modeling Project, 2017b) and Acceleo (Eclipse Modeling Project, 2017a) in order to have a complete tool chain that takes a SysML model and produces a Diversity model.

This article has two main parts: in the first one, we present the context of our work and our symbolic execution model for qualitative simulation, in the second part we present how to use SysML in this context.

QUALITATIVE SIMULATION AND HYBRID SYSTEMS 2.1 Hybrid Systems

Hybrid Dynamic Systems consist of continuous dynamic systems, discrete event systems and an interface that handles the interaction between both types of systems [START_REF] Lynch | Hybrid i/o automata[END_REF]. Such systems re-sult from the hierarchical organization of monitoring/control systems, or from the interaction between algorithms for discrete planning and continuous control. These systems can be modeled using hybrid automata, which are defined by a set of continuous variables and states, and discrete transitions with guards and assignments to these variables. The evolution of the continuous variables can be described by different kinds of differential equations. Polyhedral hybrid automata have linear differential equations and guards.

Rectangular hybrid automata have constant differential equations and guards that are comparisons to constants. Timed hybrid automata have differential equations and guards involving time, and can be handled by Uppaal, Kronos and recently TiAMo. Some tools and methods deal with other types of hybrid systems: Hytech [START_REF] Henzinger | Hytech: A model checker for hybrid systems[END_REF] for rectangular hybrid automata with linear guards on the transitions, and CheckMate for non linear continuous evolutions with linear guards [START_REF] Chutinan | Computational techniques for hybrid system verification[END_REF].

Qualitative Simulation

Qualitative simulation comes from artificial intelligence, where it is used for reasoning about continuous aspects of systems. The goal is to reason about the behavior of a continuous variable without computing its value. For hybrid systems, the model of the discrete part of the system is not influenced by the qualitative abstraction process. However, continuous variables and their derivatives are discretized in order to consider only their qualitative changes. Therefore, continuous behaviors become discrete transitions, and the resulting system allows behaviors that are disallowed by the actual physics. However, it may overapproximate (in a safe way) the possible behaviors.

Principle of Qualitative Simulation Qualitative simulation is based on the principle of discretization by partitioning the variation range of the continuous variables of the system and their derivative to compute their qualitative state (increasing, decreasing, constant etc.) This principle can be extended to the n th derivative to distinguish more qualitative states.

Once the discrete states corresponding to this qualitative partitioning are created, we build the possible transitions between them by taking into account continuity and derivative constraints. For instance, each variable or derivative can not go from negative to positive without going through zero, and a variable can go from negative to zero or from zero to positive only if its derivative is positive etc. Finally, the differential equation system is abstracted into a transition system whose states are based on the partitioning of the changes of continuous variables and derivatives, and whose transitions are the physically possible evolutions between these states. The result of the qualitative simulation is an abstraction of the solutions to the differential equations system.

Extension to Hybrid Automata In a hybrid system, the differential equations that describe the continuous part of the system interact with a discrete system. For qualitative simulation, the discrete part of the system is not influenced by the discretization process described above. However, this discrete behavior reacts to changes in the discretized continuous behavior and puts constraints on it. For instance, in the bouncing ball example shown in Figure 6, the discrete control reacts to the qualitative change of the height of the ball and forces a qualitative change of the speed of the ball to make it bounce when it hits the ground.

Combining the unchanged discrete part of the system with the discretized qualitative model of its continuous part results in an entirely discrete model which can be analyzed with tools for discrete systems.

Qualitative Simulation With Diversity Diversity is a symbolic execution engine developed at CEA LIST to produce symbolic scenarios corresponding to classes of system behaviors. Properties can be proved on this set of scenarios and concrete numerical tests can be generated from them. To guarantee termination or to limit the number of generated test cases, the size and the number of behaviors can be bounded, and redundant behavior detection can be used. Diversity can be used for qualitative simulation according to two strategies [START_REF] Gallois | Qualitative simulation and validation of complex hybrid systems[END_REF]: qualitative simulation with differential equations, and qualitative simulation without differential equations. In the first approach, the differential equations are known, and the QEPCAD tool [START_REF] Brown | Qepcad b: A program for computing with semi-algebraic sets using cads[END_REF] is used to determine the conditions for a qualitative change. When a change is possible, the corresponding branch is tagged with the conditions, else the corresponding branch in the execution tree is cut.

