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ACTIVE FAULT ISOLATION:
A DUALITY-BASED APPROACH VIA CONVEX PROGRAMMING

FRANCO BLANCHINI† , DANIELE CASAGRANDE‡ , GIULIA GIORDANO§ , STEFANO

MIANI‡ , SORIN OLARU¶, AND VASSO REPPA‖

Abstract. This paper presents the mathematical conditions and the associated design method-
ology of an active fault diagnosis technique for continuous-time linear systems. Given a set of faults
known a priori, the system is modeled by a finite family of linear time-invariant systems, accounting
for one healthy and several faulty configurations. By assuming bounded disturbances and using a
residual generator, an invariant set and its projection in the residual space (i.e., its limit set) are
computed for each system configuration. Each limit set, related to a single system configuration, is
parameterized with respect to the system input. Thanks to this design, active fault isolation can be
guaranteed by the computation of a test input, either constant or periodic, such that the limit sets
associated with different system configurations are separated, and the residual converges towards one
limit set only. In order to alleviate the complexity of the explicit computation of the limit set, an
implicit dual representation is adopted, leading to efficient procedures, based on quadratic program-
ming, for computing the test input. The developed methodology offers a competent continuous-time
solution to the optimization-based computation of the test input via Hahn-Banach duality. Sim-
ulation examples illustrate the application of the proposed active fault diagnosis methods and its
efficiency in providing a solution, even in relatively large state-dimensional problems.

Key words. Active fault isolation, residual, limit set, support functional, separating hyperplane,
convex programming, duality
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1. Introduction. The occurrence of faults is unavoidable in the operational
life of control processes, making indispensable the application of fault detection and
isolation (FDI) mechanisms that monitor the system status [6]. In the last twenty
years, model-based or analytical redundancy-based approaches became very popular
for tackling the FDI problem [4, 10]. The FDI decision making process becomes chal-
lenging due to the presence of modeling errors, system disturbances, and measurement
noise, which can mask the effects of faults [11]. When assuming stochastic uncertain-
ties, the robustness of the FDI mechanism is defined with respect to an acceptable
small rate of false alarms [12, 13]. On the other hand, when assuming bounded un-
certainties, robustness entails that the FDI mechanism is insensitive to uncertainties
(no false alarms). In both cases the fault detection rate should be maximized [9]. The
boundedness assumption on the uncertainties, including faults, offers a particularly
attractive framework for FDI guarantees.

The role of a FDI mechanism in the system supervision can be either passive or
active. A passive FDI mechanism only monitors the input and output data of the sys-
tem, and obtains a decision based on the processed information. Assuming bounded
uncertainties, several researchers have developed passive FDI methods, where sets in
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the parameter or residual space are generated on-line [33, 34, 30, 7, 31]. A fault is de-
tected when either the parameter set is empty, or the inclusion of the residual within
the corresponding set does not hold. In general, if the trajectories of the system states
belong to sets or tubes [32, 5], then fault detection can be translated into an inclusion
test [41]. Alternatively, several passive set-theoretic FDI methods aim at the off-line
separation of healthy and faulty sets [38, 37] by exploiting the existence of limit sets,
where the residuals are guaranteed to converge under healthy conditions and various
fault scenarios.

If the FDI mechanism can step in the (closed-loop) system operation (e.g., there
are no security or safety reasons that forbid the access to the system, or there is
information related to the control design), its role becomes active. Active FDI can
offer more design freedom to ensure the diagnosis of faults, which may be affected
by the closed-loop system operation [2]. There are two main approaches to active
fault diagnosis. (1) The FDI mechanism can intervene to the system operation by
inducing an auxiliary input signal that can stimulate the system to make the effects
of faults detectable [24, 8, 43, 35, 3, 28, 29]. Following this approach, the auxiliary
signal can be designed based on the open-loop operation of the system [24, 8, 35], or
the closed-loop operation [3, 43, 28, 29]. (2) The FDI can activate the reconfiguration
of the control scheme, aiming to increase the detectability and the isolability of the
faults [23, 44, 27, 42]. The design of active fault diagnosis methods depends also
on the type of uncertainties and the associated assumptions. There is a significant
research activity in the case of bounded uncertainties, e.g. [24, 35, 44, 43], while
new methods were recently developed for stochastic disturbances [27], probabilistic
parametric uncertainties [22], or both stochastic and bounded uncertainties [21]. Most
of active fault diagnosis methods consider discrete-time systems, e.g. [24, 3, 35, 42,
28, 43, 29], and there are very few for continuous-time systems [23, 44, 25]. To the
best of our knowledge, the auxiliary signal design of continuous-time systems with
persistent-but-bounded disturbances is a challenging problem [40].

In this research work, we present an active observer-based FDI technique for
continuous-time linear systems affected by norm-bounded disturbances. We take into
account one healthy and several faulty system configurations, and seek suitable test
signals that guarantee separation of the limit sets via hyperplanes in the residual space
[24, 26, 28]. In contrast to [24], a finite isolation window can be obtained based on
a positive answer for the asymptotic separation conditions. When compared to [26],
the online monitoring is reduced to a simple positioning with respect to separating
hyperplanes. Also, the forward set propagation and projection in [28] are avoided.

From a technical point of view, our contribution is twofold. Firstly, we propose
a framework for obtaining a continuous-time solution to active FDI based on the
Hahn-Banach theorem. Minimum norm duality allows us to show that the problem
is convex; its domain is the unit ball of the residual space, which is typically of low
(output-space) dimension. Secondly, since the explicit computation of limit sets is
a complex task, we apply a dual implicit representation of limit sets for continuous
time systems. Given a constant test signal u, we show that the distance between
two limit sets can be obtained without explicitly computing the sets and requires
quadratic programming in the case of the Euclidean norm. This design feature allows
us to handle efficiently large scale dimensions. For constant test signals u bounded
in a polytope, since the distance between limit sets is a convex function of u [19], the
values that offer the best discrimination (maximizing the distance) are achieved on
the vertices. For periodic test signals, a frequency sweeping procedure is proposed to
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select the suitable frequencies for set-separation.

2. Problem Formulation. Consider the family of linear time invariant systems

ẋ(t) = Ahx(t) +Bhu(t) + Ehd(t)(2.1)

y(t) = Chx(t) +Dhw(t)(2.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is a controlled input signal, y(t) ∈ Rp is the
measured output, while d(t) ∈ Rq and w(t) ∈ Rp are noise signals; Ah, Bh, Ch, Dh

and Eh are matrices of appropriate dimensions. The index h is associated with the
configuration (healthy or faulty) in which the system is operating:

[Ah, Bh, Ch, Dh, Eh], h ∈ H,

whereH = {0, 1, . . . , N} is a discrete and finite set of indices. Index h = 0 corresponds
to the healthy configuration [A0, B0, C0, D0, E0]

.
= [A,B,C,D,E], while any other

h ≥ 1 corresponds to a faulty configuration. Note that matrices Dh and Eh are
indexed as well, since a fault may alter the effect of the disturbances on the system.
The disturbances d(t) ∈ Rq and w(t) ∈ Rp are unknown, but subject to the bounds

d(t) ∈ Bq, w(t) ∈ Bp,

where Bk
.
= {v ∈ Rk : ‖v‖∞ ≤ 1} is the unit ball of the ∞-norm. Any weight

concerning the components of d and w, respectively, is absorbed in the matrix Eh and
in the square, possibly diagonal matrix Dh.

