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Superlinear convergence using block preconditioners for
the real system formulation of complex Helmholtz

equations

Owe Axelsson∗ János Karátson† Frédéric Magoulès‡

Abstract

Complex-valued Helmholtz equations arise in various applications, and a lot of re-
search has been devoted to finding efficient preconditioners for the iterative solution
of their discretizations. In this paper we consider the Helmholtz equation rewritten in
real-valued block form, and use a preconditioner in a special two-by-two block form.
We show that the corresponding preconditoned Krylov iteration converges at a mesh-
independent superlinear rate.

Keywords: Helmholtz equations; Iterative solution; Preconditioning; Mesh-independent
superlinear convergence

1 Introduction
Complex-valued Helmholtz equations arise in the modelling of various applied problems, for
instance, when air is periodically compressed into some closed compartment, e.g., in a car.
For the iterative solution of their discretization, standard preconditioning methods such as
incomplete factorization or (algebraic) multigrid methods are not efficient, mainly due to the
effect of high indefiniteness and large wave-numbers [8, 14], therefore more efficient iterative
solvers are still of great interest. A lot of recent research has been devoted to preconditioners
arising as the discretization of the so-called “complex shifted Laplace” problems, see, e.g., [7,
8, 9, 10, 13]. These preconditioners require, however, use of complex arithmetics and solution
of a still somewhat involved preconditioner. In this note we modify the preconditoner so
that it can be solved directly in real arithmetics and still preserve the favourable properties
of convergence. Each application of the action of the preconditioner involves essentially the
solution of only two standard elliptic problems.

We consider the Helmholtz equation in a bounded domain Ω, with impedance boundary
conditions, i.e., 

−∆u− κ2u = f in Ω

∂u

∂n
− iκu = 0 on ∂Ω.

(1)

For simplicity, we assume that Ω is a polygonal domain. Here u = u + iv, where u, v are
real valued, the wave number κ > 0 and f = f + ig, i being the imaginary unit. Due to the
imaginary coefficient in the boundary condition, the positive real number κ2 cannot attain
an eigenvalue, i.e. the homogeneous problem with g ≡ 0 has only the trivial solution u ≡ 0,
see, e.g., [12]. The Fredholm alternative then ensures that problem (1) has a unique weak
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solution in H1(Ω). Moreover, Fredholm’s well-posedness result involves the invertibility of
the corresponding operator on the left-hand side.

As proposed in the previously cited papers, one can form a preconditioner by use of a
complex shifted Laplace operator with perturbation terms of lower order,

−∆u− (κ2 + iε)u = f in Ω

∂u

∂n
− iµ u = 0 on ∂Ω,

(2)

where ε > 0, µ > 0 are perturbation coefficients. This corresponds to a compact perturbation
of the given Helmholtz operator equation. In this situation the corresponding preconditoned
Krylov iteration method typically converges at a superlinear rate, which is a main interest in
this paper, see also [3, 4, 17, 18, 19] on superlinear results for coercive problems and [5] in the
case of the complex formulation (2). However, discretizing (2) with standard finite element
methods and solving systems with this preconditioner entails complex valued systems and
complex valued arithmetics and, even though they have a more favourable distribution of
eigenvalues, the systems are still somewhat complicated to solve. Hence often the real-valued
block form of the Helmholtz equation is preferred, see, e.g., [11].

In this paper we rewrite the Helmholtz equation in real-valued block form and use a
somewhat modified version of the shifted Laplacian. We thus get a preconditioner in a
special two-by-two block form, the solution of which only involves real arithmetics in the
form of some vector operators and two solution steps for real-valued elliptic problems. For
the latter, standard solution methods can be used. It will be shown with a proper analysis
of the method that the corresponding preconditoned Krylov iteration still converges at a
superlinear rate.

2 Superlinear convergence of Krylov type methods
Here we very briefly summarize the required basic facts on the solution of linear systems

Au = b (3)

with a given nonsingular matrix A ∈ Rn×n, with focus on superlinear convergence rates for
the iterative solution of (3).