In the second approach, the differential equations are not available or it is too difficult to deal with their complexity. In this case, we build a qualitative model of the equations by considering qualitative relations between the variables and their derivatives. Of course, the results are less precise than in the first approach, but this can be used at very early stages of the design. In this article, we deal with this second approach. We therefore use Diversity to symbolically execute the model of a hybrid system, which combines the model of its discrete part and the discretized qualitative model of its continuous part.

Symbolic Execution

In Diversity Symbolic execution was proposed in [START_REF] King | Symbolic execution and program testing[END_REF] and [START_REF] Clarke | A system to generate test data and symbolically execute programs[END_REF] in order to construct structural tests for sequential programs. It uses symbols as input data instead of numerical values. Diversity uses an adaptation of symbolic execution to generate tests from specifications based on automata. The input language of Diversity is based on Symbolic Transition Graph with Assignments (STGA). It allows the representation of all the behaviors of the specification in an abstract way. Transitions represent events that allow or result from the evolution of the system. They have a guard, which conditions their firing depending on system variables. The Diversity execution engine redefines symbolic execution for STGAs by assigning symbolic values to variables instead of numerical ones, and yields symbolic states named execution contexts. As illustrated in Figure 1, an execution context includes: (1) a Control State; (2) a Path Condition, which is the condition to reach the symbolic state from the initial state; (3) a symbolic memory which associates to each variable an expression based on symbolic inputs.

The result of a symbolic execution is an execution tree where each path represents the symbolic evolution of the variables. The path condition is the conjunction of all the execution conditions. The notation is used to index successive symbolic values. 

EC =        CS : Null_der PC : ẋ 1 = 0 ẍ-1 = ẍ-1 0 ẋ = ẋ 1 Figure 1: Execution Context Null_der Pos_der Neg_der t 1 : ẍ-1 > 0 ẋ-1 ← ẋ ẋ ← ẋ-1 + ẍ-1 t 2 : ẍ-1 < 0 ẋ-1 ← ẋ ẋ ← ẋ-1 + ẍ-1 Figure 2: Transititons EC 1 =        CS : Pos_der PC : ẋ 1 = 0 ∧ ẍ-1 0 > 0 ẋ-1 = ẋ 1 ẋ = ẋ 1 + ẍ-1 0 EC 2 =        CS : Neg_der PC : ẋ 1 = 0 ∧ ẍ-1 0 < 0 ẋ-1 = ẋ 1 ẋ = ẋ 1 + ẍ-1 0

Related Work

Kuipers' algorithm for qualitative simulation, QSIM [START_REF] Kuipers | Qualitative simulation[END_REF], is based on an algebra of signs. Numerous improvements have been added to QSIM in order to address the combinatory explosion of the number of predicted states:

• Methods for changing the level of description in order to eliminate behaviors with no qualitative distinctions [START_REF] Kuipers | Taming intractible branching in qualitative simulation. Readings in qualitative reasoning about physical systems[END_REF].

• Reasoning on "high order derivative" to provide a curvature constraints [START_REF] Kuipers | Qualitative simulation[END_REF]Chiu, 1987) (de Kleer and[START_REF] De Kleer | Qualitative reasoning with higher-order derivatives[END_REF].

• Adding energy constraint that decomposes the system into a conservative part and a non conservative one [START_REF] Fouché | Reasoning about energy in qualitative simulation[END_REF].

However, some problems such as obtaining and using adequate temporal information still remain. This problem was approached in [START_REF] Shen | Integrating commonsense and qualitative simulation by the use of fuzzy sets[END_REF] and [START_REF] Berleant | Qualitativenumeric simulation with q3[END_REF]. The most famous tool for qualitative simulation is Garp3 [START_REF] Bredeweg | Garp3-workbench for qualitative modelling and simulation[END_REF]. It runs model fragments, which describe part of the structure and behavior of the system, and produces a state graph which contains all the possible transitions based on the relationships between entities that are described in the model fragments.