Note that all of the N + 1 system modes, corresponding to healthy and faulty
configurations, can be known a priori, based on historical data used to create a fault
dictionary [1], which is a common fault diagnosis tool for electric circuits [45].

The objective of this work is to determine suitable test signals u that guarantee
the distinguishability of the system configurations [Ah, Bh, Ch, Dh, Eh], h ∈ H. If
the system configurations are distinguishable for a specific test signal, then at each
time instant we can check whether the system is operating in a non-healthy configu-
ration, thus yielding to a finite-time fault detection, and even specify the exact faulty
configuration (fault isolation).

3. Active Fault Isolation Based on Set Separation. In order to detect a
fault and isolate it (namely, to establish the actual configuration h in which the system
is operating), we can adopt an observer:

d

dt
x̂(t) = (A+ LC)x̂(t) +Bu(t)− Ly(t),(3.1)

ŷ(t) = Cx̂(t).(3.2)

The detection and isolation will rely on the monitoring of the residual signal:

r(t) = y(t)− ŷ(t),(3.3)

which converges to zero in the absence of disturbances and in healthy conditions,
provided that the observer is properly designed (i.e., (A+LC) is Hurwitz). Conversely,
in faulty conditions and in the presence of noise this convergence is not ensured and
r can be used as an indicator for fault diagnosis. The overall system dynamics is

d

dt

[
x(t)
x̂(t)

]
=

[
Ah 0
−LCh (A+ LC)

] [
x(t)
x̂(t)

]
+

[
Bh
B

]
u(t) +

[
Eh 0
0 −LDh

] [
d(t)
w(t)

]
,(3.4)
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with residual output equation

(3.5) r(t) =
[
Ch −C

] [ x(t)
x̂(t)

]
+
[

0 Dh

] [ d(t)
w(t)

]
.

We adopt the new state space representation

ż(t) = Fhz(t) +Ghu(t) + Phv(t),(3.6)

r(t) = Mhz(t) +Qhv(t),(3.7)

where z(t) =
[
x(t)> x̂(t)>

]> ∈ R2n, v(t) =
[
d(t)> w(t)>

]> ∈ Ra, a = q+p, and the
matrices Fh ∈ R2n×2n, Gh ∈ R2n×m, Ph ∈ R2n×a, Mh ∈ Rp×2n and Qh ∈ Rp×a are
those appearing in (3.4) and (3.5). Note that v(t) is in the unit ball of the ∞-norm:

v(t) ∈ Ba.

We make the following assumptions.
Assumption 1. Matrices Ah are Hurwitz ∀h ∈ H.
Assumption 2. Matrix L is given such that (A+ LC) is Hurwitz.
Remark 1. The choice of an observer gain L such that (A + LC) is Hurwitz

requires the detectability of the pair (A,C). The observer gain L may be designed
under observability conditions, e.g., to optimize nominal (healthy) working conditions.
Being a free design parameter, L can also be chosen so as to facilitate fast and effective
FDI. We assume that a test signal u of bounded magnitude is available for active
fault detection and isolation. The essential idea is to choose u appropriately, to ensure
that the limit sets to which the residual converges when the system is operating in
different configurations can be separated by suitable hyperplanes.

In the residual space, let us define the convex and compact sets Rh(u) ⊂ Rp,
h ∈ H, each associated with one of the system configurations. We denote these limit
sets as Rh(u) because, as we will see, they can be determined based on (3.6) and
(3.7), hence their computation depends on the test signal u. In this work, the system
configuration is inferred by validating, for all k = 0, . . . , N , the hypothesis:

Hypothesis k: if r(t) ∈ Rk(u), the system configuration is [Ak, Bk, Ck, Dk, Ek].

The healthy or a faulty configuration i is guaranteed to be isolated at a certain
time instant t∗ if and only if a single hypothesis (hypothesis i) is validated at time t∗.
This can be achieved if we determine a test signal u such that Rh(u) ∩Rl(u) = ∅ for
each pair h, l ∈ H, h 6= l. However, the explicit computation of the sets Rh(u) and
of their intersection can be intractable. We can deal with the problem by considering
that two sets are separated (i.e., have an empty intersection) if their distance is
positive. Since the two limit sets Rh(u) and Rl(u) are convex, it is known that they
are separated if and only if there exists a separating hyperplane

(3.8) Shl =
{
r ∈ Rp : 〈shl, r〉 = ρhl

}
with shl ∈ Rp and ρhl ∈ R (we denote by 〈·, ·〉 the scalar product) such that:

〈shl, r〉 < ρhl, for any r ∈ Rh(u),

〈shl, r〉 > ρhl, for any r ∈ Rl(u).

Based on the concept of separating hyperplane, different system configurations
can be distinguished, according the following definition.
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Definition 3.1. Assume that a ball A of admissible initial conditions, centered
in the origin, is given1 and a test signal u(·) is assigned. Then, configurations h and l
are distinguishable in the interval [t̄1, t̄2] (possibly with t̄2 =∞) if their corresponding
sets Rh(u) and Rl(u), h 6= l, h, l ∈ H are separated in the interval [t̄1, t̄2] by the
hyperplane Shl in (3.8); namely if, for all t ∈ [t̄1, t̄2], we have

〈shl, r〉 < ρhl, if the configuration is h,

〈shl, r〉 > ρhl, if the configuration is l,

for all initial conditions x(0) ∈ A and all v(t) ∈ Ba.

In order to achieve separation between limit sets in the residual space (by pro-
viding suitable separating hyperplanes), two types of test signals will be considered.

• Constant u(t) = u ∈ Rm: the separation interval will be open, [t̄1,∞).
• Sinusoidal u(t) = γū cos(ωt), with constant ū ∈ Rm: after some t̄, the sepa-

ration intervals [t̄1 +k(2π/ω), t̄2 +k(2π/ω)], k ∈ N, t̄2− t̄1 < (2π/ω), will be repeated
periodically.

Once proper separating hyperplanes are found off-line, active fault isolation re-
quires monitoring on-line the signals

σhl(t) = 〈shl, r(t)〉,(3.9)

for each pair h, l ∈ H and checking at each time instant if the signal σhl is greater
or smaller than the corresponding threshold ρhl. As shown in the following sections,
for each pair of configurations, finding the separating hyperplane, as well as checking
whether the distance is positive, can efficiently be performed by exploiting duality.