When A is an s.p.d. (i.e. symmetric positive definite) matrix, then the widespread
way of iterative solution is the standard CG method, for which a well-known superlinear
convergence estimate is expressed in terms of the decomposition A = I + E, where I is
the identity matrix [1, 18]. For non-s.p.d. matrices A, several Krylov algorithms exist (see
e.g., [1, 16]), in particular, GMRES and its variants are widely used. There exist similar
superlinear convergence estimates for the GMRES as for the standard CG, using singular
values and the residual error vectors rk := Auk − b. In fact, the sharpest one, proved in [15]
on the Hilbert space level for an invertible operator A ∈ B(H), uses the product of singular
values, and one can readily derive a simplified form as follows [5]:(

‖rk‖
‖r0‖

)1/k

≤ ‖A−1‖
k

k∑
j=1

sj(E) (k = 1, 2, ...). (4)

Here the right-hand side is decreasing (and on the operator level it tends to zero as k tends
to infinity), which means that the convergence is superlinear.
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3 The block preconditioner

3.1 Construction of the preconditioner
The method to be used is based on first rewriting the given Helmholtz equation in real-valued
system form, 

−∆u− κ2u = f in Ω,
∂u

∂n
+ κv = 0 on ∂Ω,

−∆v − κ2v = g in Ω,
∂v

∂n
− κu = 0 on ∂Ω.

(5)

For the weak form we involve the real Hilbert space H1(Ω)2 := H1(Ω) ×H1(Ω), endowed
with the inner product〈(

u

v

)
,

(
z

w

)〉
(H1)2

:=

∫
Ω

(∇u · ∇z + uz) +

∫
Ω

(∇v · ∇w + vw). (6)

Then the weak formulation of (5) reads as follows: find (u, v) ∈ H1(Ω)2 such that∫
Ω

(∇u · ∇z − κ2uz) + κ

∫
∂Ω

vz − κ
∫
∂Ω

uw +

∫
Ω

(∇v · ∇w − κ2vw) =

∫
Ω

(fz + gw)

for all (z, w) ∈ H1(Ω)2. As mentioned in the introduction, we have a well-posedness result
via Fredholm theory.

The construction of the preconditioner can be indicated on the operator level. Namely,
the above equations can be perturbed by the addition of zero-th order modified shifted terms
to form the PDE system

−∆u− κ2u+ εv = f in Ω,
∂u

∂n
+ µv = 0 on ∂Ω,

−∆v − κ2v + 2εv − εu = g in Ω,
∂v

∂n
+ 2µv − µu = 0 on ∂Ω,

(7)

where ε > 0, µ > 0 are perturbation parameters. The weak formulation of the perturbed
problem reads as follows: find (u, v) ∈ H1(Ω)2 such that∫

Ω

(∇u · ∇z − κ2uz) + ε

∫
Ω

vz + µ

∫
∂Ω

vz

−ε
∫

Ω

uw − µ
∫
∂Ω

uw +

∫
Ω

(∇v · ∇w − κ2vw) + 2ε

∫
Ω

vw + 2µ

∫
∂Ω

vw =

∫
Ω

(fz + gw)

for all (z, w) ∈ H1(Ω)2. The reasons for this choice of the preconditioning operator will be
discussed in the next subsection.

Now let us consider the discretization of the above problems using the finite element
method (FEM). Let Vh ⊂ H1(Ω) be a finite element function space corresponding to a
finite element partitioning of Ω in a triangular/polygonal mesh, to be used for both solution
components u and v. Let {ϕi}n1 be the set of basis functions in Vh. Let Ah correspond to
the finite element discretization of the operator −∆− κ2I, that is, Ah = [aij ] where

aij = a(ϕj , ϕi)

with the bilinear form

a(u, z) =

∫
Ω

(∇u · ∇z − κ2uz) ∀z ∈ Vh.
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Further, letMh and Bh be the domain mass matrix and boundary mass matrix, respectively,
that is,

Mh = [mij ], mij = p(ϕj , ϕi), p(u, z) =

∫
Ω

uz ∀z ∈ Vh.

Bh = [bij ], bij = q(ϕj , ϕi), q(u, z) =

∫
∂Ω

uz ∀z ∈ Vh.

Then the finite element matrix, corresponding to the real Helmholtz system (5), takes the
saddle-point form

Ah =

[
Ah κBh

−κBh Ah

]
.

We note that the finite element mesh should be sufficiently fine to enable capturing of the
waves, so some six node points within each wave is a proper choice.

The discretization of the preconditioning operator in system (7) leads to the matrix

Ãh =

[
Ah εMh + µBh

−(εMh + µBh) A+ 2(εMh + µBh)

]
≡
[
Ah Ch

−Ch Ah + 2Ch

]
, (8)

where
Ch := εMh + µBh.

The constants ε, µ shall be chosen such that Ah +Ch becomes regular. Then the matrix Ãh

is also regular, as seen in the next subsection.