However, the problem we address is how to predict the qualitative behavior of continuous variables of hybrid systems without differential equations. [START_REF] Bredeweg | Garp3-workbench for qualitative modelling and simulation[END_REF] describes the variation of the second derivative as small arrows and dots next to the derivative symbol. From a user point of view, it is not easy to analyze the behaviors generated by this simulator, that is why we propose to compute the different qualitative states by taking into consideration the second and first derivatives. [START_REF] Missier | Temporal information in qualitative simulation[END_REF] proposed a temporal filter based on order of magnitude representation and second order Taylor formula to evaluate the duration for qualitative states, but we are not interested in temporal information because we are in the first steps of the design; time is not critical at this stage. We therefore rely on a qualitative symbolic integration with the Euler method, assuming a unitary integration step. In order to eliminate the indeterminacy problem of the algorithm of [START_REF] Kuipers | Qualitative simulation[END_REF], our model of execution is based on symbolic values.

A New Symbolic Execution Model

For Qualitative Simulation

For improving the qualitative simulation without differential equations in Diversity, we developed a model of execution that constraints the evolution of the state variables, and computes their qualitative behavior. Model Of Execution In our previous work [START_REF] Medimegh | A new approach of qualitative simulation for the validation of hybrid systems[END_REF], we presented a qualitative model of execution with continuity and derivative constraints for the changes of the state variables. For instance, the value of a state variable cannot change from Negative to Positive without being Null, and it cannot change from Negative to Null unless the first derivative is positive. The same rules apply to the first derivative with regard to the second derivative. These constraints can be modeled in a state machine as illustrated in Figure 4. A similar automaton controls the changes of the first derivative. Unfortunately, these state machines are nondeterministic. For instance, in the > 0 state, if the first derivative is Negative, we can either go to the = 0 state or stay in the current state.

= 0 > 0 < 0 der = 0 d e r > 0 d e r < 0 d e r < 0 d e r > 0 Figure 4: Qualitative changes = 0 x -1 ← x x ← x -1 + ẋ-1 < 0 x -1 ← x x ← x -1 + ẋ-1 > 0 x -1 ← x x ← x -1 + ẋ-1 ẋ-1 < 0 ẋ-1 > 0 ẋ-1 > 0 and ẋ-1 = -x ẋ-1 < 0 and ẋ-1 = -x ( ẋ-1 < 0) or ( ẋ-1 > 0 and ẋ-1 < -x) ( ẋ-1 > 0) or ( ẋ-1 < 0 and ẋ-1 > -x)
In this paper, we present a new symbolic execution model in which we integrate the derivatives of the state variables in a symbolic way. We use a simple Euler integration since we do not compute exact numerical values. We model each continuous state variable by six values: the current (x) and previous (x -1 ) values of the variable, the current ( ẋ) and previous ( ẋ-1 ) values of its first derivative, and its current second derivative ( ẍ). In this new model of execution, we add the previous second derivative ( ẍ-1 ), which is needed to integrate the first derivative. The symbolic integration with the Euler method, assuming a unitary integration step gives x = x -1 + ẋ-1 , and ẋ = ẋ-1 + ẍ-1 .

With these rules, the qualitative value of a state variable is controlled by a state machine as illustrated in Figure 5. A similar automaton controls the change of the first derivative with respect to its previous value ( ẋ-1 ) and the previous second derivative ( ẍ-1 ). Contrary to our previous work, these state machines are deterministic. For instance, in the > 0 state of x, if ẋ-1 < 0 and ẋ-1 = -x -1 , we go to the = 0 state, if ẋ-1 > 0 or ẋ-1 < 0 and -ẋ-1 < x, we stay in the current state.

Implementation of Our Execution Model in Diversity This execution model with symbolic integration relies on five automata: the first one is the system automaton in which the user models his system and specifies the different values of the current second derivative; the second automaton keeps track of the qualitative value of the second derivative ( ẍ), which is driven by the system automaton; the third automaton keeps track of the qualitative value of the first derivative ( ẋ), which is symbolically integrated from the previous first and second derivatives; the fourth automaton keeps track of the qualitative value of the state variable (x), which is symbolically integrated from the previous value and first derivative; and finally, the fifth automaton computes the qualitative variation of the variable by observing the automata for the qualitative value of the variable, its derivatives, and their previous value.

