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Control design for discrete time bilinear systems using the
scalarized Schur complement

M. Vatani1, M. Hovd1∗ and S. Olaru2

1 Engineering Cybernetics Department, Norwegian University of Science and Technology, N-7491 Trondheim, Norway 
2 CentraleSupelec, Automatic Control Department and EPI INRIA DISCO, 3 rue Joliot Curie, 91192 France

SUMMARY

In this paper, controller design for discrete time bilinear systems is investigated by using Sum of 
Squares (SOS) programming methods and quadratic Lyapunov functions. The class of rational polynomial 
controllers are considered, and necessary conditions on the degree of controller polynomials for quadratic 
stability are derived. Next, a scalarized version of the Schur complement is proposed. For controller design, 
the Lyapunov difference inequality is converted to a SOS problem, and an optimization problem is proposed 
to design a controller which maximizes the region of quadratic stability of the bilinear system. Input 
constraints can also be accounted for.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the work of Parrilo [1] there have been considerable advances on analysis and controller 
design using Sum of Squares (SOS) programming. In [2] a general framework using Sum of Squares 
(SOS) programming for analyzing nonlinear systems stability is developed for continuous-time 
systems. An extensive exposition of the use of SOS programming for controller design and domain 
of attraction analysis for continuous time systems is given in [3]. Use of SOS programming for the 
design of polynomial controllers for polynomial continuous-time systems is studied in [4] and [5], 
while works on nonlinear discrete-time systems include, e.g., [6], [7]. In [7] the use of linear state 
feedback is studied, whereas [6] addresses the synthesis of polynomial controllers, taking input 
saturation into account. This paper considers SOS based controller design for discrete-time bilinear 
systems using rational polynomial controllers.
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Bilinear systems are a subclass of polynomial input affine systems, where the nonlinearity consists 
of products between the states and inputs. Although the class of bilinear systems have properties 
which make them ’close’ to the class of linear systems, linearization results in neglecting the main 
challenge in controller design for these systems. Bilinear systems find many practical applications in 
various fields (for example power systems [8] or the control in intelligent buildings [9]), and many 
nonlinear systems could be approximated by bilinear models.

A substantial number of works have been devoted to control and analysis of continuous-time 
bilinear systems. A representative overview of these works is beyond the scope of this paper, 
but some inspiration from Gutman [10] is acknowledged. Closer to the topic of interest of the 
current paper, controller design using SOS programming for continuous time bilinear systems has 
previously been addressed in [11, 12]. There are fewer references on discrete time bilinear systems. 
In his 2009 book on bilinear control systems, Elliott [13] devotes one chapter to discrete-time 
systems, whereas the book by Pardalos and Yatsenko [14] considers continuous time exclusively. An 
important work specifically addressing discrete-time bilinear systems is that of Lin and Byrnes [15], 
who design a globally stabilizing controller for passive bilinear systems. In [16] a nonlinear state 
feedback control has been proposed to asymptotically stabilize a neutrally stable system. In [17] 
robustly stabilizing controllers for singularly perturbed, open loop stable discrete time bilinear 
systems with a single input are proposed. The nominal controller designs in [17] are extended to 
multivariable systems in [18], again for open loop stable systems. Lu et al. [19] considers global 
stabilization of neutrally stable discrete-time bilinear descriptor systems while accounting for input 
saturation. Tang and coworkers [20] study optimal control of bilinear discrete-time systems with a 
quadratic performance criterion, and develop a controller requiring the on-line solution of a two-
point boundary value problem.

Model Predictive Control of discrete time bilinear systems is studied in, e.g., [21], [22]. 
References [23] and [24] investigate the constrained and unconstrained stabilization of discrete time 
bilinear systems using polyhedral Lyapunov functions. The results are further developed in [25] to 
handle discrete bilinear system with additive bounded disturbances.

From a structural point of view, it can be noted that several authors, (e.g. [15], [26]) have proposed 
controllers for discrete-time bilinear systems that take the form of ratios of polynomials. In this 
paper it will be shown that under specified conditions on the bilinear system structure, global 
quadratic stability of open loop unstable discrete-time bilinear systems will require an open loop 
unstable state to have the same maximal degree in the numerator and denominator polynomials 
of the controller. Subsequently, a controller design procedure based on SOS programming will be 
developed.