3.2 Advantages of the preconditioner
A major advantage of the proposed preconditioner Ãh is due to its very special structure.
Namely, it admits a factorization that leads to efficient solution of the arising systems in the
preconditioning steps, since these are reduced to two standard symmetric positive definite
subproblems, as will be described below. Such a factorization property could not be achieved
by using either simple block diagonal preconditioning or a preconditioner based on the real
block form of (2). We note that even if an iterative solution method has a superlinear rate
of convergence, in practical applications this superlinear rate may only be seen after many
initial iterations unless an efficient preconditioner, leading to a small condition number, is
used. It has been shown in [2, 6] that preconditioners with such factorization lead to a
small condition number, further, they have been efficiently tested in detail therein. The
present paper is not aimed at numerical testing, instead, robust superlinear estimates will
be derived, showing that it holds independently of the mesh size.

The systems corresponding to (8) can be reduced to systems with matrix Ah + Ch.
Namely, as observed, e.g., in [2], an elementary computation shows that such an Ãh can be
directly factorized as

Ãh =

[
Ih Ih
0 Ih

] [
Ah + Ch 0
−Ch Ah + Ch

] [
Ih −Ih
0 Ih

]
.

Hence, the solution of a system Ãh

[
x
y

]
=

[
f
g

]
leads to the solution of

[
Ah + Ch 0
−Ch Ah + Ch

] [
z
y

]
=

[
Ih −Ih
0 Ih

] [
f
g

]
=

[
h
g

]
,

where z = x− y and h = f − g. Therefore, it involves the following computations:

(i) h = f − g

(ii) solve (Ah + Ch)z = h
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(iii) compute k = g + Chz

(iv) solve (Ah + Ch)y = k

(v) x = z + y .

Hence, besides three vector additions and a matrix-vector product, it involves only the
solution of two systems with the real-valued matrix Ah +Ch. Here Ch involves the domain
and boundary mass matrices, and thus the matrix Ah + Ch corresponds to the operator

−∆u+ (ε− κ2) in Ω

with boundary condition
∂u

∂n
+ µu = 0 on ∂Ω.

Choosing ε ≥ κ2 and µ > 0 implies that the operator is strictly positive and hence one-to-
one. Consequently, with such choices the symmetric matrix Ah +Ch will be positive definite
(and hence regular as required), and the solution of the subproblems can be achieved with
standard methods, such as (algebraic) multilevel inner preconditioners.

Remark 3.1. The preconditioning matrix is also related to some favourable approximation
properties. Firstly, if we define the intermediate matrix

Ah =

[
Ah Ch

−Ch Ah

]
, (9)

then Ah differs from Ah only in a term arising from a compact perturbation of (5), hence
A−1

h Ah has a condition number bounded uniformly in h and expected to be small. In turn,
Ãh differs from Ah in a further compact perturbation term for which it has been shown,
e.g., in [2, 6] that the condition number of such a preconditioned matrix Ã−1

h Ah is bounded
by two. The above also shows that the overall preconditioner also arises from a compact
perturbation of (5). Our goal is to prove that this leads to a mesh independent superlinear
rate of convergence.

Altogether, we wish to solve the preconditioned system

Ã−1
h Ahch = Ã−1

h bh (10)

using a GMRES iteration.

4 Mesh independent superlinear convergence for the pre-
conditioned system

4.1 Decomposition of the matrices
Let us introduce the bounded linear operators LS : H1(Ω)2 → H1(Ω)2 and NS : H1(Ω)2 →
H1(Ω)2, defined via the following equalities:

〈
LS

(
u

v

)
,

(
z

w

)〉
(H1)2

:=

∫
Ω

(∇u · ∇z − κ2uz) + κ

∫
∂Ω

vz − κ
∫
∂Ω

uw+

∫
Ω

(∇v · ∇w− κ2vw)

(11)〈
NS

(
u

v

)
,

(
z

w

)〉
(H1)2

:=

∫
Ω

(∇u · ∇z − κ2uz) + ε

∫
Ω

vz + µ

∫
∂Ω

vz

−ε
∫

Ω

uw − µ
∫
∂Ω

uw +

∫
Ω

(∇v · ∇w − κ2vw) + 2ε

∫
Ω

vw + 2µ

∫
∂Ω

vw (12)

The operators LS and NS correspond to the left-hand sides of the weak forms of problems
(2) and (3), respectively.
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Remark 4.1. The existence of LS and NS is ensured by the Riesz theorem. The subscript
S refers to the following notation: using the setting of [4], the space H1(Ω)2 is in fact the
energy space of the operator

S

(
u

v

)
:=

(
−∆u+ u

−∆v + v

)
defined for ∂u

∂n = ∂v
∂n = 0, further, the Helmholtz and preconditioning operators are S-

bounded, giving rise to their weak forms LS and NS in H1(Ω)2. This setting is used in
order to keep the operators within the space H1(Ω)2 instead of mapping into H−1(Ω)2.