The order in which these automata are executed is important: we execute the automaton of the system first, then the automaton for the second derivative, then the automaton for the first derivative, then the automaton for the value of the state variable, and finally the automaton for the qualitative behavior.

Computing Second Order Qualitative Behaviors In our previous [START_REF] Medimegh | A new approach of qualitative simulation for the validation of hybrid systems[END_REF], we showed how to compute the qualitative behavior of a state variable by observing the qualitative state of this variable and its derivatives. For instance, when the second derivative is Negative and the first derivative is Null, with a Positive previous derivative, we have the qualitative behavior Maximum.

With that qualitative model, we identified 13 qualitative states of behavior: Constant when ẋ-1 , ẋ and ẍ are null; FlexStartIncrease when ẋ-1 = 0, ẋ = 0 and ẍ > 0, so the first derivative is not positive yet, but the dynamics is transitioning toward an increase; FlexStartDecrease when ẋ-1 = 0, ẋ = 0 and ẍ < 0, which is similar to the previous case when transitioning toward a decrease; StartIncrease when ẋ-1 = 0 and ẋ > 0, the first derivative has just become positive (notice that there is no condition on the second derivative, which may have come back to 0); Start-Decrease when ẋ-1 = 0 and ẋ < 0; Increase when ẋ-1 > 0 and ẋ > 0, the first derivative being positive; Decrease when ẋ-1 < 0 and ẋ < 0, the first derivative being negative; Maximum when ẋ-1 > 0, ẋ = 0 and ẍ < 0, the three conditions are necessary to distinguish this case from other qualitative states such as inflection points; Minimum when ẋ-1 < 0, ẋ = 0 and ẍ > 0, same remark as for the Maximum; FlexIncrease when ẋ-1 > 0, ẋ = 0 and ẍ > 0, an inflection point during an increase; FlexDecrease when ẋ-1 < 0, ẋ = 0 and ẍ < 0, an inflection point during a decrease; StopIncrease when ẋ-1 > 0, ẋ = 0 and ẍ = 0, the state variable reaches a plateau at the end of an increase; StopDecrease when ẋ-1 < 0, ẋ = 0 and ẍ = 0, the state variable reaches a plateau at the end of a decrease.

By additionally taking into account x -1 and x, it is possible to distinguish sub-cases in these qualitative states, for instance "reaching a null maximum" when reaching a maximum with x -1 < 0 and x = 0.

There are impossible cases. Two are due to the continuity of the variable: the conjunction of x -1 < 0 and x > 0, and the conjunction of x -1 > 0 and x < 0 are impossible. Two others are due to the continuity of the first derivative (no angular points). Ten others are due to the fact that each variable change is constrained by the previous value of its first derivative.

In the new model of execution, we add several qualitative states to make it easier for the user to interpret the different qualitative behaviors. These new qualitative states correspond to higher order qualitative variations because they qualify the variation of the first derivative. We identify the following four additional qualitative states: Increasingly_Increase, when ẋ-1 > 0 and ẍ-1 > 0; Decreasingly_Increase when ẋ-1 > 0 and ẍ-1 < 0; Increasingly_Decrease, when ẋ-1 < 0 and ẍ-1 < 0; Decreasingly_Decrease when ẋ-1 < 0 and ẍ-1 > 0.

Illustrative Example Of The Bouncing Ball This technique was applied to the bouncing ball, a typical example of hybrid system. In this example, we have only one state variable, the height of the ball above the ground, noted z. The usual way to model the bouncing ball is to consider that it has only one state, in which it is in free fall, with z = -g and g = 9.81m.s -2 . The bounce is modeled with a single transition, which is triggered when the ball hits the ground (z = 0), and reverses the speed of the ball with a damping factor 0 < c ≤ 1. This model and its qualitative abstraction are shown in Figure 6. The quantitative behavior of this model is an abstraction of what really happens, because if the ball were really changing its speed instantaneously, there would be an exchange of a finite amount of energy in zero time between the ball and its environment, which corresponds to an infinite power. We have shown [START_REF] Medimegh | A new approach of qualitative simulation for the validation of hybrid systems[END_REF] that in the case of the bouncing ball, the model can be automatically adjusted by replacing the bouncing transition by a series of transitions. The algorithm for this is as follows:

z = -g z = 0 / ż = -c.ż z > 0 ż = 0 z < 0 z = 0 / ż = -ż z > 0 ż = 0
• changing the derivative from < 0 to > 0 is illegal.