Remark 2. A popular approach in fault diagnosis is based on the use of multiple
models describing the healthy mode and various faulty modes of a system, and the
generation of several residual filters associated with each model: using the available
input and output data, fault diagnosis logic then checks which of the available known
models matches the dynamical behavior of the system subject to faults. Due to the
presence of uncertainties, the exact matching is unrealistic and optimization criteria
are applied. In a bounded-uncertainty framework, the model that best matches the real
system behavior is the one whose corresponding residual norm is less than a threshold,
or the one with the smaller distance-like metric [47]. In a stochastic-uncertainty
framework, the model that best matches the real system behavior is the one with the
highest probability [50, 17]. In this work, instead of using a bank of dynamical residual
filters (see e.g. Chapter 4 in [1]), we consider only one residual generator and check in
which limit set the residual resides, taking into account the hyperplanes that separate
the limit sets. Each limit set corresponds to a single system configuration, and their
separation can be guaranteed by the proper auxiliary signal that is designed.

In the following sections we will consider the continuous-time case; yet, we point
out that the development of the theory would be unchanged in the discrete-time case,
except for the fact that we need to consider series rather than integrals.

4. Set Separation via Constant Test Signals. We first consider constant
signals, and present some preliminaries from convex analysis and duality theory.

1Assuming that the initial conditions are bounded in a ball is fundamental to ensure that sepa-
ration actually occurs after a finite time instant t̄1. In general, the system state converges to a ball,
but no guaranteed lower bound for the time can be provided if the initial conditions are arbitrary.
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4.1. Separation of Convex Sets: Some Preliminaries. Given two convex
and compact sets R1 and R2 in Rp, we define their distance as

(4.1) dist (R1,R2)
.
= inf
r1∈R1, r2∈R2

‖r2 − r1‖2,

where ‖ · ‖2 denotes the Euclidean norm. Since R1 and R2 are compact, the infimum
is actually a minimum. The two sets are separated, i.e. R1

⋂
R2 = ∅, if their distance

is (strictly) positive: dist (R1,R2) > 0.
Determining the distance between two convex and compact sets is a convex op-

timization problem that is typically tractable when the representation of the sets R1

and R2 is simple enough. Unfortunately, this is not necessarily true in our setup.2

However, we will show that the problem becomes tractable if we resort to duality,
since an explicit computation of the limit sets is no more necessary.

The main idea is simple and is the following. The distance between R1 and R2

is equivalent to the distance of their difference R = R2 − R1 from the origin. To
explicitly represent R one has, in principle, to consider all possible realizations of the
disturbances. Yet, the explicit representation of R can be avoided: it is enough to
characterize only the disturbance function that realizes the distance by solving the
(convex) dual problem. To this aim, we need the concept of support functional [20, 5].

Definition 4.1. Given a convex and compact set R ∈ Rp, the support functional
φR : Rp → R is

φR(s)
.
= sup
r∈R
〈s, r〉.

By duality [20], the distance (4.1) can be expressed as follows.
Proposition 4.2. Given two convex and compact sets R1 and R2 in Rp, consider

their distance, defined in (4.1). Then

(4.2) dist (R1,R2) = max
‖s‖2≤1

{
− [φR1

(−s) + φR2
(s)]

}
.

Proof. Let r = r2 − r1 and write (4.1) as

(4.3) dist (R1,R2)
.
= inf
r∈R21

‖r‖2,

where R21 is the Minkowski sum of R2 and −R1 defined as

R21 = {r = r2 − r1, r1 ∈ R1, r2 ∈ R2}.

In view of the Hahn-Banach duality theorem (see [20], Th. 1, pag. 136), we have

dist (R1,R2) = max
‖s‖2≤1

− φR21
(s),

where φR21
is the support functional of R21. By definition

φR21(s) = max
r∈R21

〈s, r〉 = max
r1∈R1, r2∈R2

〈s, r2 − r1〉 =

{
max
r1∈R1

〈s,−r1〉+ max
r2∈R2

〈s, r2〉
}

=

{
max
r1∈R1

〈−s, r1〉+ max
r2∈R2

〈s, r2〉
}

= {φR1
(−s) + φR2

(s)} .

2For instance, in the case of bounded-energy disturbances, the reachability sets would be ellipsoids
and explicit computation would be feasible [18, 25, 5]. However, this is not the case for pointwise in
time bounded disturbances.
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Note that the supremum is indeed a maximum due to continuity and compactness of
the sets R1 and R2.

Remark 3. If in (4.1) a generic norm ‖ · ‖X is used, then the duality still holds
if the Euclidean norm in (4.2) is replaced by ‖ · ‖X∗ , the dual norm of ‖ · ‖X .

Once we have established that the sets are separated, i.e., that their distance is
(strictly) positive, we need to find a separating hyperplane. We can take the half-way
separating plane, as follows.

Proposition 4.3. If dist (R1,R2) > 0, then a separating hyperplane is

S12 =

{
r ∈ Rp : 〈ŝ, r〉 =

φR2(ŝ)− φR1(−ŝ)
2

}
,

where ŝ is the maximizer of (4.2). The distance of the hyperplane from both the sets
R1 and R2 is equal to dist (R1,R2) /2.

Proof. We show that 〈ŝ, r1〉 >
φR2

(ŝ)−φR1
(−ŝ)

2 for any r1 ∈ R1. Indeed

〈ŝ, r1〉 = −〈−ŝ, r1〉 ≥ −φR1
(−ŝ) =

φR2
(ŝ)− φR1

(−ŝ)
2

− φR2
(ŝ) + φR1

(−ŝ)
2

=
φR2(ŝ)− φR1(−ŝ)

2
+

dist (R1,R2)

2
>
φR2(ŝ)− φR1(−ŝ)

2
.

With an analogous reasoning, 〈ŝ, r2〉 <
φR2

(ŝ)−φR1
(−ŝ)

2 for any r2 ∈ R2:

〈ŝ, r2〉 ≤ φR2
(ŝ) =

φR2
(ŝ)− φR1

(−ŝ)
2

−
[
−φR2

(ŝ) + φR1
(−ŝ)

2

]
=
φR2

(ŝ)− φR1
(−ŝ)

2
− dist (R1,R2)

2
<
φR2

(ŝ)− φR1
(−ŝ)

2
.

The hyperplane is at the same distance dist(R1,R2)/2 from both the sets, which is
the quantity that we are neglecting, in both cases, to get a strict inequality.

4.2. Asymptotic Separation of Limit Sets. Given system (3.6)–(3.7), we
first deal with asymptotic separation of limit sets by means of constant test signals.