To the best of the authors’ knowledge, this is the first work specifically addressing the quadratic 
stabilization of discrete time bilinear systems using SOS programming, with the exception of our 
previous work [27] which presents some preliminary results. The present work significantly extends 
the results of [27]. Unlike the designs in [15–19, 26], the design procedure developed here can 
handle both open loop unstable systems and systems with multiple inputs. The design results in 
rational polynomial controllers, with low online computational complexity compared to the control 
proposed by Tang [20] and MPC-based approaches [21, 22]. The results in Section 5 indicate that a 
larger stable region is achieved than what is obtained in [24]. Although the resulting computational 
problems at the design stage are relatively complex, it is found that software for SOS programming



are now of a quality that makes this technique useful and relatively accessible. The software package
YALMIP [28, 29] has been used for all SOS problems in this paper.

This paper is organized as follows: In Section 2, the problem is defined and preliminary
information is provided. Section 3 proposes to calculate the input as the ratio of two polynomials
in the states, and observations regarding the degrees of these polynomials with regards to global
quadratic stability are made. In Section 4 the proposed controller design method is presented.
Section 5 provides illustrative examples. The paper ends with a brief conclusion section.

Notation and definitions

A norm of a of a real vector in Rn is denoted by the symbol ‖.‖. A function ψ : R+ → R+ is said
to be of class K if it is continuous, zero at the origin and strictly increasing. A class K function is
called K∞ if it is also unbounded.

A function φ : Rn → R is positive semidefinite if φ(x) ≥ 0,∀x ∈ Rn. If φ(x) > 0∀x 6= 0 then
the function is called positive definite. The function f(x) is negative definite if −f(x) is positive
definite.

Consider a discrete time system x(k + 1) = f(x(k)) with a fixed point f(0) = 0.

Definition 1
A set S ⊂ Rn is positive invariant with respect to the discrete-time dynamics x(k + 1) = f(x(k)) if
for all x ∈ S it holds that f(x) ∈ S.

Given a positive invariant set D ⊆ Rn with the origin in its interior, a function V (.) : D → R
with V (0) = 0 is a Lyapunov function if there exist W1,W2 ∈ K∞ such that:

W1(‖x‖) ≤ V (x) ≤W2(‖x‖), ∀x ∈ D (1)

and the rate of change V (f(x))− V (x) < 0, ∀x ∈ D \ {0}. The existence of a Lyapunov function
guarantees the asymptotic stability of the origin for any initial state in D.

Definition 2
Given the discrete time system x(k + 1) = f(x(k)) with a fixed point f(0) = 0, the set of all initial
conditions x(0) ∈ Rn for which the trajectories converge to the origin is called the domain of
attraction.

This paper will focus on controller design for ensuring stability inside a sublevel set of the
Lyapunov function. A sublevel set of a Lyapunov function is by definition positive invariant [30],
and is a subset of the domain of attraction of the origin.

Definition 3
The system x(k + 1) = f(x(k)) with a fixed point f(0) = 0 is quadratic Lyapunov stable if there
exists a matrix P > 0 defining a Lyapunov function V (x) = xTPx and the domain D = {x ∈
Rn|xTPx ≤ γ} will define a positive invariant set for a positive constant γ.



2. PROBLEM STATEMENT AND PRELIMINARIES

This paper considers the control of discrete-time bilinear systems:

x(k + 1) = Ax(k) +

m∑
i=1

(Bix(k) + bi)ui(k) (2)

where x(k) ∈ Rn is the state vector at time k, u(k) ∈ Rm is the input vector at time k and ui(k) is the
i−th element of input vector, while A ∈ Rn×n, Bi ∈ Rn×n, bi ∈ Rn×1 are matrices. It is assumed
that the origin is an equilibrium point of the autonomous system. For the sake of simplicity of
notation, (2) is reformulated as:

x(k + 1) = Ax(k) + (Bx +B)u(k) (3)

where Bx = [B1x(k) B2x(k) · · · Bmx(k)] and B = [ b1 b2 · · · bm ]. In expressions where no
confusion can arise, and all states have the same time index k, the time index may be dropped
for simplicity.

Of particular interest here are necessary and sufficient conditions for quadratic stability when
using rational polynomial controllers:

ui(x) =
ci(x)

c0(x)
(4)

where ci(x) are polynomials in the state with lowest degree one and highest degree nn, and c0(x) is
a polynomial of lowest degree zero and highest degree nd. All inputs share the same denominator
polynomial c0(x). Note that for a given x, these polynomials are linear in the polynomial coefficients
(cci), an important fact when optimizing over polynomial coefficients in the controller design. While
the assumption of a common denominator polynomial might seem restrictive, this is in fact not
so, as the common denominator polynomial can be chosen as the least common multiple of the
denominator polynomials for the individual inputs.

