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Analysis of PWA control of discrete-time linear
dynamics in the presence of variable input delay

Mohammed-Tahar Laraba, Sorin Olaru, and Silviu-Iulian Niculescu

Abstract—This paper focuses on the robustness of a specific
class of control laws, namely the piecewise affine (PWA) con-
trollers, defined over a bounded region of the state-space. More
precisely, we are interested in closed-loop systems emerging from
linear dynamical systems controlled via feedback channels in the
presence of varying transmission delays by a PWA controller
defined over a polyhedral partition of the state-space. We exploit
the fact that the variable delays are inducing some particular
model uncertainty. Our objective is to characterize the delay
invariance margins: the collection of all possible values of the
time-varying delays for which the positive invariance of the
corresponding region is guaranteed with respect to the closed-
loop dynamics. These developments are proving to be useful for
the analysis of different design methodologies and, in particular,
for model predictive control (MPC) approaches. The proposed
delay margin describes the admissible transmission delays for
an MPC implementation. From a different perspective, the
delay margin further characterizes the fragility of an embedded
MPC implementation via the on-line optimization and subject to
variable computational time.

Index Terms—Time-delay systems, Model Predictive Control,
PWA controller, Delay margins.

I. INTRODUCTION

T IME-delay appears naturally in modeling dynamics or
networked control systems (NCSs) as well as many

other physical processes where propagation and transport
phenomena occur. It is worth mentioning that the presence of
communication networks in the closed-loop control systems
induces varying transmission delays [1]. These delays are
known to degrade the control performance and can induce
instability as documented in the rich theoretic control literature
dedicated to such topics [2], [3].

Model Predictive Control (MPC) represents a well-known
control technique which, roughly speaking, solves an on-line
constrained optimization problem over a receding horizon
[4], [5]. It constructs at each sampling instant an optimal
sequence with respect to an appropriate performance index.
Unfortunately, using MPC in the presence of time-varying
delays leads to complex optimization problems, which are
difficult to handle from the numerical point of view. Linear
MPC with constraints is known to result in PWA closed-loop
dynamics [6], [7].

Checking the stability of the fixed points for a PWA system
is not an easy task in general even in the absence of transmis-
sion delay. Stability of PWA systems has been investigated in
the literature using Piecewise Quadratic Lyapunov functions
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[8]. The stability test is usually formulated in terms of linear
matrix inequalities (LMIs), that obviously lead to sufficient
conditions. Due to the conservatism of such approaches,
alternative relaxations can be found in [9], [10].

To the best of the authors’ knowledge, when dealing with
positive invariance of sets [11], [12] with respect to delay
difference equations (DDE), two main approaches exist. The
first one relies on the fact that the DDE allows a finite
dimensional extended state space model construction. This
extended state space leads to an invariant set characterization
with respect to an equivalent linear time invariant model. The
second approach aims to obtain an invariant set with respect to
a dynamical system in the original state space of DDE, which
is independent from the delay value. This concept is called
D-invariance [13].

In this paper, we will conduct a robustness analysis of
discrete-time linear dynamics in closed-loop with a PWA con-
trol law in the presence of time-varying input delays affecting
the communication on the feedback channel or induced by the
control computation itself. The PWA feedback is generic but
it can be obtained, for example, by using an explicit MPC
design constructed upon the nominal delay-free model. We
show that invariance analysis is fundamental when a PWA
control law is constructed without a-priori taking the delay
into account. The presence of variable input delay induces a
parametric uncertainty in the closed-loop parameters. One way
to handle this parametric uncertainty is to cover all possible
delay variations by embedding it within a polytopic model
when the maximal delay is known [1], [14]–[16].

The contribution of the paper is threefold: first, a formal
definition of delay margins based on positive invariance is
given. Its structure and computations are detailed providing
an important tool for the analysis of this class of closed-loop
systems. Second, the inverse problem of finding the maximal
range of delay variation, guaranteeing the invariance of the
region over which the PWA control law structure is specified,
represents, to the best of the authors’ knowledge, an open
problem and will receive in the sequel a complete characteri-
zation. Third, we are proposing a constructive method to find
the delay margins based on a positive invariance approach.
It is important to point out that the notion of delay margin
is introduced in terms of sets and mappings generalizing the
underlying idea of the first delay interval and its related delay
margins from continuous-time systems. We first investigate the
case when the PWA control input is subject to an intersample
delay variation, i.e. the delay variation bounds remain inside
a sampling period. The procedure describes, by means of set
projections, all possible delay values for which the positive
invariance (or alternatively D-invariance) of the state trajecto-
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ries is guaranteed. The relationship between delay margins in
different state space representations is established and linked
to set factorization [17]. Furthermore, we extend the delay
margins procedure to the multisample case i.e. the delay
variation bounds are larger than one sampling period. The
paper makes use of some preliminary results in [18], [19] and
extends the robustness analysis to PWA systems with variable
input delays.

The paper is structured as follows: section II presents some
preliminary mathematical notions and definitions related to
piecewise affine functions and positive invariance for discrete-
time systems. Two classes of linear continuous time-invariant
systems affected by variable delay are introduced in section III.
In the same section, the exact discretization of the considered
dynamics and the uncertain PWA systems obtained in closed-
loop are discussed. Section IV is devoted to the construction
of delay margins in order to ensure invariance in the presence
of small and large delays. Finally, an illustrative example is
shown in section V and concluding remarks are drawn in
section VI.

Notations: We denote by R (R+), N and Z (Z+) the field
of real (non-negative real) numbers, the set of non-negative
integers, the set of integer (strictly positive integer) numbers,
respectively. For every interval Π of R we define ZΠ := Z∩Π.
Given m ∈ Z+, by 1m, we denote the vector of dimension m
with all the entries equal to 1 and, by Im ∈ Rm×m, the m×m
identity matrix. Conv denotes the convex hull operation, and
⊗ the Kronecker product of two matrices. In the sequel and in
order to avoid ambiguity, whenever an exponent is associated
with a matrix, it will be interpreted as a matrix raised to a
power or just as an index depending on the context.

II. PRELIMINARIES AND PREREQUISITES

In this section we discuss in a brief manner, some basic
concepts related to piecewise affine functions and positive
invariance for discrete time-varying systems.
Given two sets X ,Y ⊂ Rm, X ⊕ Y and X × Y denote the
Minkowski sum and the Cartesian product of these two sets,
respectively, defined as follows:

X ⊕ Y := {z| ∃(x, y) ∈ (X ,Y) such that z = x+ y} .

X × Y := {(x, y)| x ∈ X and y ∈ Y} .

The unit simplex in Rm is defined as:

Sm :=
{
x ∈ Rm+ | 1Tmx = 1

}
.

Given a map f : Rn → Rm and a set S ⊂ Rn, we denote
the image of the set S by the mapping f(·):

f(S) := {y ∈ Rm| ∃x ∈ S such that y = f(x)}

In the particular case of affine mappings f(x) = Ax+B,A ∈
Rm×n, B ∈ Rm, the image of a set S ⊂ Rn is written f(S) =
AS + B. For a given set X ⊆ Y × Z , int(X ) denotes the
interior of X , the projection of X onto Y is defined as:

ProjYX = {y ∈ Y| ∃z ∈ Z such that (y, z) ∈ X} .

The notions of state-space partition, PWA functions and posi-
tive invariance are the classical ones as defined, for example,
in [18], [20].

Definition 2.1: Let X be a compact subset of Rn. A
partition of X is a finite family of subsets Xi ⊂ Rn of X ,
with i ∈ IN ⊂ Z+ being the index of the regions and IN a
finite subset of Z+, which verifies the following conditions:
• int(Xi) 6= ∅ for i ∈ IN ⊂ Z+.
• The regions Xi are said to cover X , i.e.