Assumption 3. The test signal u is constant and lies in the polytope U ⊂ Rm.
In view of asymptotic stability, in the absence of noise (v ≡ 0) the residual would

converge asymptotically to the point

rh(∞)
.
= −MhF

−1
h Ghu = −ChA−1

h Bhu+ C(A+ LC)−1[LChA
−1
h Bhu+Bu].

In healthy conditions (h = 0), r(t) converges to r0(∞) = 0. In the presence of noise,
r(t) converges to a set (limit set), which in healthy conditions is centered in the origin.

Under these assumptions, discriminating two configurations h and l in finite time
(according to Definition 3.1) is possible if we know a separating hyperplane between
rh(t) and rl(t). If we take the noise into account, a necessary and sufficient condition
for the system trajectories to ultimately cross the separating hyperplane is that the
limit sets for h and for l lie on opposite sides of the hyperplane [25].

By denoting by Zh(0) the infinite-time reachable set for the input-free h system
configuration (i.e. described by (3.6) with u = 0)

(4.4) ż = Fhz(t) + Phv(t),

the limit set Rh(u) associated with the h configuration can be expressed as

(4.5) Rh(u) = {−MhF
−1
h Ghu} ⊕MhZh(0)⊕QhBa,
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where ⊕ is the Minkowski sum for sets. The residual r(t) described by (3.3) is guar-
anteed to converge to a limit set Rh(u). The goal of this work is to compute, if
possible, an input signal u that guarantees that the residual r converges to a separa-
ble limit set. If finding such a u is not possible, then the residual might converge to the
non-empty intersection of two limit sets associated with two different configurations
(e.g. the healthy limit set and a faulty limit set), leading to missed fault detection or
non-isolation of the actual system configuration.

A crucial condition for the existence of u suitable for discriminating configurations
h and l in finite time [24] is that Rh(u)

⋂
Rl(u) = ∅, i.e., the distance δhl(u) between

the two sets is positive:

(4.6) δhl(u) = dist (Rh(u),Rl(u)) > 0.

Hence, the active fault isolation is realized based on the following definition.
Definition 4.4. Configurations l and h are distinguishable if there exists u ∈ U

such that δhl(u) > 0.
Problem 1. Given the matrices Fh, Gh, Mh, Qh Ph, h ∈ H, the matrices Fl,

Gl, Ml, Ql Pl, l ∈ H, l 6= h, and the polytope U , find constant values uhl ∈ U such
that δhl(u) > 0.

Remark 4. The approach that employs constant test signals to find a separating
hyperplane fails when the distance conditions (4.6) are not met. This happens for LTI
system configurations (2.1) with similar static gains, a class of systems that can be
efficiently handled with frequency-based tests, as described in Section 5. However, the
general hyperplane method with constant test signals can be efficiently used for high
dimensional systems, hence it is to be privileged in applications whenever (4.6) holds.

The distance function δhl(u) has the following useful properties.
Proposition 4.5. [19] Function δhl (u) is convex.
Proposition 4.6. [19] The maximum of δhl(u) is reached on the set of vertices

of U , vert(U). Hence configurations h and l are distinguishable iff δhl(u) > 0 for
some u ∈ vert(U). Checking this condition thus requires solving a finite number of
convex optimization problems.

The limit set for the residual is given by the projection MhZ(0) of the infinite-time
reachable set Z(0) for the state. In our case, we need a suitable external approximation
of MhZ(0) as a projection of an external approximation of Z(0). The difficulty, in
view of (4.5), is that we would need evaluating the set

(4.7) MhZh(0) =

{
r ∈ Rp : r =

∫ ∞
0

Mhe
FhσPhv(σ)dσ, v(σ) ∈ Ba

}
,

which is the image of the set of all functions v of bounded magnitude. Techniques
based on support hyperplanes have been discussed in [36, 14]. Still, the problem is
that this computation in the overall state-space would be prohibitive.

Moreover, if we establish that, for a certain u, δhl (u) > 0, namely Rh(u) and
Rl(u) are separated, the active fault isolation requires finding a separating hyperplane
Shl = {r ∈ Rp : 〈shl, r〉 = ρhl}. Based on this hyperplane, configurations l and h can
be distinguished on-line by monitoring the signal

σhl(t) = 〈shl, r(t)〉

and checking whether it is greater or smaller than the threshold ρhl. By adopting
duality, we can simultaneously assess whether the distance is positive and find the
separating hyperplane.
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Remark 5. The separation between a certain pair of configurations is, in general,
obtained with a constant signal different from the one needed to separate another pair.
One could argue if, to distinguish multiple fault pairs at the same time, a single signal
can be used. In most of the practical situations this is possible; however, the signal
needed to make the separation detectable is much larger in magnitude than the signal
needed to separate two configurations only.

4.3. A Solution Based on Hahn-Banach Duality. We propose a solution
that is based on duality in minimum distance problems and is quite efficient, since
the residual space is typically low dimensional (at least, its dimension is usually lower
than the state-space dimension). For the sake of generality, we now assume that

v(t) ∈ B

where B is the unit (closed) ball of any norm ‖ · ‖. Denote by ‖ · ‖∗ the dual norm.

If we consider system (3.6)–(3.7), the limit set is

Rh(u) =

{
r ∈ Rp : r = −MhF

−1
h Ghu+

∫ ∞
0

Mhe
FhσPhv(σ)dσ +QhvQ,

v(σ) ∈ B, vQ ∈ B

}
,

where we denote by vQ the disturbance directly affecting the residual r, to dis-
criminate it from the function v(σ) in the integral. We need to assess whether
δhl(u) = dist(Rh(u),Rl(u)) > 0. As shown in Section 4.1, the minimum-norm prob-
lem can be dualized by considering the support functional of Rh(u). For simplicity
in the notation, we write φh = φRh(u). Then we have

φh(s) = sup
r∈Rh(u)

〈s, r〉 =

= sup
v(σ)∈B,vQ∈B

s>
{
−MhF

−1
h Ghu+

∫ ∞
0

Mhe
FhσPhv(σ)dσ +QhvQ

}
= −s>MhF

−1
h Ghu+ sup

v(σ)∈B

∫ ∞
0

s>Mhe
FhσPhv(σ)dσ + sup

vQ∈B
s>QhvQ.

The supremum of the integral is achieved by selecting at each time

v(σ) =
[s>Mhe

FhσPh]>

‖s>MheFhσPh‖∗

(componentwise), so that the integrand function becomes ‖s>Mhe
FhσPh‖∗. Simi-

larly, the supremum in the last term is ‖s>Qh‖∗. Then we get the following explicit
expression for the support functional

(4.8) φh(s) = −s>MhF
−1
h Ghu+

∫ ∞
0

‖s>Mhe
FhσPh‖∗dσ + ‖s>Qh‖∗.