For controller design, SOS methods are exploited in the present paper. The basic idea behind the
SOS approach for checking the positivity of a polynomial p(x), is to replace the positivity with the
condition that the polynomial can be transformed to a sum of squares [1]:

p(x) =

N∑
i=1

h2
i (x) =

M∑
i=1

(qTi v(x))2 = vT (x)Qv(x) (5)

where Q = QT > 0. As the result, if it is possible to find a vector of monomials v(x) and a positive
definite matrix Q, positivity of p(x) is guaranteed. Similarly, a symmetric polynomial matrix M(x)

is said to be an SOS matrix if it can be decomposed into

M(x) = HT (x)H(x) (6)

The SOS decomposition can be computed by semi-definite programming with the help of available
software [29].



3. THE FUNCTIONAL FORM OF THE CONTROLLER AND REQUIREMENTS FOR
GLOBAL ASYMPTOTIC STABILITY

For bilinear systems with a diagonalizable matrix A, a change of coordinates can be performed in
order to obtain an equivalent state vector x̃, transforming (3) to

x̃(k + 1) = Λx̃(k) + (B̃x̃ + B̃)u(k) (7)

where Λ = diag(λj) is the eigenvalue matrix of A. Similarly, the controller polynomials ci(x) and
c0(x) may equivalently be expressed as c̃i(x̃) and c̃0(x̃), respectively.

Definition 4
The dynamical mode represented by the state x̃j corresponding to eigenvalue λj in (7) is called
a linear mode if row j of B̃x̃ is zero. All modes that are not linear are bilinear modes. The mode
represented by the state x̃j is called endogenously bilinear if row j of B̃x̃ exhibits linear dependence
on x̃j (irrespective of possible linear dependencies on other states x̃i, i 6= j).

Proposition 1
Consider a single-input bilinear discrete time system of the form (7) and a rational polynomial
controller (4). The closed loop system is globally quadratic stable only if any state x̃j representing
an endogenously bilinear mode has the same maximal degree in the numerator and denominator
polynomial of the rational polynomial controller.

Proof: Without loss of generality, assume that j = 1. The proposition will be decomposed into
two statements:

1. The maximal degree of x̃1 in the denominator must be at least as high as the maximal degree
of x̃1 in the numerator.

2. The maximal degree of x̃1 in the numerator must be at least as high as the maximal degree of
x̃1 in the denominator.

For point 1), consider the Lyapunov difference inequality V (f(x̃))− V (x̃) < 0 for the quadratic
Lyapunov function V (x̃) = x̃T P̃ x̃. Substitute in the plant dynamics (7), the controller (4), and
multiply with c̃0(x̃)2 to obtain

(
Λx̃c̃0(x̃) + (B̃x̃ + B̃)c̃1(x̃)

)T
P̃
(
Λx̃c̃0(x̃) + (B̃x̃ + B̃)c̃1(x̃)

)
− c̃0(x̃)x̃T P̃ x̃c̃0(x̃) < 0 (8)

If the maximal degree of x̃1 in c̃1(x̃) is higher than the maximal degree of x̃1 in c̃0(x̃), the first term
of the Lyapunov difference inequality will be of higher degree in x̃1 than the second term, since
x̃1 is an endogenously bilinear mode. The inequality can therefore not hold as x̃1 →∞, since P̃ is
positive definite. This point applies to all endogenously bilinear modes, not just open loop unstable
ones.

For point 2), evaluate the controller for x̃ =
[
x̃1 vT

]T
for any finite, constant vector v, and let

x̃1 →∞. Suppose the maximal degree of x̃1 in c̃0(x̃) is higher than the maximal degree of x̃1 in
c̃1(x̃), then u→ 0 as x̃1 →∞. Then the stability is assessed with respect to the open loop dynamics
(which correspond to an unstable mode) and leads to a contradiction. This argument applies to all

�open loop unstable modes, not just endogenously bilinear ones.



Remark 1
Proposition 1 holds also for for systems with a diagonalizable A-matrix with complex-valued
eigenvalues, since the eigenvalues and eigenvectors appear in complex conjugate pairs. Provided
one uses the complex conjugate transpose of the vector x when evaluating the Lyapunov function
V (x̃k+1) = x̃Tk+1P̃x̃k+1, the imaginary parts will cancel, and the proof above holds. The proof of
Proposition 1 exploits the endogenously bilinear modes and thus the diagonalization of the bilinear 
part is instrumental. Consequently, the case when the A-matrix is not diagonalizable (contains a 
Jordan block) is not a trivial extension of the result.