The only legal path is to go from < 0 to = 0 and then from = 0 to > 0, so we replace the illegal transition by a legal one.

• changing the derivative from < 0 to 0 and from 0 to > 0 requires a positive second derivative, so we make it positive during the bounce (the second derivative can be discontinuous).

The resulting state machine is shown in Figure 7, where the additional state has a gray background. The additional state, reached when z = 0, sets the second derivative to Positive because this is required to make the first derivative change from Negative to Null. When the first derivative becomes null, our new symbolic execution model finds a path to make the first derivative positive because the second derivative is still positive. The velocity of the ball becomes then positive, as requested by the initial un-physical transition, we can go back to the free fall state of the ball, with a reversed velocity.

With this adjusted model and the symbolic execution model for qualitative simulation, we obtain the qualitative behavior shown in Figure 8. 

QUALITATIVE SIMULATION OF SYSML MODELS

To make our approach usable for system designers, and to insulate them from changes in our execution model and input format, we built a tool chain to use SysML as input for qualitative simulation. We choose SysML because it allows the modeling of multi domain specifications. It is also used by a large community of engineers to model the system at the early design stages.

Our approach relies on a qualitative model of the continuous behavior, not on the exact differential equations. This qualitative model is already discretized, so we can use the state machines diagram to model the behavior of the hybrid system. 

Presentation of the Tool Chain

We model a hybrid system with a SysML state machine diagram, using the Papyrus Eclipse plug-in. Then, we transform the SysML model using a QVT operational model to model transformation into a Hy-Div model. HyDiv is a pivot meta-model that we designed to capture a high level representation of the hybrid system, independently of the source model (we could use Simulink/Stateflow instead of SysML). We then use an Acceleo model to text transformation to transform the HyDiv model into Xlia, the input language of Diversity, as shown in Figure 9.

The SysML Model The hybrid system is modeled as a SysML Block with attributes for the variables and the behavior of the system. The variables have the Derivative_Type and the behavior is defined by a State Machine. In this state machine, the guards are written in OCL. We specify the Effect of a transition by a Specification to which we attach an Operation with an OCL constraint. We use the same technique for the Entry actions of the states. The HyDiv Model HyDiv is a textual domain specific modeling language for hybrid systems, implemented with Xtext. It provides us with a compact representation of the system which is decoupled from both the input formalism (SysML in this article) and the model of execution that will be used in Diversity. Figure 10 shows its meta-model, in which the system has different attributes: a name, a folder to indicate its location, statesVars to indicate its state variables, initializations to indicate the initial value of the variables, and states to describe the states of the hybrid system. Each State has an initial attribute, a name, entryAssignments to describe the actions to perform when entering the state, and transitions toward other states. Each Transition has a name, a target state, guards to tell when the transition can be fired, and actions to be performed by the transition.

QVT Operational Transformation The first step to perform the qualitative simulation of a system is to transform its SysML model into HyDiv. The QVT operational transformation from SysML to HyDiv makes the following mappings:

• a SysML Block is mapped to System;

• an Attribute of a block with Derivative_Type or Integer as type is mapped to StateVar;

• a State of a state machine attached to a SysML block as a type of an attribute is mapped to State;

• a Transition of a state is mapped to Transition;

• a Guard of a transition is mapped to Guard;

• an Effect of a transition is mapped to Action;

• an Entry of a state is mapped to Assignment;

The RC Circuit Example

We applied our method to the RC circuit shown in Figure 11. We have two coupled variables: the voltages U r and U c across resistor R and capacitor C.