X =
⋃
i∈IN

Xi

• The elements of Xi are pairwise disjoint i.e.

int(Xi ∩ Xj) = ∅ for (i, j) ∈ I2
N and i 6= j.

Two elements Xi and Xj , (i, j) ∈ I2
N , i 6= j, of the partition

for which dim(Xi ∩ Xj) = n− 1 are called neighbors. �
Definition 2.2: A function fpwa : X → Rm defined over a

polyhedral partition X =
⋃

i∈IN
Xi by the relation:

fpwa(x) = Aix+ ai for i such that x ∈ Xi (1)

where Ai ∈ Rm×n and ai ∈ Rm is called piecewise affine
function over X ⊂ Rn.

Definition 2.3: A piecewise affine function fpwa(·) defined
over a polyhedral partition of a polyhedron X is continuous
if and only if the equality:

Aix+ ai = Ajx+ aj (2)

holds ∀x ∈ Xi ∩ Xj , (i, j) ∈ I2
N , i 6= j and dim(Xi ∩ Xj) =

n− 1.
Definition 2.4: A set X ⊂ Rn is positively invariant with

respect to the dynamical system xk+1 = f(k, xk) if for any
initial condition x0 ∈ X the state trajectory satisfies xk ∈
X ,∀k ∈ Z+. �

Definition 2.5: A set X ⊂ Rn is called D-invariant with
respect to the linear dynamics:

xk+1 =

d∑
i=0

Aixk−i (3)

with initial conditions x−i ∈ X for all i ∈ Z[0,d] if the state
trajectory satisfies xk ∈ X ,∀k ∈ Z+. This is equivalent using

the Minkowski addition to
d⊕
i=0

AiX ⊆ X . �

Several properties govern the relationship between D-invariant
sets. One of these properties, known as the delay independent
property, is presented in the following proposition:

Proposition 2.6: [13] If the set X ⊂ Rn is D-invariant with
respect to (3) then X is D-invariant for:

xk+1 =

d∑
i=0

Aixk−τi (4)

for any τi ∈ Z+. �
This property, proven in [13], will be used later in the
development of the main result related to delay margins for
large delays.
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III. DYNAMICAL MODEL OF A LINEAR PLANT WITH
DIGITAL CONTROL IN THE PRESENCE OF VARIABLE

INPUT-DELAY

A. Intersample delays

For the sake of simplicity of the presentation, we discuss
first the case when the delay variation is intersample, i.e.
smaller than or equal to the sampling period.

1) System dynamics: Consider a linear continuous time-
invariant (LTI) system and a sequence of delays (τk) affecting
the input as follows:{

ẋ(t) = Acx(t) +Bcu(t)
u(t) = uk,∀t ∈ [tk + τk, tk+1 + τk+1) .

(5)

where Ac ∈ Rn×n, Bc ∈ Rn×m, x(t) ∈ Rn the continuous
system state. Moreover, assume that the system states are
sampled periodically with the period Ts ∈ R∗+ and we denote
by tk = kTs the kth sampling instant. The control input
u(t) ∈ Rm is known for t ∈ [0, τ0), and the control action
generated at time t = tk at the controller side is denoted
by uk ∈ Rm. The possible delay induced by the network at
sample instant tk is denoted by τk ∈ [τ , τ ], with a lower bound
τ ∈ R[0,τ ] and an upper bound τ ∈ R[τ,Ts]. We will recall next
the modeling in discrete-time following the approach in the
studies [1], [14], [16]. We consider the exact discretization of
(5) by exploiting the fact that the control action is piecewise
constant, i.e. u(t) = uk,∀t ∈ [tk + τk, tk+1 + τk+1):

xk+1 = eAcTsxk +

∫ τk

0

eAc(Ts−θ)dθBcuk−1+∫ Ts

τk

eAc(Ts−θ)dθBcuk

(6)

and let εk = Ts − τk, and:

A = eAcTs , B =

∫ Ts

0

eAc(Ts−θ)dθBc (7)

∆ (εk) =

∫ Ts

Ts−εk
eAc(Ts−θ)dθBc =

∫ 0

−εk
e−AcσdσBc. (8)

Then, the discrete-time model which takes into account the
effect of the continuous time-delay variation will become:

xk+1 = Axk + (B −∆(εk))uk−1 + ∆(εk)uk. (9)

In the general case, the variable time-delay implies a variable
limit ’εk’ for the integration in (8). One can see that there
is no explicit link between the samples available for the
discrete model and the delay in continuous-time, thus leading
practically to a parameter-varying dynamical model. Upon dis-
cretization, the variable input delay is considered in terms of an
appropriate uncertainty function. All possible delay variations
can be covered by confining the induced model uncertainty
within a polytopic description. Therefore, a polytopic (simpli-
cial) over-approximation of the uncertainty coming from the
variable delay can be constructed (see, e.g. [1], [15], [16],
[21]) to obtain finally an appropriate polytopic model. In a
probabilistic framework, the delay variation can be considered
uniformly distributed between the extreme realizations of the
discrete-time model (in the present work, no other specific

statistical information with respect to the delay variation is
considered to be available).
It is interesting to note that by setting εk = 0 and εk = Ts, we
obtain two ”extreme” realizations of the discrete-time model
(9):

xk+1 = Axk +Buk−1 (10)

and

xk+1 = Axk + (B −∆(Ts))uk−1 + ∆(Ts)uk (11a)

= Axk +Buk (11b)

respectively.
2) The PWA closed-loop dynamics: The starting point for

the present work will be the nominal dynamics corresponding
to εk = Ts (no delay induced by the network). A piecewise
affine control law is designed with respect to this nominal dy-
namics. In this context, the following piecewise affine (PWA)
control law can be obtained from an explicit constrained MPC
design [22] for instance:

upwa : X −→ Rm
upwa(x) = Fix+ gi,∀i ∈ IN s.t x ∈ Xi.

(12)

We introduce the following:
Assumption 3.1: The set X is positive invariant with respect

to the closed-loop nominal dynamics xk+1 = Axk +Bupwak .
The PWA control law obtained will be in turn used in practice
for the control of the linear parameter-varying dynamics sub-
ject to variable delay (9). The closed-loop dynamics resulting
from applying:{

upwak = Fixk + gi, for xk ∈ Xi

upwak−1 = Fjxk−1 + gj , for xk−1 ∈ Xj
(13)

will be:

xk+1 = Axk + (B −∆(εk)) [Fjxk−1 + gj ] +

∆(εk) [Fixk + gi]

= (A+ ∆(εk)Fi)xk + (B −∆(εk))Fjxk−1+

Bgj + ∆(ε)(gi − gj),

∀(i, j) ∈ I2
N such that xk ∈ Xi, xk−1 ∈ Xj .

(14)

It is clear that an extended state-space representation can be
constructed for the delay difference equation (14) by introduc-
ing an augmented state vector, i.e. ξk =

[
xTk x

T
k−1

]T ∈ R2n.
An equivalent state-space model is then obtained:[

xk+1

xk

]
︸ ︷︷ ︸
ξk+1

=

[
A+ ∆(εk)Fi (B −∆(εk))Fj

In 0n×n

] [
xk
xk−1

]
︸ ︷︷ ︸

ξk

+

[
Bgj + ∆(εk)(gi − gj)

0n×1

]
;

∀(i, j) ∈ I2
N such that xk ∈ Xi and xk−1 ∈ Xj .