Remark 2
Proposition 1 can be applied also to multiple input systems, if one assumes that the highest degree
of x̃1 in the first row of

B̃x̃

[
c̃1(x̃) · · · c̃m(x̃)

]T
is always one degree higher than the maximal degree of x̃1 in any c̃i(x̃) (i.e., if one disregards the 
possibility that the maximal order terms may cancel when forming the product between B̃x̃ and the 
controller numerator polynomials).

4. CONTROLLER DESIGN METHOD

Proposition 1 documents the need for a controller design procedure which is able to design rational 
polynomial state feedback controllers. This section addresses the systematic design of controllers of 
the form (4) to achieve stabilization of the system (2) to the origin by designing a controller which 
satisfies input constraints. However, the controller design described in this section does not require 
the A-matrix in (2) to be diagonalizable. The controller design is subject to control constraints of 
the form |ui(x)| ≤ ui,max.

4.1. A scalarized Schur complement

The Schur complement is often used in system analysis or controller design based on LMIs or 
SOS, as it can convert a non-linear relationship into an equivalent higher-dimensional linear one. 
However, for matrices there may be a significant difference between specifying xT Q(x)x > 0 and 
specifying that Q(x) should be an SOS matrix - as the latter corresponds to demanding zT Q(x)z > 0 
(where there is no relationship between x and z).

It is therefore desirable to be able to retain scalar expressions when using the Schur complement. 
This can in some cases be done, as is shown by the following Lemma.

Lemma 1
Given a matrix

M(x) =

[
E(x) HT (x)

H(x) P (x)

]
∈ R(n+r)×(n+r)



with P (x) ∈ Rr×r symmetric and invertible and x ∈ Rn. Then

[
xT zT

]
M(x)

[
x

z

]
> 0, ∀(x, z) 6= (0, 0)

is equivalent to

xT (E(x)−HT (x)P−1(x)H(x))x > 0,∀x 6= 0 and zTP (x)z > 0,∀z 6= 0

Proof: This follows from the identity

M(x) =

[
IE HT (x)P−1(x)

0 IP

][
E(x)−HT (x)P−1(x)H(x) 0

0 P (x)

][
IE 0

P−1(x)H(x) IP

]
(9)

where the subscripts on the identity matrices refer to the dimension of the matrices E(x) and P (x).
Denote [

x

w

]
=

[
IE 0

P−1(x)H(x) IP

][
x

z

]
(10)

and obtain the identity

[
xT zT

]
M(x)

[
x

z

]
=
[
xT wT

] [E(x)−HT (x)P−1(x)H(x) 0

0 P (x)

][
x

w

]

Whatever the value of x, a solution for z of (10) can be found for any value of w, and vice versa. �

Remark 3
Most of the proof above is very similar to the proof of the standard Schur complement. However,
the key here is that one can pre- and postmultiply the matrixM above with the appropriate vector, to
obtain a scalar expression. This is not done in the standard Schur complement. While this extension
to the standard Schur complement is mathematically very simple, its relevance in controller design
will be illustrated in Section 5.

4.2. SOS formulation

This section addresses controller design, using controllers on the form (4), to optimize the region of
quadratic stability. The denominator polynomial c0(x) will be assumed to be an SOS polynomial.
However, there exists a possibility of using excessively large inputs, if all square terms in c0

have roots accumulated in a small region of the state space. To guard against this situation, the
denominator polynomial is specified as c0(x) = ć0(x) + 1, with ć0(x) an SOS polynomial, thus
ensuring that the denominator polynomial cannot approach zero anywhere in Rn. Furthermore, in
order to be able to apply the scalarized Schur complement, the controller is reformulated as

u(x(k)) =
C(x(k))x(k)

ć0(x(k)) + 1
. (11)



with C(x(k)) a polynomial matrix. Note that C(x(k)) is not uniquely determined† by the
polynomials ci(x(k)), and a particular parametrization therefore will have to be chosen, but the
product C(x(k))x(k) is indeed uniquely determined by the polynomials ci(x(k)).