The operator S induces the weight stiffness matrix

Sh =

[
Sh 0
0 Sh

]
where, corresponding to (6),(

Sh

)
i,j

:= 〈ϕi, ϕj〉H1 =

∫
Ω

(
∇ϕi · ∇ϕj + βϕiϕj

)
(i, j = 1, ..., n). (13)

The operators LS and NS satisfy

LS = NS +QS , (14)

where 〈
QS

(
u

v

)
,

(
z

w

)〉
(H1)2

:=

−ε
∫

Ω

vz + (k − µ)

∫
∂Ω

vz + ε

∫
Ω

uw − (k − µ)

∫
∂Ω

uw − 2ε

∫
Ω

vw − 2µ

∫
∂Ω

vw . (15)

For finite element matrices, the decomposition analogous to (14) is

Ah = Ãh +Qh

where
Qh =

[
0 −εMh + (κ− µ)Bh

εMh − (κ− µ)Bh −2(εMh + µBh)

]
(16)

or, using the previously used notation Ch := εMh + µBh,

Qh =

[
0 κBh − Ch

−κBh + Ch −2Ch

]
.

In preconditioned form we have

Ã−1
h Ah = Ih + Ã−1

h Qh .

We apply the GMRES algorithm for the matrix Ã−1
h Ah. Since the desired mesh indepen-

dence property relies on the underlying operator level in H1(Ω)2, we use the discrete Sobolev
inner product induced by the weight matrix Sh. In particular, the adjoint of a matrix M
w.r.t. this inner product (the "Sh-adjoint") is M∗Sh = S−1

h MTSh, and the corresponding
singular values are sj(M) = λj(S−1

h MTShM)1/2.
This leads to the following counterpart of estimate (4): the matrix E := Ã−1

h Qh and
its Sh-adjoint E∗ = S−1

h QT
h Ã
−T
h Sh provide the singular values sj(E) = λj(E

∗E) =

λj(S−1
h QT

h Ã
−T
h ShÃ

−1
h Qh)1/2, hence (4) implies(

‖rk‖Sh
‖r0‖Sh

)1/k

≤
‖(Ã−1

h Ah)−1‖Sh
k

k∑
i=1

λi(S−1
h Q

T
h Ã−Th ShÃ

−1
h Qh)1/2 (17)

(k = 1, 2, ..., n).
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Remark 4.2. Regarding the sum in (17), the sensitivity of the eigenvalues to the parameter
κ is determined by the underlying decomposition of Qh:

Qh =

[
0 −Ch

Ch −2Ch

]
+ κ

[
0 Bh

−Bh 0

]
. (18)

This shows on the one hand that the arising eigenvalues in (17), and hence the overall esti-
mate, grows at most linearly with κ. On the other hand, since κ multiplies an antisymmetric
matrix in (18), it only contributes to the imaginary parts of the eigenvalues of Qh. One
expects that the overall growth with increasing κ is slight, and this was indeed experienced
in a similar situation with complex arithmetics [5].

4.2 Mesh independent superlinear convergence estimates
Proposition 4.1. The operator N−1

S QS is compact in H1(Ω)2.

Proof. Let us introduce the bounded linear operators Q1 and Q2 : H1(Ω)→ H1(Ω), defined
by

〈Q1u, v〉H1 :=

∫
Ω

uv and 〈Q2u, v〉H1 :=

∫
∂Ω

uv (v ∈ H1(Ω)).

The operators Q1 and Q2 are compact in H1(Ω) (see, e.g., [4, Prop. 3.1]; this in fact follows
from the compact embeddings of H1(Ω) into L2(Ω) and of H1(Ω)|∂Ω into L2(∂Ω)). The
operator QS can then be expressed as an operator matrix with compact entries:

QS =

[
0 −εQ1 + (κ− µ)Q2

εQ1 − (κ− µ)Q2 −2(εQ1 + µQ2)

]
(as an operator analogue of (16)), i.e. for all (u, v) and (z, w) ∈ H1(Ω)2 we have〈

QS

(
u

v

)
,

(
z

w

)〉
(H1)2

= −ε〈Q1v, z〉+ (k − µ)〈Q2v, z〉+ ε〈Q1u,w〉 − (k − µ)〈Q2u,w〉 − 2ε〈Q1v, w〉 − 2µ〈Q2u,w〉
from (15). This implies that QS is also compact.