The support functional of a convex and compact set is convex [20] and locally
bounded. We can then formulate the main result of the section.
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Proposition 4.7. The distance function δhl(u) can be computed by solving the
convex optimization problem

δhl(u) = − min
‖s‖2≤1

{φl(−s) + φh(s)} .

Once the problem is solved and the optimizer ŝ is found, if the distance is positive,
according to Proposition 4.3 a separating hyperplane is given by

Shl =

{
r ∈ Rp : 〈ŝ, r〉 =

φRl
(ŝ)− φRh

(−ŝ)
2

}
.

The considered problem requires solving a convex optimization program in the
unit ball of the Euclidean norm in Rp (formally, the dual of the residual space). This
space is typically low dimensional and the solution can be found via standard software.

The only issue left is the evaluation of the integral. This is a straightforward
task, which can be accomplished via numerical integration. If the time horizon is
large enough, depending on the eigenvalues of Fh, the integral can be evaluated with
arbitrary approximation. If the integration interval is [0, T ], then an upper bound for
the truncation error:

err(T ) =

∫ ∞
0

‖s>Mhe
FhσPh‖∗dt−

∫ T

0

‖s>Mhe
FhσPh‖∗dt =

∫ ∞
T

‖s>Mhe
FhσPh‖∗dt

is provided by the following result.
Proposition 4.8. Assume that matrix Fh has N distinct eigenvalues λk, with

k = 1, . . . , N . Then

err(T ) ≤
N∑
k=1

‖R̄k‖∗
e−ξkT

ξk
,

where R̄k = |Rk| are the componentwise magnitudes of vectors Rk (suitable complex

residuals of the decomposition s>Mhe
FhσPh =

∑N
k=1 Rk e

λkσ) and −ξk < 0 is the
real part of λk.

Proof. We have

err(T ) =

∫ ∞
T

‖s>Mhe
FhσPh‖∗dσ =

∫ ∞
T

‖
N∑
k=1

Rk e
λkσ‖∗dσ

≤
∫ ∞
T

N∑
k=1

‖R̄k‖∗|eλkσ|dσ =

N∑
k=1

‖R̄k‖∗
∫ ∞
T

|eλkσ|dσ =

N∑
k=1

‖R̄k‖∗
e−ξkT

ξk
.

Remark 6. The error in the computation of the integral leads to overestimating
the distance between the two sets: truncating the integral at time T is equivalent to
neglecting the noise after T , hence considering smaller reachability sets. This consid-
eration suggests to compute err(T ) once the procedure has given the “optimal” s.

5. Set Separation via Frequency-Based Test Signals. In the following we
assume that u is a scalar (hence, m = 1) frequency test signal of a fixed amplitude,
injected in the system for detection purposes.

Assumption 4. Signal u is sinusoidal, u(t) = γ cos(ωt) ∈ R, with γ constant.
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We analyze the scalar case for simplicity and without restriction, since u ∈ R is
enough to provide the fundamental principles of set separation via periodic signals. In
fact, given the system (3.6), considering the test signal u(t) = γū cos(ωt) ∈ Rm, with
ū ∈ Rm a constant vector, and the matrix Gh ∈ R2n×m, is equivalent to considering
the scalar test signal ũ(t) = γ cos(ωt) and the vector G̃h = Ghū ∈ R2n.

When considering sinusoidal test signals, the scenario changes with respect to
Section 4, since in general the residual r(t) of system (3.6)–(3.7) will converge asymp-
totically not to a fixed set, but to a “periodically evolving set” centered on a periodic
orbit around the origin. Denoting by R̄h the limit set with no test signal (u = 0),

R̄h = Rh(0) =

{
r ∈ Rp : r =

∫ ∞
0

Mhe
FhσPhv(σ)dσ +QhvQ, v(σ) ∈ B, vQ ∈ B

}
,

the periodic limit set is

(5.1) Rh(γ, ωt) = R̄h ⊕ {r = γHh(ω)ν(ωt)},

where

ν(ωt) = [ cos(ωt) sin(ωt) ]>

and

Hh(ω) =
[
Re
[
Mh(jωI − Fh)−1Gh

]
− Im

[
Mh(jωI − Fh)−1Gh

]]
.

Since we are dealing with periodically fluctuating sets, separation cannot be persistent,
but just periodically occurring. With the support of Fig. 1, we now introduce the
notions of weak and strong separation.

Definition 5.1. Configurations h and l are weakly separated by the test signal
u(t) = γ cos(ωt) if there exist a hyperplane Shl = {r ∈ Rp : 〈s, r〉 = ρ} (which we
call weakly separating hyperplane) and a time instant t0 such that, for t = t0 +
k(2π/ω), k ∈ N,
i) 〈s, r〉 < ρ for all r ∈ Rh(γ, ωt);
ii) 〈s, r〉 > ρ for all r ∈ Rl(γ, ωt).

Remark 7. Definitions 3.1 and 5.1 are concordant and can be related by the
restriction t = t0 + k(2π/ω) ∈ [t̄1 + k(2π/ω), t̄2 + k(2π/ω)], k ∈ N.

A stronger notion of separation requires that one of the sets never crosses the
hyperplane, while the other periodically does.

Definition 5.2. Configuration l is strongly separated by the test signal u(t) =
γ cos(ωt) from configuration h if there exists a hyperplane Slh = {r ∈ Rp : 〈s, r〉 = ρ}
(which we call strongly separating hyperplane) such that
i) 〈s, r〉 < ρ for all r ∈ Rl(γ, ωt);
ii) there exists t0 such that 〈s, r〉 > ρ for r ∈ Rh(γ, ωt) and t = t0 +k(2π/ω), k ∈ N.3

Each strongly separating hyperplane is obviously a weak separating hyperplane,
but the other way round is not true. Two configurations may admit a weakly, but
not a strongly, separating hyperplane; this happens, e.g., when the two sets follow the
same orbit with different phase.

3Equivalently, we may have that 〈s, r〉 > ρ for all r ∈ Rl(γ, ωt) and there exists t0 such that
〈s, r〉 < ρ for r ∈ Rh(γ, ωt) and t = t0 + k(2π/ω), k ∈ N.
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Fig. 1: Left: configurations h and l are (periodically) weakly separated by the hyper-
plane. Right: configuration l is strongly separated from configuration h.

Weak separation is equivalent to the fact that at some points t = t0+k(2π/ω), k ∈
N, the distance between the limit sets is positive. It can be easily detected by means
of a phase sweep, by checking whether

max
0≤θ≤2π

dist (Rh(γ, θ),Rl(γ, θ)) > 0 ,

where θ
.
= ωt, which reduces to solving a parameterized convex optimization problem.

Remark 8. Unlike weak separation, strong separation is an asymmetric concept:
the strongly separating hyperplane can be crossed by one and only one of the two sets,
which we call external set (set Rh in Fig. 1, right). The other one, we call internal set,
always remains on one side of the hyperplane (set Rl in Fig. 1, right). The internal
set is both strongly and weakly separated from the external set, while the external set is
weakly separated from the internal set. Hopefully, for an efficient diagnosis, we might
find other planes for which the situation is reversed (Rh is internal and Rl esternal).

To handle the strong separation case, we need a preliminary lemma.
Lemma 5.3. The hyperplane S12 = {r ∈ Rp : 〈s, r〉 = ρ} separates two compact

sets R1 and R2 in Rp (i.e., 〈s, r〉 < ρ ∀ r ∈ R1 and 〈s, r〉 > ρ ∀ r ∈ R2) if and only
if it separates conv{R1} and conv{R2}, where conv{·} denotes the convex hull.

Proof. The convex hull of the set Ri, conv{Ri}, is the intersection of all half-
spaces including Ri. Therefore, if R1 and R2 are on opposite sides of the hyperplane
S12, so are their convex hulls, and vice-versa.

The following theorem establishes the condition for strong separation.
Theorem 5.4. A strong separating hyperplane between Rh(γ, θ) (external set)

and Rl(γ, θ) (internal set) exists if and only if the distance between Rh(γ, θ) and

Cl(γ)
.
= conv {Rl(γ, θ), θ ∈ [0, 2π]}

is positive for some θ ∈ [0, 2π].
Proof. The thesis follows from Lemma 5.3, since strong separation of l from h is

equivalent to the following two conditions.
i) Rl(γ, θ) is on one side of a separating hyperplane for all t, hence for all θ = ωt.
In view of Lemma 5.3, this is equivalent to the fact that the convex hull Cl(γ) of the
floating set is always on one side of the hyperplane.
ii) Rh(γ, θ) (which, being convex, is equal to conv {Rh(γ, θ)}) is on the opposite side
of the hyperplane for some θ.

Strong separation can be assessed by checking whether a periodic orbit, namely
the ellipse of all points of the form γHh(ω)ν(θ), intersects a convex and compact set,
as shown in the next theorem.
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Theorem 5.5. A strongly separating hyperplane between configuration Rh(γ, θ)
(external set) and Rl(γ, θ) (internal set) exists if and only if, for some θ ∈ [0, 2π]:

γHh(ω)ν(θ) 6∈ R̄h ⊕ Cl(γ).

Proof. Assume that, for some θ ∈ [0, 2π], Rh(γ, θ) and Cl(γ) are separated by the
hyperplane S = {r ∈ Rp : 〈s, r〉 = ρ}. This is true if and only if 〈s, r〉 < ρ for all
r ∈ Cl(γ) and 〈s, r〉 > ρ for all r ∈ Rh(γ, θ). Hence, in view of (5.1),

max
r∈Cl(γ)

〈s, r〉 < ρ < min
r∈Rh(γ,θ)

〈s, r〉 = 〈s, γHh(ω)ν(θ)〉+ min
r∈R̄h

〈s, r〉.

Equivalently, for such a θ,

〈s, γHh(ω)ν(θ)〉 > max
r∈Cl(γ)

〈s, r〉 − min
r∈R̄h

〈s, r〉 = max
r∈Cl(γ)

〈s, r〉+ max
r∈R̄h

〈s, r〉.

In the last equality, we exploited the fact that −minr∈R̄h
〈s, r〉 = maxr′∈−R̄h

〈s, r′〉
and the fact that Rh is 0-symmetric (due to the symmetry of the disturbance set,
which is the unit ball of the ∞-norm), so that Rh = −Rh. Then, we have that

〈s, γHh(ω)ν(θ)〉 > max
r′′∈Cl(γ)

〈s, r′′〉+ max
r′∈R̄h

〈s, r′〉 = max
r′∈R̄h, r′′∈Cl(γ)

〈s, r′ + r′′〉

= max
r∈R̄h⊕Cl(γ)

〈s, r〉.

The proof is concluded by observing that the last condition is equivalent to saying that
point γHh(ω)ν(θ) is outside the set R̄h ⊕ Cl(γ). Note that, since all the implications
can be reversed, the provided condition is necessary and sufficient.

The theorem signifies that, to find the value θ ∈ [0, 2π] for which the point
γHh(ω)ν(θ) has maximum distance from the set R̄h ⊕ Cl(γ), we can sweep over the
phase θ. Also this problem can be solved by adopting duality, which leads to a convex
optimization problem in the unit ball of Rp.

Proposition 5.6. For any θ, the distance of γHh(ω)ν(θ) from R̄h ⊕ Cl(γ) is

(5.2) dist
(
γHh(ω)ν(θ), R̄h ⊕ Cl(γ)

)
= max
‖s‖2≤1

〈s, γHh(ω)ν(θ)〉 − φlh(s),

where

(5.3)

φlh(s) =

∫ ∞
0

‖s>Mhe
FhσPh‖∗dσ + ‖s>Qh‖∗

+

∫ ∞
0

‖s>Mle
FlσPl‖∗dσ + ‖s>Ql‖∗ + γ‖s>Hl(ω)‖.

Proof. The result follows by noting that

R̄h ⊕ Cl(γ) = R̄h ⊕ R̄l ⊕ {r ∈ Rp : r = γHl(ω)ν(θ), ‖ν(θ)‖ ≤ 1},

where the last set is an elliptical disk. Hence, the support functional of R̄h ⊕Cl(γ) is
exactly φlh(s) in (5.3) and the result in [20] (Th. 1, pag. 136) immediately applies.

Once the optimal ŝ is found, and also the frequency θ̂ that maximizes the distance of
γHh(ω)ν(θ) from R̄h⊕Cl(γ), a separating hyperplane between the two configurations
h and l can be found as follows.
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Corollary 5.7. A separating hyperplane between Rh(γ, θ̂) and Cl(γ) is

Slh =

{
r ∈ Rp : 〈ŝ, r〉 =

ρ1 + ρ2

2

}
,

where

ρ1 =

∫ ∞
0

‖ŝ>Mle
FlσPl‖∗dσ + ‖ŝ>Ql‖∗ + γ‖ŝ>Hl(ω)‖

and

ρ2 = γ〈ŝ, Hh(ω)νθ̂〉 −
∫ ∞

0

‖ŝ>Mhe
FhσPh‖∗dσ − ‖ŝ>Qh‖∗.

Proof. The proof follows from Proposition 4.3. Indeed ρ1 and ρ2 are, respec-
tively, the support functional of Cl(γ) evaluated in ŝ and the opposite of the support

functional of Rh(γ, θ̂) evaluated in −ŝ.
Remark 9. There are cases in which there exists a hyperplane that strongly

separates l from h, where Rh(γ, θ) is the external set and Rl(γ, θ) the internal set,
while the other way around is not possible. This happens, for instance, in the case of
a damped oscillator, frequency tested: the failure of the damper can lead to a situa-
tion in which the faulty orbits in the position-speed plane encircle the healthy orbits.
Therefore, only the healthy set can be internal.

Since the amplitude of the periodic orbit is a monotone function of the amplitude
of the test signal, the larger γ is chosen (compatibly with the given bounds), the
better set separation is achieved. However, we are interested in finding the smallest
γ for which set separation is ensured. Conversely, for a fixed amplitude, a possibility
is to choose the frequency that provides the best separation (in terms of maximum
distance between the sets). This can be done as follows.

Procedure 1. Inputs: frequency range [ω1, ω2], frequency step δω > 0, phase
step δθ > 0, indices l and h.
Outputs: ssep and ρsep of the separating hyperplane S = {r ∈ Rp : 〈ssep, r〉 = ρsep}.
Set ωsep := ω1, distsep := 0, ssep = [0 0]>.
– FOR ω := ω1 : δω : ω2

– FOR θ := 0 : δθ : π
– Solve the dual convex optimization problem (5.2).

– IF dist > distmax, THEN distmax := dist, ωsep := ω̂, θsep := θ̂, ssep := ŝ.
– End FOR

– End FOR
– Given ssep, compute ρsep as in Corollary 5.7, so that S = {r ∈ Rp : 〈ssep, r〉 = ρsep}
is the separating hyperplane. As previously observed, in general at each frequency
there exists an infimum γ̂(ω) such that separation can be achieved for γ > γ̂(ω). We
now discuss conditions ensuring that weak or strong separation is possible (i.e. γ(ω)
is finite). The following proposition is a generalization of the condition in [25].

Proposition 5.8. Weak separation between configurations h and l is possible at
some frequency ω if and only if the transfer functions Hh and Hl are distinct:

(5.4) Hh(ω) 6= Hl(ω).

Strong separation (either of configuration h from l or vice-versa) is possible at some
frequency ω if and only if the transfer functions Hh and Hl are distinct even under a
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phase shift:

(5.5) Hh(ω) 6= Hl(ω)Ξ(θ), ∀ 0 ≤ θ ≤ 2π,

where Ξ(θ) is the rotation matrix

Ξ(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

Proof. Weak separation requires that Rh(γ, ωt) and Rl(γ, ωt) are disjoint at some
t. Since the size of the noise-dependent component of the set is independent of the
testing signal u, we can scale the condition as

1

γ
Rh(γ, ωt)

⋂ 1

γ
Rl(γ, ωt) = ∅

and then, from (5.1), we get

1

γ
R̄h ⊕ {r = Hh(ω)ν(ωt)}

⋂ 1

γ
R̄l ⊕ {r = Hl(ω)ν(ωt)} = ∅.

The size of the two sets R̄h/γ and R̄l/γ decreases with γ, so the intersection becomes
empty for large enough γ if and only if (5.4) holds.

For the strong separation condition (5.5) the proof is almost identical. The only
difference is that we might have two periodic orbits which are identical up to a phase
shift: in this case, strong separation would be impossible.

Remark 10. The constant signal is a particular case of periodic test signal
and the separability condition (5.4) has to be satisfied for ω = 0 leading to a simple
interpretation: the distinguishability in this case is related to the static gain which has
to be different. More general signal could be considered. Periodic signals (e.g. square
or saw waves) could be handled by means of a Fourier analysis without conceptual
difficulties. From a practical standpoint, however, the overall scheme would be much
more involved. Non-periodic signal would not lead to theoretical difficulties, but they
would require recording all possible trajectories on an infinite horizon, for all possible
configuration: this is practically unrealistic.

6. Examples.

6.1. Electrical Network. Consider the network with capacitors and resistors
shown in Fig. 2, where the connections with the four marked resistors can be fully
interrupted. Three voltage generators, each with maximum voltage Vmax, can be
applied in points A, B or C. Then |VA| + |VB | + |VC | ≤ 3Vmax. According to
Proposition 4.6, the best discriminating property is achieved by applying the series
of all the generators at the maximum voltage in one of the points (A, B or C). We
assume each capacitor of 1µF and each resistor of 1kΩ, with the exception of the
load resistors RC2 = RC4 = RC6 = 20kΩ. A disturbance d of amplitude 1A acts on
capacitor 2 and the available measurements are the voltages on capacitors 4 and 6.

Being the system stable, we could use a trivial observer L = 0. Next we report the
(symmetric) tables ∆A, ∆B , ∆C of the distances among the residual sets, achieved
by applying a voltage of 250V = 3Vmax at the points A, B and C, respectively. The
healthy condition is in the last row/column. For instance, in ∆A, entry 1–2 represents
the distance between limit sets associated with faulty configurations 1 and 2, while
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Fig. 2: The electric circuit.

entry 3–5 is the distance between limit sets associated with the faulty condition 3 and
the healthy condition (h = 0). Quite surprisingly, in general the trivial observer L = 0
works much better than the “optimal observer” in terms of guaranteed distances: this
is most probably due to a “stabilizing effect” of the filter with respect to the test input
u, which makes fault isolation more difficult.

∆A =

1 2 3 4 0
1 0 0 9.8045 11.6363 1.2015
2 0 0 8.8918 12.3898 1.8044
3 9.8045 8.8918 0 22.9829 11.4089
4 11.6363 12.3898 22.9829 0 12.5671
0 1.2015 1.8044 11.4089 12.5671 0

∆B =

1 2 3 4 0
1 0 0.2998 8.9882 16.0927 0
2 0.2998 0 6.7890 14.5159 0
3 8.9882 6.7890 0 7.0741 8.5654
4 16.0927 14.5159 7.0741 0 15.8557
0 0 0 8.5654 15.8557 0

∆C =

1 2 3 4 0
1 0 0.1783 63.9698 52.3798 1.6246
2 0.1783 0 61.8821 49.9311 0
3 63.9698 61.8821 0 18.9248 61.0577
4 52.3798 49.9311 18.9248 0 48.8082
0 1.6246 0 61.0577 48.8082 0

These tests are typically performed when the circuit is not normally operated and
under the assumption that the testing signal maximum value Vmax is considerably
smaller than the maximum voltage admissible in the circuit. Testing the circuit
under normal operations is clearly possible: for instance, one can assume that the
same voltage is applied to all points VA, VB and VC . With our method, we can
numerically compute the minimum effective signal: the minimal voltage to be applied
to all generators, to ensure overall pairwise separation, is around 5000V , roughly
20 time the intensity required if the diagnosis is performed separately. Hence, the
application of the same voltage to all points has a very limited diagnosis sensibility.