Theorem 1
Given a quadratic function V (x) = xTPx, a scalar γ > 0, polynomials ci(x), i ∈ [1, . . . ,m], and
SOS polynomials ć0(x) and s1(x, z), a bilinear discrete time system (3) in closed loop with the
control law (4) is stable ∀x such that xTPx < γ, provided

[
xT zT

]
M(x)

[
x

z

]
− s1(x, z)(γ − xTPx) > 0 (12)

where

M(x) =

[
(ć0(x) + 1)P

P ((ć0(x) + 1)A+ (Bx +B)C(x))

((ć0(x) + 1)A+ (Bx +B)C(x))
T
P

(ć0(x) + 1)P

]
(13)

Proof: Dividing (12) with the strictly positive (ć0(x) + 1), and noting that s1(x,z)
ć0(x)+1 (γ − xTPx) is

positive ∀x 6= 0 with xTPx < γ, one may conclude that

[
xT zT

] 1

(ć0(x) + 1)
M(x)

[
x

z

]
> 0

for all x 6= 0 with xTPx < γ. Considering the controller in (11), the bilinear system dynamics in
(3) and Lemma 1, it can then be concluded that

x(k)TPx(k)− x(k + 1)TPx(k + 1)− s1(x(k), z)

ć0(x(k)) + 1
(γ − x(k)TPx(k)) > 0∀ x(k) 6= 0 (14)

(plus the trivial consequence that zTPz > 0), and hence the Lyapunov function decreases ∀x(k) 6= 0

with xT (k)Px(k) < γ. �

Theorem 2
Given the polynomial ci(x), SOS polynomials ć0(x) and qi(x), the input constraint is satisfied
∀ x w ith xTPx < γ provided[

(ć0(x) + 1)u2
max,i − qi(x)(γ − xTPx) ci(x)

ci(x) ć0(x) + 1

]
> 0 (15)

Proof: Following the same approach as in the proof of Theorem 1, it can be shown that (15) is
equivalent to

u2
max,i − u2

i (x)− qi(x)

(ć0(x) + 1)
(γ − xTPx) > 0, (16)

and hence u2
max,i − u2

i (x) > 0 ∀ x ∈ {x|xTPx < γ}. �

†If the polynomial ci(x(k)) contains a term ĉmnxm(k)xn(k), row i of C(x(k)) may contain the element ĉmnxm in
column n, or the element ĉmnxn(k) in column m.



4.3. Optimization formulation

Theorems 1 and 2 allow for controller design according to

maxć0(x),ci(x),s1(x,z),qi(x),P γ (17)

subject to : constraints (12) and (15), ć0(x), s1(x, z), qi(x) SOS,

P > 0, trace(P ) = constant

The final constraint in (17) is a normalizing constraint included in order to avoid both γ and P

growing without bound - without describing a larger quadratic stability region.
There are several bilinear terms in (17). With access to an optimization solver handling bilinear

constraints, (17) may be solved directly. Here it is instead proposed to iteratively fix some variables
and solve for the other variables, which appears to be a common approach to solving bilinear SOS
(see, e.g., [6]). Algorithm 1 describes the resulting controller design procedure.

Algorithm 1: Controller design procedure
Data: Bilinear system model (2), input constraints ui,max, maximal number of iterations jmax

Result: Controller design (11), guaranteed stable region {x|xTPx ≤ γ}
Initialization:

1 Design an LQ regulator for the linearized system.
Obtain the corresponding Riccati equation solution X and controller u(k) = Kx(k). The
corresponding controller in (11) is C(x(k)) = K, ć0(x(k)) = 0.
P ←− tX/trace(X), with a constant t > 0

2 Maximize γ with the parameters of s1(x, z) and qi(x) as free variables, subject to constraints
(12) and (15), s1(x, z), qi(x) SOS. Equations (12) and (15) contain bilinear terms in γ,
s1(x, z) and qi(x), and the maximization is therefore performed iteratively by verifying the
constraints for increasing values of γ.

3 j ←− 0

Main loop:
4 while j < jmax do
5 j ←− j + 1

6 For fixed values of P and γ, find a feasible solution to (12) and (15), with the parameters
of ci(x) and the SOS polynomials ć0(x), s1(x, z), qi(x) as free variables.

7 For given polynomials ć0(x), ci(x), s1(x, z), and qi(x), maximize γ with P > 0 as free
variable, subject to constraints (12), (15), and trace(P ) = t.

end

Note that semidefinite solvers typically return solutions in the analytic center of the feasible region
[31]. Finding a feasible solution in step 6 above therefore provides room for further optimization in
step 7.

Although numerical experience with this approach is good, there is no formal proof that this
iteration will (in the limit) lead to the maximum region of convergence for a rational polynomial
controller with a quadratic Lyapunov function. Note, however, that step 7 above can easily be
modified such that the new region of convergence always contains the region of convergence from
the previous iteration.



4.4. Improving rate of convergence

It is well known that maximizing the region of convergence leads to rather slow control, in particular
near the boundary of the region in question. To improve the rate of convergence, a certain decrease
in Lyapunov function in each step can be imposed by requiring that

x(k)TPx(k)− x(k + 1)TPx(k + 1) > αx(k)TPx(k) (18)

for some α, 0 < α < 1. This changes element (1, 1) of matrix M(x) in (12) and (13) to M11(x) =

(1− α)(ć0(x) + 1)P .

Remark 4
The controller design approach in this section does not explicitly take into account Proposition 1,
although it can be used to guide the selection of the degrees of the controller polynomials. However,
Proposition 1 is concerned with global stabilization, thus if stabilization in a bounded region of the
state space is the aim, the polynomial degrees may still be a degree of freedom in the design.

5. NUMERICAL EXAMPLES

This section will apply the controller design method described above to three examples. In all three
examples, the system studied is open loop unstable, making the controllers proposed in [15], [16]
and [17] inapplicable.

Example 1: In the following, a second-order bilinear system, proposed initially in [24], is
considered:

A =

[
1 0.01

0.01 1

]
, B1 =

[
0.001 0

0 −0.004

]
, b1 =

[
0.09

0.09

]
(19)

The input is constrained to |u| ≤ 2. The problem to be solved is the determination of the controller
which stabilizes the system in the maximum possible region of xTk Pxk < γ. P is considered as
identity matrix.

First, the region of convergence is maximized while keeping P fixed. The highest order
considered in the controller polynomials is np = 2. The maximum region where YALMIP could
find a controller to stabilize the system is given by γ = 295. This should be compared to the value
γ = 150 obained in [27]. The difference is due to the use of the scalarized Schur complement in the
present work. The designed controller based on (4) is as follows:

c1(xk) =− 0.0838x1 − 0.1586x2 − 0.0002x2
1 + 0.0046x1x2 − 0.0061x2

2

c0(xk) =1.0959− 0.0018x1 − 0.0029x2 + 0.0044x2
1 − 0.0046x1x2 + 0.0053x2

2

The state evolution in time, input and cost function for designed controller are shown in Fig. 1 for
the initial state of x0 = [−10, 13.9]T . Note that, although (13) cannot be verified for γ > 295, this
does not mean that the system is necessarily unstable in that region.
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Figure 1. Simulation results for example 1 system controlled by SOS method: (a) states, (b) input, and (c)
cost function

In Fig. 2, the phase portrait of the closed loop system for initial states belonging to the x2
1 + x2

2 =

295 is depicted.

Remark 5
The problem formulation in [24] includes the state constraints |xi| ≤ 4, i ∈ {1, 2}, which makes the
objective of the controller design different from the one in the present paper. Nevertheless, Fig. 2
shows that the controller presented here practically makes the set {x| |x1| ≤ 4, |x2| ≤ 4} positively
invariant, and thus that the state constraints are fulfilled for any initial condition within this set.
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Figure 2. State trajectories for example 1: (a) starting from the border of the maximum region of stability (b)
starting from |xi| ≤ 4 as in [24]

To improve the rate of convergence, the controller design is performed while specifying α =

0.015 in (18). Note that by adding α to the problem, the maximum region of convergence will



decrease. In this example, it decreases to γ = 122. The designed controller is as follows:

c1(xk) =− 0.1022x1 − 0.1268x2 + 0.0008x2
1 + 0.0015x1x2 − 0.0052x2

2

c0(xk) =1.0039 + 0.0002x1 − 0.0007x2 + 0.0008x2
1 + 0.0001x1x2 + 0.0008x2

2

The responses of the system for both controllers (for α = 0 and α = 0.015) are shown in Fig. 3,
which shows that by adding the term α, the rate of convergence is increased.

Finally, the guaranteed stable region is increased using the iterative procedure described in
Section 4.3, starting with P = I . Figure 4 shows the initial region of convergence, and the region of
convergence obtained after 15 iterations.

Example 2: Consider the third-order bilinear system with two inputs found in [24]:

A =

 1.10 −0.2 −0.34

−0.06 0.7 −0.42

0.41 0.41 0.90

 , b1 =

 3.75

1.05

−0.85

 , b2 =

 0

−1.33

−0.49


B1 =

−0.12 −0.22 0.36

−0.32 0.48 0.36

−0.35 0.36 −0.18

 , B2 =

−0.18 0.30 0.07

−0.03 −0.18 −0.38

0.55 −0.74 −0.77


Both control inputs have to respect the linear constraints −1 ≤ ui ≤ 1. The matrix P in the cost
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Figure 3. Improvement of the response in example 1 by specifying α = 0.015, (γ = 120): (a) states, (b)
input, and (c) cost function

function is chosen as:

P =

 2 0.1 0.1

0.1 1.5 0.1

0.1 0.1 1
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Figure 4. Initial region of convergence and region of convergence after 15 iterations

Using SOS programming, keeping P fixed, a region of stability parametrized by γ = 33 results.
The value obtained in [27] was γ = 4, again showing the advantage of using the scalarized Schur
complement. The designed controller is:

c1(xk) =− 0.1064x1 − 0.0002x2 + 0.0657x3 − 0.0043x2
1

− 0.0052x1x2 + 0.0026x2
2 + 0.0105x1x3 + 0.0028x2x3 − 0.0067x2

3

c2(xk) =− 0.0012x1 + 0.0105x2 − 0.0441x3 + 0.0042x2
1

− 0.0012x1x2 + 0.0049x2
2 − 0.0114x1x3 − 0.0011x2x3 + 0.0113x2

3

c0(xk) =1.0061− 0.0012x1 − 0.0014x2 + 0.0044x3

+ 0.0158x2
1 − 0.0012x1x2 + 0.0219x2

2 + 0.0068x1x3 + 0.0057x2x3 + 0.0045x2
3
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Figure 5. Simulation results for example 2 system controlled by SOS method: (a) states, (b) input, and (c)
cost function



Figure 6. Region of stability calculated for example 2. Light grey: SOS design, dark grey: the design in [24]

The state responses for the calculated controller for the initial state x0 = [−3.4, 2.5,−1.3]T is
depicted in Fig. 5 along with input and cost function.

The region of quadratic stability (xTk Pxk < γ) calculated for this example is shown in Fig. 6
in light (transparent) grey. In [24] an optimization problem is solved to maximize the region of
convergence, using a problem formulation involving polyhedral Lyapunov functions. The resulting
region of convergence is shown in Fig. 6 in dark grey for comparison.

Example 3: Consider the following second order bilinear system [23]:

A =

[
0.8 0.5

0.4 1.2

]
, B1 =

[
0.45 0.45

0.3 −0.3

]
, b1 =

[
1

2

]
(20)

The input is constrained to |u| ≤ 0.5. The problem to be solved is the determination of the
controller which stabilizes the system in the maximum possible region of xTk Pxk < γ. The matrix
P is chosen as

P =

[
1 1

1 2

]
Solving the problem in YALMIP for maximum γ results in γ = 6. The designed controller is as
follows:

c1(xk) =− 0.1733x1 − 0.2312x2 + 0.0129x2
1 + 0.0176x1x2 − 0.0024x2

2

c0(xk) =1.0051 + 0.0073x1 + 0.0002x2 + 0.0070x2
1 − 0.0005x1x2 + 0.0062x2

2

State responses, input and cost function evolution in time is depicted in Fig. 7. In addition, the
calculated region of convergence for SOS method is shown in Fig. 8. This problem is also solved
in [23] using polyhedral Lyapunov functions and calculated region of convergence is also shown in
the same figure for comparison. In this example, the value γ = 6 obtained is the same as in what
was obtained in [27]. However, increasing the allowable input to |u| ≤ 2.0 increases γ to 7.5 for
the approach in [27], whereas for the approach in this paper one obtains γ = 11.1. Note that the
scalarized Schur complement is not used in Thm. 2 which addresses input constraints. Relaxing the
input constraint therefore increases the importance of utilizing the scalarized Schur complement in
Thm. 1.
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Figure 7. Simulation results for example 3 system controlled by SOS method: (a) states, (b) input, and (c)
cost function
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6. CONCLUSIONS

Conditions for global quadratic stability of discrete-time bilinear systems controlled by rational
polynomial controllers are studied. It is shown that the denominator polynomial and numerator
polynomials should have the same maximal degree in any state representing an unstable
endogenously bilinear mode.



A scalarized version of the Schur complement is presented, and this is used in formulating
optimization based conditions for controller design. Comparing results of the examples in this paper
with those in [27], it is found that using the scalarized Schur complement resulted in significant
enlargement of the stable region in two out of three cases. In the third case, a severe input
constraint was more important than the conservatism of not using the scalarized Schur complement
- and relaxing the input constraint again allowed the scalarized Schur complement to provide an
enlargement of the stable region.

Optimization formulations for controller design based on SOS programming are given, both for
maximizing the region of convergence and for imposing a specified rate of convergence within a
given region of convergence.