Charge phase Computing First Order Qualitative Behaviors In this system, we need to consider only the first derivative of the voltage, which is proportional to the current because of the capacitor. The switch will force the current to be positive in the charge phase and negative in the discharge phase, but we have no information about the second derivative of the voltage. Our approach can compute the qualitative behavior of the state variables taking into account only the first derivative. Some qualitative states such as StartIncrease, StartDecrease, Increase and Decrease are the same because they do not depend on changes of the second derivative. However, other qualitative states such as StopIncrease and StopDecrease will not be identified since they need a null second derivative. In that first order qualitative model, we add two qualitative states that describe the discontinuity of the first derivative: Angular_Increase, when ẋ-1 < 0, ẋ > 0, and Angular_Decrease, when ẋ-1 > 0, ẋ < 0.

E = U r +U c U r (t) = E.e -t RC U c (t) = E(1 -e -t RC ) Discharge phase 0 = U r +U c U r (t) = -E.e -t RC U c (t) = E.e -t RC E R C i charge E R C i discharge
In this example, the voltage U c is continuous but the voltage U r is discontinuous. In the charge phase, U r decreases from E to 0 and U c increases from 0 to E. In the discharge phase, U r increases from -E to 0 and the voltage U c decreases from E to 0. Since we are not interested in the exact values in qualitative simulation, +E and -E will be considered respectively as a > 0 and < 0 symbolic values. As we did with the bouncing ball, the RC Circuit can be automatically adjusted for continuity by replacing the switching transition from the charging phase to the discharge phase and vice versa:

• changing the value of U r from > 0 to < 0 is illegal.

The only legal path is to go from > 0 to = 0 and then from = 0 to < 0, so we replace the illegal transition by the sequence of these two transitions.

• changing from > 0 to 0 and from 0 to < 0 requires a negative first derivative, so we make it negative when switching from charging to discharging.

We do the same to change the value of U r from < 0 to > 0 when switching from the discharging to the charging phase, but with a positive first derivative.

SysML RC Circuit Block The RC circuit is modeled in a SysML block as shown in Figure 12. It has 3 attributes, the first two are the variables of the system: U c and U r . Their type is Derivative_Type which represents a value and its first and second derivative. The last attribute is typed as a state machine that specifies the behavior of the RC circuit. • the t 0 transition sets the initial values of the states variables U c to = 0 and U r to > 0, and sets the first derivative of U c to > 0 and U r to < 0;

• t 1 flips the switch to the discharge position, and sets the first derivative of U r to < 0 and U c to < 0;

• t 2 flips the switch to the discharge position, and sets the first derivative of U r to > 0 and U c to < 0;

• t 3 flips the switch to the charging position, and sets the first derivative of U r to > 0 and U c to > 0;

• t 4 flips the switch back to charging, and sets the first derivative of U c to > 0 and U r to < 0.

Our QVT operational transformation turns this SysML model into a HyDiv model.

Diversity Model Of

The RC Circuit Then our Acceleo transformation produces the Xlia source code of the Diversity model of the system from this Hy-Div model. This transformation encodes the semantics of our model of execution. It generates the automaton for the system, as well as the automata for the state variables and their derivatives, and the automaton which computes the qualitative variation of these variables.

Qualitative Behavior Computed by Diversity

Running Diversity on the Xlia model, we obtain the qualitative behavior shown in Figure 14. • in the Charge_phase, U r is in a Decreasing_state while U c is in an Increasing_state;

• in the Switch_to_discharge, U r is still in a De-creasing_state because it must go to -E while U c is in an Angular_Decreasing_state because the capacitor starts discharging;

• in the Discharge_phase, U r is in an Increas-ing_state while U c is in a Decreasing_state;

• in the Switch_to_charge, U r is still in an Increas-ing_state because it must go to +E while U c is in an Angular_Increasing_state because the capacitor starts charging.