(15)
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The difference equations (14) and (15) depend on ∆(εk),
considered as a parameter-varying matrix, lying in a non-
convex subset of Rn×m. One can write equations (14) and
(15) in a more compact form as follows:

xk+1 = φi(εk)xk + θj(εk)xk−1 + γij(εk),

∀(i, j) ∈ I2
N s.t xk ∈ Xi and xk−1 ∈ Xj .

(16)

where:
φi(εk) = (A+ ∆(εk)Fi)
θj(εk) = (B −∆(εk))Fj
γij(εk) = Bgj + ∆(εk)(gi − gj),

(17)

or alternatively for (15) as:{
ξk+1 = Φij(εk)ξk + Γij(εk)
∀(i, j) ∈ I2

N such that ξk ∈ Xi ×Xj .
(18)

where:

Φij(εk) =

[
A+ ∆(εk)Fi (B −∆(εk))Fj

In 0n×n

]
Γij(εk) =

[
Bgj + ∆(εk)(gi − gj)

0n×1

] (19)

Moreover, one can define the following parameter-varying
PWA mappings:

ψpwa : X × X × R[0,Ts] −→ Rn{
ψpwa(x, y, ε) = φi(ε)x+ θj(ε)y + γij(ε)
∀(i, j) ∈ I2

N such that x ∈ Xi and y ∈ Xj .
(20)

Ψpwa : {X × X} × R[0,Ts] −→ R2n{
Ψpwa(ξ, ε) = Φij(ε)ξ + Γij(ε)
∀(i, j) ∈ I2

N such that ξ ∈ Xi ×Xj .
(21)

It is worth mentioning that the uncertain piecewise affine
systems (16) and (18) are defined over the polyhedral partition
of the compact sets X and X × X respectively, where the
partition X =

⋃
i∈IN

Xi is inherited from the explicit PWA

control law design (12).
Now, the concept of delay margins with respect to dynam-

ical systems, presented in the extended and the original state-
space framework, is introduced in a set-theoretic perspective
as follows:

Definition 3.2: The delay margin with respect to the time-
varying dynamical system (16), denoted dm, is given by:

dint = {ε ∈ [0, Ts]| ∀x ∈ Xi, y ∈ Xj , ψpwa(x, y, ε) ∈ X} .

Definition 3.3: The delay margin with respect to the time-
varying dynamical system (18), denoted Dm, is given by:

Dint = {ε ∈ [0, Ts]| ∀ξ ∈ X × X ,Ψpwa(ξ, ε) ∈ X × X} .

In continuous-time systems, the delay margin is classically
denoting a scalar quantity representing the maximal delay
preserving a certain dynamical property (asymptotic stability,
marginal stability, etc). It allows defining an appropriate inter-
val guaranteeing the corresponding property. Inspired by this
last observation we choose to deal, in the present framework,
with the delay in terms of admissible intervals (sets) of
variations.

B. Multisample delays: large delays and packet dropouts

In this subsection, we extend the robustness problem for-
mulation for a different class of dynamical systems, that is
to say, discrete-time linear dynamics in closed-loop with a
PWA control law defined over a polyhedral partition of the
state space X , in the presence of multisample delay variations.
Multisample delay models are well suited when describing
dynamics related to communication flows or propagation phe-
nomena where the delay variation bounds are larger than one
sampling period. In this case, discrete-time models that take
into account the effect of the delay variation can be considered
as a switched linear system as shown in the following.

1) System dynamics: Let us consider the linear continuous
time-invariant system in the presence of time-varying input
delay: {

ẋ(t) = Acx(t) +Bcu(t)
u(t) = uk,∀t ∈

[
tk + τ∗k , tk+1 + τ∗k+1

)
,

(22)

where Ac ∈ Rn×n, Bc ∈ Rn×m, x(t) ∈ Rn is the continuous
system state vector. Since the controllers are implemented on
digital platforms in many control applications, we assume that
the plant is periodically sampled and actuated by the controller.
The kth sampling instants are denoted by tk = kTs. We denote
by τ∗k ∈ [τ∗, τ∗] the delay induced by the feedback commu-
nication channels and/or the computation time necessary for
real-time control implementation. Moreover, we assume that
the delay induced at sample instants tk has a lower bound
τ∗ ∈ R[0,τ∗] and an upper bound τ∗ ∈ R[τ∗,Td] which can be
larger than the sampling period Td > Ts. The control input
u(t) ∈ Rm is known for t ∈ [0, τ∗0 ), and the control action
generated at time t = tk at the controller side is denoted by
uk ∈ Rm. One has to take into consideration the discrete-time
delay variation induced by the network. We consider first the
case dmax = dmin + 1 and denote dmax = d for simplicity.

(d− 1)Ts < τ∗k < dTs

Next, consider the exact discretization of (22) assuming the
control action is piecewise constant, i.e. u(t) = uk,∀t ∈[
tk + τ∗k , tk+1 + τ∗k+1

)
, τ∗k = (d− 1)Ts + τk

xk+1 = eAcTsxk +

∫ τk

0

eAc(Ts−θ)dθBcuk−d+∫ Ts

τk

eAc(Ts−θ)dθBcuk−d+1

(23)

and let εk = dTs − τ∗k = Ts − τk, and based on the matrices
introduced in (7)-(8), the discrete-time model which describes
the presence of continuous time-delays variation, possibly
larger than the sampling period Ts, will become:

xk+1 = Axk +Buk−d −∆(εk)(uk−d − uk−d+1) (24)

This model takes into account the effect of the delays which
can be either smaller or larger than one sampling period. How-
ever, network data transmission channels can be unreliable,
packet dropouts in the communication are inevitable. Control
inputs can be lost during transmission and the structure of
the discrete-time model has to consider both the network-
induced delays and data dropouts. The model (24) can be
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generalized by taking into account the previous aspects. Fi-
nally, the discrete-time model which considers the effect of
the continuous-time delay variation larger than one sampling
period and packets loss will be as follows:{

xk+1 = Axk +Buk−d1 −∆(εk)(uk−d1 − uk−d2)

∀d1, d2 ∈ {dmin, · · · , dmax} , and d1 > d2

(25)

The intersample delay variation induces some model uncer-
tainties represented by the matrix ∆(εk) ∈∆, k ∈ N:

∆ = {∆(εk)| εk ∈ [0, Ts]} (26)

Analytical methods exist when dealing with such model un-
certainties as mentioned before. The key idea is to use the
convex bounding of the matrix ∆(εk) to embed it within a
polytopic set of matrices with ′s+ 1′ extreme realizations as
follows:

∀εk ∈ R[0,Ts],∃α ∈ Ss+1 such that ∆ =

s∑
i=0

αi∆i. (27)

2) The PWA closed-loop dynamics: The starting point of
the analysis in this case is the following uncertain delay
difference equation:{

xk+1 = Axk + (B −∆(εk))uk−d1 + ∆(εk)uk−d2

∀d1, d2 ∈ {dmin, · · · , dmax} , and d1 > d2

(28)

The nominal (delay-free and no packet loss) dynamics corre-
sponding to εk = Ts are described by the following model:

xk+1 = Axk +Buk

obtained for ∆(Ts) = B; d2 = 0; d1 = 1.
(29)

First, assume that the PWA feedback controller (12), obtained
for example from an explicit MPC design upon the nominal
model (29) is used in practice for the control of the dynamics
(28). The closed-loop system resulting from applying:{

upwak−d1 = Fjxk−d1 + gj , for xk−d1 ∈ Xj

upwak−d2 = Fixk−d2 + gi, for xk−d2 ∈ Xi
(30)

in (28) will be:

xk+1 = Axk + (B −∆(εk))[Fjxk−d1 + gj ]+

∆(εk)[Fixk−d2 + gi] = Axk + (B −∆(εk))Fjxk−d1+

∆(εk)Fixk−d2 + (B −∆(εk))gj + ∆(εk)gi.

∀xk−d1 ∈ Xj , xk−d2 ∈ Xi;
∀d1, d2 ∈ {dmin, · · · , dmax} ; and d1 > d2

∆(εk) ∈ Co {∆1, · · · ,∆s} ,∀εk ∈ R[0,Ts],
(31)

which is equivalent to:

xk+1 = Axk +
dmax∑
λ=0

ψλ(δ1, δ2,∆)xk−λ + (B −∆(εk))gj

+∆(εk)gi.

∀d1, d2 ∈ {dmin, · · · , dmax} , and d1 > d2;

∀(i, j) s.t xk−d1 ∈ Xj , xk−d2 ∈ Xi;
∆(εk) ∈ Co {∆1, · · · ,∆s} ,∀εk ∈ R[0,Ts],

(32)

with:

ψλ(δ1, δ2,∆) =


0 if λ < dmin

(B −∆(εk))Fjδ1(λ) + ∆(εk)Fiδ2(λ)

if dmin ≤ λ ≤ dmax,
(33)

δ1 and δ2 are two vectors of binary variables:

δp = [δp(dmin) · · · δp(i) · · · δp(dmax)] ,∀p ∈ {1, 2} . (34)

These variables have constraints, and this should be handled
when modeling the discrete-time dynamics:

dmax∑
i=dmin

δ1(i) = 1, and
dmax∑
i=dmin

δ2(i) = 1 (35)

Next, the constraint d1 > d2 can be written in terms of δ1, δ2
as follows:

dmax∑
i=dmin

iδ1(i) >

dmax∑
j=dmin

jδ2(j) (36)

Summarizing the remarks and observations above, we have
the following result:

Theorem 3.4: For any continuous linear time-invariant (LTI)
system in closed-loop with a PWA control law defined in
(12) and affected by variable and possibly large input delays,
there exists a switching linear model affected by polytopic
uncertainty:



xk+1 = Axk +
dmax∑
λ=0

ψλ(δ1, δ2,∆(ε))xk−λ + (B −∆(εk))gj

+∆(εk)gi.

∀d1 > d2 ∈ {dmin, · · · , dmax} ;

∀(i, j) s.t xk−d1 ∈ Xj , xk−d2 ∈ Xi;

(δ1, δ2) ∈ ({0, 1}dmax+1−dmin)2;

∆(εk) ∈ Co {∆1, · · · ,∆s} ,∀εk ∈ R[0,Ts],
(37)

which takes into account the effect of the time-varying input
delay.

Corollary 3.5: For a given state x(t) = x(kTs) and the PWA
control function u(t) defined in (12), let ξk be the following
extended state-space vector:

ξk =
[
xTk , x

T
k−1, · · · , xTk−dmax

]T ∈ Rn×(dmax+1) (38)

Then x(t+ Ts) can be obtained as follows:

x(tk + Ts) = Projx {Fkξk +Gk} (39)

where:

Fk =


A+ ψ0 ψ1 ψ2 · · · ψdmax

In 0n×n 0n×n · · · 0n×n

0n×n
. . . · · · · · · 0n×n

...
. . . . . . · · ·

...
0n×n · · · 0n×n In 0n×n

 (40)
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Gk =


(B −∆(εk))gj + ∆(εk)gi

0n×1

...
0n×1

 (41)

Proof: This is a direct consequence of the polytopic
uncertainty embedding in [23] and the assumption made with
respect to the piecewise affine structure of the control law.
To summarize, delay margin problem corresponds to the
complete description of all possible delay values, denoted by
(dint or Dint) for the intersample delay case, and by (dmult
or Dmult) for the multisample case, such that the positive
invariance of the set X (or alternatively X × · · · × X︸ ︷︷ ︸

dmax+1

), over

which the PWA control law is defined, is guaranteed with
respect to the corresponding closed-loop system.

IV. CONSTRUCTION OF THE DELAY MARGIN SET BASED
ON THE POSITIVE INVARIANCE

Assume that both X and the elements Xi defining the parti-
tion in (12) are bounded polyhedral sets. Then, the polytopes
of interest can be described as the intersection of finite number
of half spaces (referred to as the H-representation):

X = {x ∈ Rn|Fx ≤ f} , F ∈ Rr×n, f ∈ Rr (42)

Xi = {x ∈ Rn|Fix ≤ fi} , Fi ∈ Rri×n, fi ∈ Rri ,
for every i ∈ IN .

(43)

X × X =

{
X ∈ R2n|

[
F 0r×n

0r×n F

]
X ≤

[
f
f

]}
. (44)

Xi ×Xj =

{
X ∈ R2n|

[
Fi 0ri×n

0rj×n Fj

]
X ≤

[
fi
fj

]}
,

for every (i, j) ∈ I2
N .

(45)
The polytopes defined above can also be described as the
convex hull of finite point set (vertices) in Rn (referred to
as the V-representation). Let the vertices of the polytopes X
and Xi be:

V(X ) = {v1, v2, · · · , vq} , (46)

V(Xi) = {wi1, wi2, · · · , wiqi} , ∀i ∈ IN . (47)

Then, the vertex representation of these polytopes is expressed
using the convex hull operation as follows:

X = Conv {v1, v2, · · · , vq} , (48)

Xi = Conv {wi1, wi2, · · · , wiqi} , ∀i ∈ IN . (49)

For each region Xi of the partition of X , the set containing
its vertices is:

Wi = V(Xi),∀i ∈ IN . (50)

Let W be the set of all vertices of all Xi with i ∈ IN :

W =
⋃
i∈IN

V(Xi). (51)

Using only the non-redundant elements of W , one can write:

W = {w1, w2, · · · , wp} , card {W} = p. (52)

The vertices of the polytope X × X are denoted by:

V(X × X ) =

{(
vi

vj

)
∈ R2n,∀(i, j) ∈ I2

q

}
. (53)

For each region Xi ×Xj of the partition of X ×X , its set of
vertices is:

Wij = [V(Xi ×Xj)] =Wi ×Wj ,

Wij = {wi1, wi2, · · · , wiqi} ×
{
wj1, wj2, · · · , wjqj

}
. (54)

Let WX×X be the set of all vertices of all Xi × Xj with the
pairs (i, j) ∈ I2

N :

WX×X =
⋃

(i,j)∈I2N

V(Xi ×Xj). (55)

It is worth to mention that there exists a close link between
the elements of the two sets W and WX×X . One can easily
notice that:

WX×X =

{(
wi

wj

)
∈ R2n| wi ∈ W, wj ∈ W,∀(i, j) ∈ I2

p

}
.

(56)

Based on the above notations, we define the following matrices
obtained by storing as columns the non-redundant elements of
the different sets of vertices using an arbitrary ordering:

V = [V(X )] ∈ Rn×q, VX×X = [V(X × X )] ∈ R2n×q2

Vi = [Wi] ∈ Rn×qi , Vij = [Wij ] ∈ R2n×(qi×qj)

W = [W] ∈ Rn×p, WX×X = [WX×X ] ∈ R2n×p2

(57)
The image of the sets Wi,W using the affine mapping (12)
allows the construction of the matrices:

Ui = [upwa(Wi)] ∈ Rm×qi (58)

U = [upwa(W)] ∈ Rm×p. (59)

respectively. Let Okp be the p× p matrix whose all entries are
equal to zero, except the kth row, which is equal to 1Tp .