The controller design is not applicable to systems such as Example 2 in [32] with the parameter
λ = 0. In that example, the origin is on the border of the stabilizable region, and no continuous
Lyapunov function can be used to prove stability. Note also that the stability of the origin in such a
system is not robust, even infinitesimal disturbances may be sufficient to drive the system into the
un-stabilizable region.

SOS-based controller design are known to rapidly become computationally demanding with
increasing system size. The largest system for which the proposed design method has been
successfully handled by the authors has 7 states and 5 inputs. This should be larger than many
systems of engineering interest, for further details see [33]. Current research exploiting sparsity
patterns in SOS calculations bear the promise of enabling larger systems to be handled [34].
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9. Lamoudi MY, Alamir M, Béguery P, et al.. Unified NMPC for multi-variable control in smart buildings. IFAC 18th
World Congress, Milano, Itlay, 2011.

10. Gutman PO. Stabilizing controllers for bilinear systems. IEEE Transactions on Automatic Control Aug 1981;
26(4):917–922, doi:10.1109/TAC.1981.1102742.

11. Nobuyama E, Aoyagi T, Kami Y. A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems,
ser. Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics. InTech, 2011;
39–54, doi:10.5772/709.



12. Kang D, Won S, Jang YJ. Guaranteed cost control for bilinear systems by static output feedback. Applied
Mathematics and Computation 2013; 219(14):7398–7405.

13. Elliott DL. Bilinear Control Systems. Matrices in Action, Applied Mathematical Sciences, vol. 169. Springer:
Heidelberg, Germany, 2009.

14. Pardalos PM, Yatsenko V. Optimization and control of bilinear systems, theory, algorithms, and applications.
Springer: New York, NY, USA, 2008.

15. Lin W, Byrnes C. KYP lemma, state feedback and dynamic output feedback in discrete-time bilinear systems.
Systems & Control Letters 1994; :127–136.

16. Chen MS, Hwang YR, Huang KC. Nonlinear controls for a class of discrete-time bilinear systems. International
Journal of Robust and Nonlinear Control Sep 2003; 13(11):1079–1090, doi:10.1002/rnc.805.

17. Chiou J, Kung FC, Li THS. Robust stabilization of a class of singularly perturbed discrete bilinear systems. IEEE
Transactions on Automatic Control 2000; :1187–1191.

18. Kim BS, Kim YJ, Lim MT, Kim B. Stabilizing control for discrete time multi-input bilinear systems. Proceedings
of the 15th IFAC Wolrd Congress, 2002.

19. Lu G, Feng G, Jiang ZP. Saturated feedback stabilization of discrete-time descriptor bilinear systems. IEEE
Transactions on Automatic Control 2007; 52(9):1700–1704.

20. Tang GY, Ma H, Zhang BL. Successive-approximation approach of optimal control for bilinear discrete-time
systems. IEE Proc. Control Theory & Applications 2005; :637–644.

21. Fontes AB, Dorea CE, da S Garcia MR. An iterative algorithm for constrained MPC with stability of bilinear
systems. 2008 16th Mediterranean Conference on Control and Automation, IEEE, 2008; 1526–1531, doi:
10.1109/MED.2008.4602048.

22. Bloemen H, Cannon M, Kouvaritakis B. Interpolation in MPC for discrete time bilinear systems. Proceedings of
the 2001 American Control Conference, vol. 5, 2001; 3061–3066, doi:10.1109/ACC.2001.946386.

23. Bitsoris G, Athanasopoulos N. Constrained Stabilization of Bilinear Discrete-Time Systems Using Polyhedral
Lyapunov Functions. 17th World Congress of the International Federation of Automatic Control, 2008; 2502–2507.

24. Athanasopoulos N, Bitsoris G. Unconstrained and constrained stabilisation of bilinear discrete-time systems
using polyhedral Lyapunov functions. International Journal of Control Dec 2010; 83(12):2483–2493, doi:
10.1080/00207179.2010.531396.

25. Athanasopoulos N, Bitsoris G, Vassilaki M. Ultimate boundedness and robust stabilization of bilinear discrete-
time systems. IEEE Conference on Decision and Control and European Control Conference, 2011; 4622–4627,
doi:10.1109/CDC.2011.6161233.

26. Bacic M, Cannon M, Kouvaritakis B. Constrained control of SISO bilinear systems. IEEE Transactions on
Automatic Control Aug 2003; 48(8):1443–1447.

27. Vatani M, Hovd M, Olaru S. Control design and analysis for discrete time bilinear systems using sum of squares
methods. Proceedings of the 53rd IEEE Conference on Decision and Control, 2014; 3143–3148.
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