6.2. Elastic System. Consider the 5-degree-of-freedom oscillating system de-
picted in Fig. 3, with a persistent noise d affecting mass 3. The state variables are
the positions and their derivatives (velocities). An auxiliary input u consisting of a
force is applied to mass 5, while the outputs y1 and y2 are the positions of masses 1
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Fig. 3: The oscillating system.

and 4. We assume that a complete failure of the springs connecting masses 1-4 and
3-4 can occur. The model of the system is

Mq̈(t) = −KEL
h q(t)−DDAq̇(t) +Bqu(t) + Eqd(t)

y(t) = [ q1(t) q4(t) ]> + w(t)

where y, w ∈ R2, ‖w‖∞ ≤ 1, |d(t)| ≤ 1, the mass diagonal matrix is the identity
matrix, the nominal damping matrix is DDA

nom = 0.3I, while the stiffness matrix and
the actual damping matrix are, respectively,

KEL
h =


4 −1 0 −1 0
−1 2 −1 0 0

0 −1 3 −1 0
−1 0 −1 3 −1

0 0 0 −1 2

 and DDA =


0.3 0 0 0 0
0 α 0 0 0
0 0 β 0 0
0 0 0 0.3 0
0 0 0 0 0.3

 .
We assume that some dumpers can fail. For brevity, we consider two of them: damper
2 and damper 3. The possible configurations are

h = 0 : {α = 0.3, β = 0.3} , healthy,
h = 1 : {α = 0, β = 0.3} , faulty,
h = 2 : {α = 0.3, β = 0} , faulty.

From physical considerations, we see that a constant test signal would be of no use,
because the system steady state does not depend on the damper values. Here a
frequency test is fundamental. We have computed the function

• ρlh(γ, ω) = distance for the strong separation of l from h.
and such values are depicted in Figs. 4. We remind that whenever such index is
greater than 0 there exists a separation hyperplane periodically crossed by residual l,
but never crossed by the residual h.

It is apparent there are three ranges of frequencies, centered around about 0.81
rad/sec, 1.20 rad/s and 1.8 rad/sec at which the indexes ρlh attain their maxima. We
point out that the proper undamped frequencies of the elastic system are ω1 = 0.8132,
ω2 = 1.2446, ω3 = 1.7321, ω4 = 1.8759, ω5 = 2.2958, and as expected the good ranges
enclose some of them. However, quite unexpectedly, the good range at which all
the three indexes are significantly high is located between ω3 and ω4. The optimal
separating hyperplanes at ω = 1.816 rad/s are depicted in Fig. 4 bottom right, where
s>21 = [0.969 0.245], s>20 = [1 0] and s>10 = [0.411 − 0.911]. The distance is quite
modest or null at the other frequencies, including the second. This definitely depends
on the placement of the sensors and actuator: a different topology could clearly give
a completely different result.

In Fig. 5, the periodic orbits with the effect of the noise corresponding to γ = 100
and ω = 1.816 are depicted, along with the strongly separating hyperplane s>21x =
14.86. The worst case phase is about θ = 2.4.
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Fig. 4: Separation distances between pairs of configurations: top left, distance
ρ10(γ, ω) between configuration l = 1 (faulty with α = 0) and h = 0 (healthy); top
right, distance ρ20(γ, ω) between configuration l = 2 (faulty with β = 0) and h = 0;
bottom left, distance ρ21(γ, ω) between configuration h = 2 (faulty with β = 0) and
h = 1 (faulty with α = 0). Bottom right: the separating hyperplanes at ω = 1.816
rad/s; for each pair of configurations (s21, s20 and s10) a hyperplane, as well as its
symmetric counterpart, is found.

Given the existence of non null separation values for all the three indexes around
ω = 1.8 for γ = 100, a single exciting signal with γ = 100 and ω = 1.816 is sufficient to
exactly determine the current configuration. It is apparent that two different exciting
frequencies and amplitudes might have been used, e.g. γ = 25 at ω = 0.84 to verify
whether the system is working in the faulty configuration 1 or the healthy, γ = 25 at
ω = 1.816 to verify configuration 2 vs configuration 0, etc.

This example and the associated discussion on the exciting frequencies can be
linked to the analysis in [8] (section 3.8, page 111) on the asymptotic behavior of the
excitation signals, although the assumption on the disturbances are slightly different.
In [8], a dominant frequency appears in the auxiliary excitation signals; we can inter-
pret this observation in light of the parameterization of separation distance between
limit sets, which depends on the frequency.

As a final comment, Fig. 5 shows that, for some noise realizations, the residual can
periodically intersect the orbit associated with a different configuration. In these cases,
a (complete) separation is not performed and there might be false alarms/diagnosis.

7. Concluding Remarks. We have described the design of an active fault de-
tection and isolation (FDI) method for continuous-time linear systems. Using known
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Fig. 5: The periodic residual orbits for configurations 2 (blue) and 1 (red) and the
plane s>21x = 14.86 that strongly separates 2 from 1.

bounds for the disturbances and a linear residual generator, we consider the limit sets
associated with different faults, towards which the residual is guaranteed to converge.
Every limit set is parameterized with respect to a single system configuration and an
auxiliary signal. Active FDI could be performed by computing an auxiliary signal
that separates the limit sets making detection possible by monitoring the residual.
However, the separation of limit sets is a cumbersome problem when the explicit de-
scription of the limit sets, which is rather complex, is required. The auxiliary input
is either a constant or a sinusoidal signal.

To overcome this problem, instead of explicitly determining or approximating
the limit sets, we use duality to compute of the distance between two limit sets,
based on the their support functionals, by solving a convex optimization problem.
We can guarantee that the isolation window is finite by checking if the distance is
positive. In addition, separating hyperplanes are easily computed. The approach
allows us to decide off-line which are the optimal input signals to apply in order
to guarantee fault isolation, while the on-line decision is simply made by checking
if the residual is to the left or to the right of the separating hyperplanes (which
requires a negligible computational effort). We believe that the proposed approach
can be fruitfully combined with previous methods, e.g. [25, 43, 35], providing a priori
separation guarantees. Our approach, based on the separation of sets, shares some
weakness with the existing methods because its efficiency could be compromised in
the case of large model uncertainties, a problem which also arises when explicitly
computing reachable sets.

The added value of the suggested methodology is that it works in continuous-time
as well and drastically reduces complexity. In practice, the technique can be applied
by considering a set of a priori known faults which can be determined form historical
data, or after a vulnerability analysis, the developed methodology can be used for
preventive maintenance. Specifically, by regularly applying the proposed methods
with different auxiliary signals, we may be able to localize a fault before it becomes
a failure. Furthermore, through this technique we can determine the input signal
that will drive the system to a safe configuration. Ideally, the safe configuration is
the healthy configuration; in practice, it can be a faulty configuration with minimal
consequences in order to increase the remaining useful life of the system. The active
fault isolation problem can be investigated in relation to a sensor placement problem,
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aiming at enhancing the separability of the limit sets by a proper selection of sensors.
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