A. Intersample delay

1) Delay margins in the extended state-space representa-
tion: The uncertainty in (8) is represented by the matrix ∆(εk)
satisfying ∆(εk) ∈∆, k ∈ N, with:

∆ = {∆(εk)| εk ∈ [0, Ts]} (60)

To characterize the delay margins we aim to use a simplicial
over-approximation of the matrices ∆ ∈ Rn×m in (60). Based
on such an over-approximation of the matrix set ∆, the system
is embedded within a polytopic model with s + 1 extreme
realizations:

∆ ∈ Conv {∆0,∆1, · · · ,∆s} , (61)

any element of ∆ can be written as convex combinations of
generators (corresponding to extreme realizations), i.e.:

∀εk ∈ R[0,Ts],∃α ∈ Ss+1 such that ∆ =

s∑
i=0

αi∆i. (62)
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Furthermore, with respect to the set Dint ⊂ R[0,Ts], we have:

∀εk ∈ Dint,∃α ∈ Ss+1 such that ∆ =

s∑
i=0

αi∆i. (63)

For a given ξk in (15) such that xk ∈ Xi and xk−1 ∈ Xj ,
the feedback law is known i.e. Fi, Fj , Gi, and Gj defining
Φij(εk) and Γij(εk) in (18) are known.

Proposition 4.1: For a given pair (i, j) ∈ I2
N , the matrix

[Φij(εk) Γij(εk)] belongs to the polytopic set Ω:

Ω = Conv
{[

Φ1
ij Γ1

ij

]
, · · · ,

[
Φs+1
ij Γs+1

ij

]}
and there exists a vector α with non-negative scalars
{α0, · · · , αs} such that α ∈ Ss+1 satisfying:

[Φij(εk) Γij(εk)] =

s∑
l=0

αl
[
Φlij Γlij

]
, (64)

where:

Φlij =

[
A+ ∆lFi (B −∆l)Fj

In 0n×n

]
, (65)

Γlij =

[
Bgj + ∆l(gi − gj)

0n×1

]
. (66)

Proof: See Appendix A.
Theorem 4.2: Consider the uncertain piecewise affine sys-

tem (18) defined over the polyhedral partition of X ×X . The
delay margin is obtained in terms of α as:

Dαint =
{
ProjSs+1

R
}
∩∆α (67)

where R and ∆α are defined as:

∆α =

{
α ∈ Ss+1| ∀εk ∈ R[0,Ts]; ∆(εk) =

s∑
i=0

αi∆i

}
(68)

R =
{

(α,Γ) ∈ Rs+1
+ × Rq

2×p2
+ | 1TΓ = 1T ,

E +

l=s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
H = VX×XΓ

}
.

(69)

Where the matrices E ∈ R2n×p2 , H ∈ R2m×p2 are defined in
the proof.

Proof: See Appendix B.
2) Delay margins in the original state-space representation:

Theorem 4.3: Consider the uncertain piecewise affine sys-
tems (16) defined over the polyhedral partition of X . The delay
margin in the original state space representation is obtained in
terms of α as follows:

dαint =
{
ProjSs+1 T

}
∩∆α (70)

where ∆α is defined in (68) and T is defined as:

T =
{

(α,L) ∈ Rs+1
+ × Rq×p

2

+ | 1TL = 1T ,

E′ +
l=s∑
l=0

αl∆lH
′ = V L

} (71)

Where the matrices E′ ∈ Rn×p2 , H ′ ∈ Rm×p2 are given by:

E
′

=
[
AWO1

p +BU · · · AWOpp +BU
]
,

H
′

=
[
UO1

p − U · · · UOpp − U
]
.

Proof: See Appendix C.
3) Relationship between delay margins: The link between

the two representations and their invariant sets has received
a unifying characterization via set factorization in [17]. This
relationship is formally stated in the next theorem and for
the sake of brevity, the proof is omitted. For more details the
reader is referred to [17] and the references therein.

Theorem 4.4: The dynamical system (16) admits a convex
D-invariant set if and only if there exists an invariant set for
the system (18) which admits a regular ordered factorization.

Even if the existence of an invariant set with respect to the
extended dynamics (18) represents only a necessary condition
for the existence of a D-invariant set with respect to (16), the
following proposition holds in the analysis of delay margins.

Proposition 4.5: The delay margin sets dint and Dint are
equivalent.

Proof: See Appendix D.
Note that the same result holds in the multisample case. Thus,
we will restrict ourselves to the study of delay margins in the
original state space representation dmult.

B. Large delays and Packet dropouts

Starting from a PWA control law design constructed upon a
nominal delay-free model, we derive a generalized solution to
the delay margin problem. We provide a constructive method
to find the delay margins i.e. the set of all time-varying delays,
possibly larger than one sampling period where packets loss
may occur, for which the set X is positively invariant with re-
spect to the corresponding closed-loop dynamics. The discrete-
model of interest, describing the control system including
delays and packet dropouts, has been presented in (37). Note
that since the delay margins were pointed out to be equivalent
in the original and the augmented state-space representations,
we will be exclusively interested in finding all delay values
for which the D-invariance of the closed-loop system (37)
is guaranteed. The delay margin in the extended state-space
representation ensuring the invariance of the set

P = X × · · · × X︸ ︷︷ ︸
dmax+1

with respect to ξk+1 = Fkξk + Gk (Corollary 3.5) being
exactly the same.

Theorem 4.6: Consider the closed-loop system described
by the delay difference equation (37) defined over the polyhe-
dral partition of X . For a fixed value of the pair d1, d2 ∈
{dmin, · · · , dmax}, the intersample delay margin d∗int is
obtained as follows:

dα∗int =
{
ProjSs+1 T

′
}
∩∆α (72)
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where ∆α is defined in (68) and T ′ is defined as:

T ′ =
{

(α,L) ∈ Rs+1
+ × Rq×p

3

+ | 1TL = 1T ,

E′′ +
l=s∑
l=0

αl∆lH
′′ = V L

} (73)

where the matrices E′′ ∈ Rn×p3 and H ′′ ∈ Rm×p3 are defined
as follows:

E′′ = A
[
1Tp ⊗WO1

p · · ·1Tp ⊗WOpp
]

+B
[
1Tp2 ⊗ U

]
(74)

and
H ′′ = 1Tp ⊗

[
UO1

p − U · · ·UOpp − U
]
. (75)

Proof: See Appendix E.
Proposition 4.7: The following claims hold when dealing

with delay margins in the presence of large delays:
i) τ∗k = 0 belongs to the multisample delay margin dmult

if the nominal system is positive invariant in closed-loop
with the PWA control law defined over X .

ii) If the intersample delay margin for a fixed value of the
pair d1, d2 ∈ {dmin, · · · , dmax} is not empty (d∗int 6=
∅), then τ∗i = diTs,∀di ∈ {1, · · · , dmax − 1} belong to
dmult. Furthermore, d∗int ⊂ [0, Ts] in this case.

iii) If [diTs, diTs + τM ] ⊂ dmult for a given
di ∈ {dmin, · · · , dmax − 1}, then the same
inclusions [djTs, djTs + τM ] ⊂ dmult hold for all
dj ∈ {1, · · · , dmax − 1}.
Proof:

i) The PWA controller has been designed upon the nominal
(delay-free) model. If Assumption 3.1 holds, then the
invariance of the set X with respect to the closed-loop
system will be guaranteed, and {0} ∈ dint ⊂ dmult.

ii) Suppose that d∗int 6= ∅, then the following D-invariance
condition holds:

AX⊕∆FiX⊕(B−∆)FjX⊕(B−∆)gj⊕∆gj ⊆ X (76)

for (i, j) ∈ I2
N , such that xk−d1 ∈ X and xk−d2 ∈ X ,

∀τ∗k ∈ dmult. Choosing, i = j = k, (76) yields:

AX ⊕ (B −∆ + ∆)FkX ⊕ (B −∆ + ∆)gk ⊆
AX ⊕∆FiX ⊕ (B −∆)FjX ⊕ (B −∆)gj ⊕∆gj ⊆ X

(77)
or equivalently:

AX ⊕BFkX ⊕Bgk ⊆ X ,∀k ∈ IN (78)

Since (78) corresponds to the D-invariance condition for
a delay τ∗k = dkTs, ∀dk ∈ {1, · · · , dmax − 1}, it follows
that the delay margin covers τ∗k = dkTs ∈ dmult, dk ∈
{1, · · · , dmax − 1}.
Notice from the Minkowski sum properties that the fol-
lowing inclusion:

(A+BFi)X ⊕Bigi ⊆ X ,∀i ∈ IN

which corresponds to the invariance for τ∗k = 0, does not
necessarily imply:

AX ⊕BFiX ⊕Bigi ⊆ X ,∀i ∈ IN

In other words, τ∗i = diTs, where di ∈
{1, · · · , dmax − 1} do not necessarily belong to the
multisample delay margin dmult if {0} ∈ dmult.

iii) The proof of this statement follows directly from the delay
independent property of D-invariance (see Proposition
2.6).

Corollary 4.8: The delay margin dmult can be written as a
union of sets as follows:

dmult = dint
⋃

(Ts ⊕ d∗int)
⋃
· · ·
⋃

((dmax − 1)Ts ⊕ d∗int).

where d∗int is a subset of the intersample delay margin, dint
and is obtained from (72).

Proof: The proof follows from the multisample delay
margin properties dmult in Proposition 4.7. First we observe
that globally the delay margin is a union of the intersample
delay dint and the intersample delay margins for all possible
combinations of d1, d2 ∈ {dmin, · · · , dmax} with d1 > d2.
Secondly by exploiting the second property, the inclusion
of one integer multiple of the sampling time in the delay
margin, any integer value will be also included. Finally, the
property iii) in Proposition 4.7, the subintervals of delay will
be replicated at each sampling interval leading to the form
presented in the statement.

V. ILLUSTRATIVE EXAMPLE

Consider the following unstable dynamical system: ẋ(t) =

[
1.1 −0.1
1 0

]
x(t) +

[
1
0

]
u(t− h)

y(t) =
[
1 0

]
x(t).

(79)

with h ∈ [0, 0.1]. A discrete model is obtained, using (6)-(8)
with a sampling period Ts = 0.1, and the uncertainty 0 <
εk ≤ 0.1. The uncertainty matrix ∆(εk) has been embedded
within a polytopic model with the following 3 vertices:

∆ ∈ Conv
{[

0
0

]
,

[
0.0999
−0.0006

]
,

[
0.1057
0.0057

]}
(80)

Then, an explicit MPC has been designed for the nominal
model (delay-free, h = 0), with a prediction horizon N = 7,
in the presence of input and output constraints:

−5 ≤ uk ≤ 5

−5 ≤ yk ≤ 5
(81)

The partition of the obtained PWA control law as well as
the resulting over-approximation of the uncertainty are shown
in Figure 1.

The delay margin dαm has been computed using (72). Its
projection on the plane (α0, α1) is shown in Figure 2. The
red set and the curved black line represent the sets T and
∆α defined in (73) and (68), respectively, both projected on
S2. Finally the delay margin is obtained dm = [0.0972; 0.1],
which corresponds to a delay variation τk ∈ [0; 0.0028].

Note that some close links between the delay margins and
the number of regions in the partition of the PWA control
law exist. The number of regions being directly related to
the choice of the prediction horizon, one can notice that the
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Fig. 1. Partition of the PWA control law (left), illustration of the embedding
of ∆(εk) by a simplex (right)

Fig. 2. Delay margin dαm projected on the plane (α0, α1)

delay margin is larger when the prediction horizon is small.
Delay margins for different PWA control laws obtained using
different prediction horizons are shown in Table I. The global
delay margin is reduced to these intervals as long as the
system is open-loop unstable and the D-invariance can not
be achieved. This is a natural consequence of the fact that, the
D-invariance is related to a delay independent stability.

TABLE I
DELAY MARGINS AND THE PREDICTION HORIZON

N 2 3 4 5 6
τk × 103 [0; 5.6] [0; 4.9] [0; 4.2] [0; 3.7] [0; 3.2]

VI. CONCLUSION

In discrete-time modeling framework, the analysis of linear
systems affected by uncertain time-varying input delays passes
through the characterization of uncertain delay difference
equations depending on a parameter varying matrix. Many
different techniques exist in the literature aiming at construct-
ing an embedding for the uncertainty, and leading to classical
polytopic models.

In the present work, we addressed an inverse problem,
offering a measure of the delay margin of positive invariance
for a closed-loop PWA system in the original (related to D-
invariance) and the extended state-space representations for

both small and large delays. The result presented in this
paper gives a way to tackle the delay margin problem of a
nominal PWA control law which can be seen as a relevant issue
from the robustness analysis point of view in both feedback
communication channels and variable computation-time for
real-time optimization-based control.

APPENDIX A
PROOF OF PROPOSITION 4.1

Since ∆ lies inside a convex set, any matrix Φij(εk) for a
given εk ∈ R[0,Ts] can also be written as convex combination
of extreme realizations:

∀εk ∈ R[0,Ts],∃β ∈ SK+1 such that:

Φij(εk) =

[
A+ ∆(εk)Fi (B −∆(εk))Fj

In 0n×n

]
=

K∑
l=0

βlΦ
l
ij ,

(82)
where:

Φlij =

[
A+ ∆lFi (B −∆l)Fj

In 0n×n

]
=

[
A BFj
In 0n×n

]
+

[
∆l 0n×m

0n×m 0n×m

] [
Fi −Fj

0m×n 0m×n

]
. (83)

Same procedure can be applied for Γij(εk):

∀εk ∈ R[0,Ts],∃λ ∈ SK+1 such that:

Γij(εk) =

[
Bgj + ∆(εk)(gi − gj)

0n×1

]
=

K∑
l=0

λlΓ
l
ij , (84)

where:
Γlij =

[
Bgj + ∆l(gi − gj)

0n×1

]
=

[
Bgj
0n×1

]
+

[
∆l 0n×m

0n×m 0n×m

] [
gi − gj
0m×1

]
. (85)

However, for a given εk ∈ R[0,Ts] and (i, j) ∈ I2
N , by selecting

βl = λl := αl,∀l ∈ Z[0,K], one concludes that (64) holds with
Φlij and Γlij described in (83) and (85) respectively.

APPENDIX B
PROOF OF THEOREM 4.2

The positive invariance of the set X × X with respect to
the time-varying dynamical system (18) is represented by a
set-wise relation:

∀εk ∈ Dm ⊂ R[0,Ts], and ∀ξk ∈ Xi ×Xj , (i, j) ∈ I2
N :

Φij(εk)ξk + Γij(εk) ∈ X × X , (86)

which is equivalent to:

∀εk ∈ Dm ⊂ R[0,Ts], and ∀ξk ∈ Xi ×Xj , (i, j) ∈ I2
N ,

∃α ∈ Ss+1 such that
s∑
l=0

αl
[
Φlijξk + Γlij

]
∈ X × X . (87)

By substituting (83) and (85) in equation (87), we obtain:
s∑
l=0

αl

[([
A BFj
In 0n×n

]
+

[
∆l 0n×m

0n×m 0n×m

] [
Fi −Fj

0m×n 0m×n

])



10

ξk +

[
Bgj
0n×1

]
+

[
∆l 0n×m

0n×m 0n×m

] [
gi − gj
0m×1

]]
∈ X ×X . (88)

[
A BFj
In 0n×n

]
ξk +

[
Bgj
0n×1

]
+

s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
([

Fi −Fj
0m×n 0m×n

]
ξk +

[
gi − gj
0m×1

])
∈ X × X .

(89)

By expressing the extended state vector ξk ∈ Xi × Xj as
a convex combinations of the vertices of Xi × Xj which is
known to be polyehdral set, we obtain:

ξk =

qi×qj∑
z=1

βzw
z
ij for β ∈ Sqi×qj . (90)

It follows that equation (89) is equivalent with:[
A BFj
In 0n×n

] qi×qj∑
z=1

βzw
z
ij +

[
Bgj
0n×1

]
+

s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
([

Fi −Fj
0m×n 0m×n

] qi×qj∑
z=1

βzw
z
ij+

[
gi − gj
0m×1

])
∈ X × X .

(91)

For a given vertex in wzij , i.e. z ∈ Z[1,qi×qj ], (i, j) ∈ I2
N , we

have:[
A BFj
In 0n×n

]
wzij +

[
Bgj
0n×1

]
+

s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
([

Fi −Fj
0m×n 0m×n

]
wzij+

[
gi − gj
0m×1

])
∈ X × X .

(92)

We describe the inclusion (92) explicitly since it is equiva-
lent with the existence of a vector yzij ∈ X × X such that:[

A BFj
In 0n×n

]
wzij +

[
Bgj
0n×1

]
+

s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
([

Fi −Fj
0m×n 0m×n

]
wzij+

[
gi − gj
0m×1

])
= yzij ,

(93)

where the vector yzij can be expressed as:

yzij = VX×Xγ
z
ij such that γzij ∈ Sq2 . (94)

By replacing equations (94) in (93), ∀(i, j) ∈ I2
N and z ∈

Z[1,qi×qj ], we obtain:[
A BFj
In 0n×n

]
wzij +

[
Bgj
0n×1

]
+

s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
([

Fi −Fj
0m×n 0m×n

]
wzij+

[
gi − gj
0m×1

])
= VX×Xγ

z
ij ,

(95)

or, in other words, equation (95) holds for all non redundant
vertices of Xi × Xj ,∀(i, j) ∈ I2

N , which means that it holds
for all the columns of the matrix WX×X defined in (57).
Exploiting the piecewise affine mapping (12) of the elements
of WX×X , a matrix formulation can be obtained by the
concatenation of the vectors:[

A BFj
In 0n×n

]
wzij +

[
Bgj
0n×1

]
, (96)

and, similarly of the vectors:[
Fi −Fj

0m×n 0m×n

]
wzij +

[
gi − gj
0m×1

]
(97)

in (95). Indeed, the collection of vectors:

[
A BFj
In 0n×n

]
wzij +

[
Bgj
0n×1

]
, wzij ∈ WX×X →[

A 0n×n
In 0n×n

]
WX×X +

[
BU
0n×p

] [
Ip · · · Ip

]
.

(98)

Next, the same procedure can be applied for (97):[
Fi −Fj

0m×n 0m×n

]
wzij +

[
gi − gj
0m×1

]
, wzij ∈ WX×X →[

UO1
p − U UO2

p − U · · · UOpp − U
0m×p 0m×p · · · 0m×p

]
,

(99)

and {
VX×Xγ

z
ij

wzij ∈ WX×X
= VX×XΓ, (100)

with the condition that each column of Γ is restricted to Sq2 .
This can be expressed as linear constraints on the columns of
Γ as follows:

1TΓ = 1T , Γ ∈ Rq
2×p2

+ . (101)

Finally, equation (95) leads to the matrix formulation:[
A 0n×n
In 0n×n

]
WX×X +

[
BU
0n×p

] [
Ip · · · Ip

]
︸ ︷︷ ︸

E

+

l=s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

] [
UO1

p − U · · · UOpp − U
0m×p · · · 0m×p

]
︸ ︷︷ ︸

H

= VX×XΓ,

E +

l=s∑
l=0

αl

[
∆l 0n×m

0n×m 0n×m

]
H = VX×XΓ. (102)

Since the parametric uncertainty corresponds to the values of
α in (68), (∆(εk) does not take all values in the embedding),
the delay margin is obtained as (67) in terms of α. The
proof is complete noticing that the two sets Dαm and Dm are
isomorphic.

APPENDIX C
PROOF OF THE THEOREM 4.3

The D-invariance of the set X with respect to the original
time-varying dynamical system (16) is represented by a set
wise relation ∀εk ∈ dm:

(A+ ∆(εk)Fi)xk + (B −∆(εk))Fjxk−1 +Bgj+

∆(εk)(gi − gj) ∈ X ,
∀(i, j) ∈ I2

N s.t xk ∈ Xi and xk−1 ∈ Xj ,
(103)
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or, equivalently:

Axk +BFjxk−1 +Bgj + ∆(εk) [(Fixk + gi)

−(Fjxk−1 + gj)] ∈ X ,
∀(i, j) ∈ I2

N s.t xk ∈ Xi and xk−1 ∈ Xj ,
(104)

which is equivalent, exploiting the convex combinations of
extreme realizations of ∆(εk), to:

Axk +BFjxk−1 +Bgj +
K∑
l=0

αl∆l [(Fixk + gi)

−(Fjxk−1 + gj)] ∈ X ,
∀(i, j) ∈ I2

N s.t xk ∈ Xi and xk−1 ∈ Xj ,

(105)

with αl, l ∈ Z[0,K] being the elements of a vector α ∈ SK+1.
By expressing the state vectors xk ∈ Xi and xk−1 ∈ Xj as:

xk =

qi∑
l=1

λlwil for λ ∈ Sqi ,

xk−1 =

qj∑
l′=1

λ
′

l′
wjl′ for λ

′
∈ Sqj .

Then, for a given pair of vertices in wil, wjl′ where l ∈
Z[1,qi], l

′ ∈ Z[1,qj ] and (i, j) ∈ I2
N , one can write:

Awil +B
[
Fjwjl′ + gj

]
+

K∑
l=0

αl∆l [(Fiwil + gi)

−(Fjwjl′ + gj)
]
∈ X ,

∀(i, j) ∈ I2
N s.t xk ∈ Xi and xk−1 ∈ Xj .

(106)

The inclusion (106) is equivalent to the existence of a vector
yzij ∈ X , that can be expressed as a convex combination of
the vertices of X :

yzij = V γzij such that γzij ∈ Sq, (107)

Awil +B
[
Fjwjl′ + gj

]
+

K∑
l=0

αl∆l [(Fiwil + gi)

−(Fjwjl′ + gj)
]

= V γzij ,

∀(i, j) ∈ I2
N s.t xk ∈ Xi and xk−1 ∈ Xj .

(108)

Let Wi ∈ Rn×p be the matrix obtained by storing repeatedly
as columns the ith vertex in W . For each vertex in W , the
equation:

AWi +BU +
K∑
l=0

αl∆l [u
pwa(Wi)− U ] = V L

′

i

∀i ∈ Z[1,··· ,p], 1TL
′

i = 1T , L
′

i ∈ Rq×p+ .

(109)

holds. Finally, (109) leads to the matrix formulations:

Awil +BU +

k∑
l=0

αl [(Fiwil + gi)− U ] = V γil

∀(i, j) ∈ I2
N s.t xk ∈ Xi and xk−1 ∈ Xj .

(110)

or, equivalently:

A
[
W1 W2 · · · Wp

]
+B

[
U U · · · U

]
+

K∑
l=0

αl∆l

[
U1 − U U2 − U · · · Up − U

]
= V L,

1TL = 1T , L ∈ Rq×p
2

+ .
(111)

Equivalently:[
AWO1

p +BU AWO2
p +BU · · ·AWOpp +BU

]︸ ︷︷ ︸
E′

+

l=K∑
l=0

αl∆l

[
UO1

p − U · · ·UOpp − U
]︸ ︷︷ ︸

H′

= V L,

E′ +

l=k∑
l=0

αl∆lH
′ = V L. (112)

Finally, the delay margin is obtained as (72) in terms of
α. Once again, the dm is completely defined due to the
isomorphic relation with dαm.

APPENDIX D
PROOF OF PROPOSITION 4.5

We have the following:
• εk ∈ dm → εk ∈ Dm

This can be proved by observing that the D-invariance of
X with respect to (16), in the presence of delay εk ∈ dm,
implies that if xi ∈ X , i ∈ Z[−1,0], then x1 ∈ X . Such
an initial condition is equivalent to an extended vector ξ1 =[
xT0 x

T
−1

]T ∈ X × X , and implies the positive invariance of
the set X × X with respect to (18). Consequently, εk ∈ Dm.
• εk ∈ Dm → εk ∈ dm

Starting now from the invariance of X × X with respect to
(18), and in order to prove D-invariance of X , one can write:

xk+1 =
[
A+ ∆(εk)Fi (B −∆(εk))Fj

]
ξk+[

Bgj + ∆(εk)(gi − gj)
]

;

∀(i, j) ∈ I2
N such that ξk ∈ Xi ×Xj .

(113)

Exploiting the invariance property:

ξk ∈ X × X → xk+1 ∈ X , (114)

or, equivalently:[
A+ ∆(εk)Fi (B −∆(εk))Fj

]
ξk +

[
Bgj + ∆(εk)(gi − gj)

]
∈ X , ∀(i, j) ∈ I2

N such that ξk ∈ Xi ×Xj ,
(115)

as a set inclusion, one can write:[
A+ ∆(εk)Fi (B −∆(εk))Fj

]
(Xi ×Xj)⊕[

Bgj + ∆(εk)(gi − gj)
]
⊂ X ,∀(i, j) ∈ I2

N .
(116)

The condition (116) is equivalent to the Minkowski sum:

(A+ ∆(εk)Fi)Xi ⊕ (B −∆(εk))FjXj⊕
(Bgj + ∆(εk)(gi − gj)) ⊂ X ,∀(i, j) ∈ I2

N .
(117)

thus leading to D-invariance condition for the set X , which
subsequently implies that εk ∈ dm.
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APPENDIX E
PROOF OF THEOREM 4.6

The D-invariance of the set X with respect to the original
time-varying dynamical system (31) is represented by a set
wise relation ∀εk ∈ dmult and ∀d1 > d2 ∈ {ddmin,··· ,dmax

}:
Axk + (B −∆(εk))Fjxk−d1 + ∆(εk)Fixk−d2+

(B −∆(εk))gj + ∆(εk)gi ∈ X ,
∀(m, i, j) ∈ I3

N s.t xk ∈ Xm and xk−d2 ∈ Xi and xk−d1 ∈ Xj ,
which, by exploiting the convex combinations of extreme
realizations of ∆(εk), is equivalent to:

Axk +B(Fjxk−d1 + gj) +
K∑
l=0

αl∆l [(Fixk−d2 + gi)

−(Fjxk−d1 + gj)] ∈ X ,
∀(m, i, j) ∈ I3

N s.t xk ∈ Xm and xk−d2 ∈ Xi and xk−d1 ∈ Xj ,
with αl, l ∈ Z[0,K] being the elements of a vector α ∈ SK+1.
By expressing the state vectors xk ∈ Xm and xk−d1 ∈ Xj and
xk−d2 ∈ Xi :

xk =

qm∑
l=1

λlwml for λ ∈ Sqm ,

xk−d2 =

qi∑
l′=1

λ
′

l′
wil′ for λ

′
∈ Sqi ,

xk−d1 =

qj∑
l′′=1

λ
′′

l′′
wjl′′ for λ

′′
∈ Sqj .

Then for a given set of vertices in wml, wil′ , wjl′′ where l ∈
Z[1,qm], l

′ ∈ Z[1,qi], l
′′ ∈ Z[1,qj ] and (m, i, j) ∈ I3

N , one can
write:

Awml +B
[
Fjwjl′′ + gj

]
+

K∑
l=0

αl∆l [(Fiwil′ + gi)

−(Fjwjl′′ + gj)
]
∈ X ,

∀(m, i, j) ∈ I3
N s.t xk ∈ Xm and xk−d2 ∈ Xi and xk−d1 ∈ Xj .

(118)
The inclusion (118) is equivalent to the existence of a vector
yzmij ∈ X which can be expressed as a convex combination
of the vertices of X :

yzmij = V γzmij such that γzmij ∈ Sq, (119)

Awml +B
[
Fjwjl′′ + gj

]
+

K∑
l=0

αl∆l [(Fiwil′ + gi)

−(Fjwjl′′ + gj)
]

= V γzmij ,

∀(m, i, j) ∈ I3
N s.t xk ∈ Xm and xk−d2 ∈ Xi and xk−d1 ∈ Xj .

(120)
Let Wm,Wi ∈ Rn×p be the matrices obtained by storing
repeatedly as columns the mth and ith vertices, respectively,
in W . For each pair of vertices in W , the equation:

AWm +BU +
K∑
l=0

αl∆l [u
pwa(Wi)− U ] = V L

′

mi,

∀(m, i) ∈ Z2
[1,··· ,p], 1TL

′

mi = 1T , L
′

mi ∈ Rq×p+

(121)

holds. Furthermore, for each vertex with the index m in W ,
the following holds:

A [Wm · · ·Wm] +B [U · · ·U ] +
K∑
l=0

αl∆l [U1 − U · · ·Up − U ] = V L
′′

m,

∀m ∈ Z[1,··· ,p], 1TL
′′

m = 1T , L
′′

m ∈ Rq×p
2

+ .

(122)

Finally, the condition (122) leads to the matrix formulation:

A

W1 · · ·W1︸ ︷︷ ︸
′p′times

· · · · · ·Wp · · ·Wp︸ ︷︷ ︸
′p′times

+

B

U · · ·U︸ ︷︷ ︸
′p′times

· · · · · ·U · · ·U︸ ︷︷ ︸
′p′times

+

K∑
l=0

αl∆l

U1 − U · · ·Up − U︸ ︷︷ ︸
′p′times

· · · · · ·U1 − U · · ·Up − U︸ ︷︷ ︸
′p′times

 =

V L,

1TL = 1T , L ∈ Rq×p
3

+ ,
(123)

where Wi = WOip and Ui = UOip.
Equivalently:

E′′ +

l=k∑
l=0

αl∆lH
′′ = V L. (124)

Finally, the intersample delay margin for fixed pair d1, d2 ∈
{dmin, · · · , dmax} is obtained in terms of α as in (72). dmult
is obtained afterwards exploiting the third claim of Proposition
4.7 and Corollary 4.8.
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