Further, one can see that NS has a bounded inverse in H1(Ω)2. Namely, as an operator
analogue of (8), we can write NS also in an operator matrix form:

NS =

[
AS CS

−CS AS + 2CS

]
with

〈ASu, v〉 :=

∫
Ω

(∇u · ∇z − κ2uz) (∀u, v ∈ H1(Ω)

and with
CS := εQ1 + µQ2,

where Q1, Q2 have been defined above. Similarly as in the matrix case, mentioned in subsec-
tion 3.2, one can see as a special case that NS is injective, i.e., the solution of a homogeneous
system is only the pair of zeros. Indeed, considering the system

ASu+ CSv = 0
−CSu+ (AS + 2CS)v = 0,

substraction shows that (AS + CS)(v − u) = 0, hence the regularity of (AS + CS) implies
u = v and then the first equation yields u = v = 0. Further, the form of NS shows that it is a
compact perturbation of the identity. Therefore, using the Fredholm alternative, injectivity
implies that NS has a bounded inverse.

Finally, sinceN−1
S is bounded andQS is compact, we obtain thatN−1

S QS is also compact.
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Remark 4.3. The above proof includes the result that NS has a bounded inverse. As
mentioned in the introduction, we have a well-posedness result for the original Helmholtz
problem via Fredholm theory. This means, by the definition of the operator LS , that LS

has a bounded inverse too. Also, similarly as seen above for NS , the operator LS is also a
compact perturbation of the identity.

In order to formulate the next estimates, we will use the constant

M := ‖NS‖ (19)

and we need the following:

Assumption 4.2: There exist constants m0,m1 > 0 such that for all considered sub-
spaces Vh,

(b) ‖A−1
h ‖Sh ≤

1

m0
, ‖Ã−1

h ‖Sh ≤
1

m1
.

Note that Assumption 4.2 is a natural requirement. Namely, hereAh and Ãh are Galerkin
discretizations of the operators LS and NS , respectively, which have bounded inverses and
are compact perturbations of the identity on H1(Ω)2 by Remark 4.3. For such operators,
it was shown in [5] that their Galerkin discretizations also have uniformly bounded inverses
for small enough discretization parameter h, i.e. Assumption 4.2 always holds if h is small
enough.

Now we are in the position to readily derive the main estimates and then the final
theorem.

Proposition 4.2. Let Assumption 4.2 hold, let sj(QS) (j = 1, 2, . . . ) denote the singular
values of the compact operator QS and let M,m0,m1 > 0 be as defined above. Then the
following relations hold:

(a)

k∑
j=1

λj(S−1
h Q

T
h Ã−Th ShÃ

−1
h Qh)1/2 ≤ 1

m1

k∑
j=1

sj(QS) (j = 1, 2, . . . , n),

(b) ‖(Ã−1
h Ah)−1‖Sh ≤

M

m0
.

Proof. The desired estimates hold in a Hilbert space whenever Ah, Ãh,Qh and Sh are
Galerkin projections of operators LS , NS , QS and of the inner product of the space, re-
spectively, such that LS and NS have bounded inverses and QS is compact. This has been
proved in [4, Proposition 4.5] in the case of coercive preconditioners for the sum of eigen-
values without square roots in (a), further, it has been pointed out in [5, Proposition 5.4]
that coercivity can be replaced here just by bounded invertibility and the estimates hold for
each term of the above sum in (a). Hence the result follows, since the required properties
for such a setting have been verified above, see Proposition 4.1 and Remark 4.3.

Theorem 4.1. Let us consider a family of FEM subspaces Vh = span{ϕ1, . . . , ϕn} ⊂ H1(Ω)
(h > 0) and the discretization in Vh × Vh described in Section 3, such that Assumption 4.2
holds. Then the GMRES iteration for the n×n preconditioned systems (10) provides a mesh
independent superlinear convergence estimate, i.e., we have(

‖rk‖Sh
‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n) (20)

where (εk)k∈N+ → 0 and it is a sequence independent of n and Vh. Namely,

εk ≤
M

m0m1
· 1

k

k∑
j=1

sj(QS) → 0 (as k →∞), (21)
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Proof. The estimate follows directly from (17) and Proposition 4.2. The convergence of εk
to zero follows from the compactness of QS , since it is constant times the arithmetic mean
of a sequence that converges to 0.

5 Conclusions
We have considered the real system formulation of complex Helmholtz equations by rewriting
them in real-valued block form. We have introduced and analyzed a preconditioner in a
special two-by-two block form. This block preconditioner can be readily factorized and thus
reduced to two standard systems with symmetric positive definite matrices, which leads to
a small condition number bound. We have shown that the corresponding preconditoned
Krylov iteration converges at a mesh independent superlinear rate.
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