DISCUSSION

Among the qualitative behaviors found by Diversity for the bouncing ball, we have presented the one which corresponds to the real physical model of the ball. However, other behaviors are found. In our previous work in [START_REF] Medimegh | A new approach of qualitative simulation for the validation of hybrid systems[END_REF], we described two behaviors that were impossible and should be eliminated. Thanks to our new model of execution, which computes qualitative variations of the first derivative such as Increasingly_Increase, we were able to eliminate them. For instance, when the ball is falling, its speed is negative and decreasing (because the second derivative is negative), so it is negative and increasing in magnitude. The new model of execution identifies the qualitative variation of the height of the ball as Increasingly_Decrease. Starting from a positive symbolic value, the height of the ball has therefore to become null at some point, which eliminates the behavior where the ball was falling forever toward the ground without ever reaching it.

There are still some behaviors found by Diversity that differ by a few sequences of states. This is due to the way Diversity detects Redundancy. During the symbolic execution of a model, Diversity builds a tree, each branch corresponding to a choice for the symbolic value of the variables. When Diversity finds an execution context that was met before, it cuts the execution of this branch, and makes it point to the state that was met before. This turns the tree into an execution graph, and makes it possible to capture infinite behaviors in a finite structure. However, depending on the order in which the variables change, the redundancy detection can be delayed, which creates several execution paths for the same physical behavior. These executions paths make the results more difficult to analyze, and we plan to filter the results of Diversity in order to keep only one path for each possible physical behavior of the hybrid system.

CONCLUSION

We have presented a new symbolic execution model for the qualitative simulation of hybrid systems with only a qualitative model of the equations, with a symbolic integration of the derivatives of the state variables. We compute only qualitative values for the state variables and their derivatives by partitioning their domain into Negative, Null and Positive.

Our symbolic execution model is composed of several state machines. The first one represents the qualitative behavior of the hybrid system in an abstract way by specifying the changes of the value of the second derivative of every state variable. That is why this approach is called without differential equations. Then, for every state variable, we have four state machines: the first one keeps track of the qualitative value of the second derivative ( ẍ), which is driven by the system automaton; the second one keeps track of the qualitative value of the first derivative ( ẋ), which is symbolically integrated from the previous second derivative and the previous first derivative; the third automaton keeps track of the qualitative value of the state variable (x), which is symbolically integrated from the previous first derivative and value of the state variable; and finally, the fourth automaton computes the qualitative variation of the variable by observing the automata for the qualitative value of the variable, its derivatives, and their previous value. The first three automata enforce the continuity of the variable and of its first derivative, as well as the compatibility of the changes of the variable with regard to its derivative, and of the changes of the first derivative with regard to the second derivative.

We applied our approach to the typical hybrid system example of the bouncing ball and to an RC circuit with two linked state variables. We have shown that we are able to find the different qualitative behaviors of these hybrid systems, and that the execution model can be adapted to first order models.

We apply this approach to the analysis of SysML models, using an M2M transformation from SysML to the pivot HyDiv language, and an M2T transformation from this language to Diversity. We have therefore a complete tool chain for analyzing the qualitative behavior of SysML models of hybrid systems.

We plan to enrich the symbolic execution model with a filter to eliminate redundant symbolic behaviors that correspond to the same physical behavior in the execution tree generated by Diversity. Another track to explore is to design a SysML profile for qualitative simulation without differential equations, in order to make the qualitative modeling of hybrid system in SysML easier and more expressive.

There are obviously limitations to the analysis of hybrid systems using qualitative simulation without differential equations, because behaviors that depend on specific numerical values of some parameters cannot be found. However, this approach can be applied to systems that cannot be analyzed because their differential equations are too complex to be analyzed. It can also be applied in the early phases of the design of a system, when some parameters or the exact form of the differential equations are not known yet.
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 3 Figure 3: Symbolic Execution
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 5 Figure 5: Qualitative changes based on symbolic integration
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 7 Figure 6: Hybrid (left) and qualitative (right) automata of the bouncing ball
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 8 Figure 8: Qualitative behavior of the bouncing ball
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 9 Figure 9: The Tool Chain
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 10 Figure 10: The HyDiv Metamodel
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 11 Figure 11: Charge and Discharge phases of the RC Circuit
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 12 Figure 12: Block Definition Diagram of the RC circuit
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 14 Figure 14: Qualitative behavior of the RC circuit We see clearly in this figure that the voltage U r across resistor R and the voltage U c across capacitor C are varying in opposite ways: