
HAL Id: hal-01720260
https://centralesupelec.hal.science/hal-01720260v1

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial Approach towards Multi-Parametric
Quadratic Programming based on Characterizing

Adjacent Critical Regions
Parisa Ahmadi-Moshkenani, Tor Arne Johansen, Sorin Olaru

To cite this version:
Parisa Ahmadi-Moshkenani, Tor Arne Johansen, Sorin Olaru. Combinatorial Approach towards
Multi-Parametric Quadratic Programming based on Characterizing Adjacent Critical Regions. IEEE
Transactions on Automatic Control, 2018, 63 (10), pp.3221-3231. �10.1109/TAC.2018.2791479�. �hal-
01720260�

https://centralesupelec.hal.science/hal-01720260v1
https://hal.archives-ouvertes.fr


Combinatorial Approach towards Multi-Parametric
Quadratic Programming based on Characterizing

Adjacent Critical Regions
Parisa Ahmadi-Moshkenani1 , Tor Arne Johansen 2, and Sorin Olaru 3

Abstract—Several optimization-based control design tech-
niques can be cast in the form of parametric optimization
problems. The multi-parametric quadratic programming (mpQP)
represents a popular class often related to the control of
constrained linear systems. The complete solution to mpQP
takes the form of explicit feedback functions with a piecewise
affine structure, valid in polyhedral partitions of the feasible
parameter space known as critical regions. The recently proposed
combinatorial approach for solving mpQP has shown better
efficiency than geometric approaches in finding the complete
solution to problems with high dimensions of the parameter
vectors. The drawback of this method, on the other hand, is
that it tends to become very slow as the number of constraints
increases in the problem. This paper presents an alternative
method for enumerating all optimal active sets in a mpQP
based on theoretical properties of adjacent critical regions and
their corresponding optimal active sets. Consequently, it results
in excluding a noticeable number of feasible but not optimal
candidate active sets from investigation. Therefore, the number
of linear programs that should be solved decreases noticeably
and the algorithm becomes faster. Simulation results confirm
the reliability of the suggested method in finding the complete
solution to the mpQPs while decreasing the computational time
compared favourably with the best alternative approaches.

I. INTRODUCTION

EXPLOITING multi-parametric quadratic programming
(mpQP) for solving model predictive control (MPC)

problems enables the main online computational burden of the
problem to be moved offline [1], [2] and [3]. Consequently,
application of MPC can be extended to systems with
relatively fast dynamics. In a mpQP problem, the Karush-
Kuhn-Tucker (KKT) optimality conditions can be used to
characterize the affine local parametric optimal solution for
every fixed combination of optimal active constraints as
well as the representation of the polyhedral critical region
(CR) which is the domain of validity of affine optimal
solution for that optimal active set. There are basically two
approaches towards solving a mpQP problem. i) Geometric
approaches that iteratively build a partition of parameter
space using geometric (polyhedral) computations [4]–[9] ii)
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Combinatorial approaches which are based on implicitly
enumerating all possible combinations of active constraints
in a combinatorial search tree [10]–[12]. The advantage of
geometric approaches is that mostly optimal combinations of
active sets are considered, avoiding unnecessary computations
due to the combinatorial number of possible active sets.
However, for problems of high dimension of the parameter
space, geometric computations become numerically sensitive
and these algorithms, therefore, tend to become slow and
unreliable. This is due to the fact that high-dimensional
geometric problems (such as computing the centers of
lower-dimensional facets) cannot be solved reliably even
with state-of-the-art solvers [13]. Combinatorial approaches,
on the other hand, avoid geometric computations and hence
deal quite effectively and efficiently with mpQP problems
having a higher number of parameters where the geometric
methods perform poorly and may fail finding the complete
solution [13]. Furthermore, the enumerative feature of these
methods makes them suitable for region-free explicit model
predictive controls suggested by [14] and [15] where creating
the critical regions, which is computationally demanding
in high dimensional parameter spaces, is not required.
Another enumeration-based method for solving linear and
semi-definite quadratic multi-parametric programs is recently
proposed in [13] based on reformulating these problems
into parametric linear complementarity problems (PLCP).
This method has shown to be, in the best case reported in
[13], twice as fast as method of [10]. The pruning criterion
in all these enumerative methods is to simultaneously cut
off branches with infeasible active sets which is crucial for
achieving optimal efficiency in enumeration. A drawback
of these methods, however, is that the number of possible
combinations of active constraints increases exponentially
with the number of constraints. Therefore, their applications
are limited to problems with few constraints [12]. Very
recently [16] has introduced a connected-graph approach
towards solving mpQPs which bridges the division between
geometrical and combinatorial approaches. Similarly to the
method suggested by [5], identifying the type of each facet
of a full-dimensional CR, i.e. investigating which constraint
becomes active or inactive on that facet, is required during
the offline procedure in order to find adjacent CRs which
can result in the same drawbacks as geometric approaches
when dealing with mpQPs with large number of parameters.
Moreover, when two or more lower-dimensional critical
regions overlap along a facet of a full-dimensional critical



region due to violation of strict complementarity slackness
condition, characterising that facet as one of the intended
types is not possible. This paper suggests an alternative
combinatorial approach towards solving mpQPs which avoids
geometric computations completely, resulting in faster and
more reliable computation of solution for high number of
parameters compared to other approaches. The objective of
this method is to exclude a noticeable number of feasible
active sets that are not optimal from the combinatorial
tree in order to accelerate the enumeration of all optimal
sets. To this aim, [17] has suggested a downward and
upward exploration of combinatorial tree which exploits the
underlying relationship between two full-dimensional adjacent
critical regions when degeneracy does not occur on their
common facet. This method is guaranteed to find all critical
regions in non-degenerate cases while reducing the number of
LPs that should be solved. Hence the required computational
time decreases significantly. A modification to the method
in [17] is presented in [18] to handle degeneracies based
on theoretical properties of full-dimensional adjacent critical
regions for which degeneracy occurs on their common facet
and the relation between their corresponding optimal sets.
This method guarantees enumeration of all optimal active
sets in a general case which can be subject to degeneracies
as well. This paper completes this trend of development by
presenting the complete theoretical framework exploited in
combinatorial approach and offers additional discussions,
numerical studies, comparisons and examples.
The first part of the this paper presents the combinatorial
approach towards mpQP in conjunction with the suggested
downward and upward exploration of the combinatorial
tree. The algorithm for exploring the combinatorial tree is
presented in section III along with a series of theorems
describing the theoretical foundation. Simulation results are
presented in section IV. Moreover, the comparison between
different methods for solving mpQP problems, implemented
in Multi-Parametric Toolbox [9], is presented which confirms
the superiority of the suggested method w.r.t. other approaches
for problems with a large number of constraints, and finally
the paper is concluded in section V.

II. COMBINATORIAL APPROACH TOWARDS
MULTI-PARAMETRIC QUADRATIC

PROGRAMMING

Consider the following multi-parametric quadratic program:

V ∗N (x) = min
z

1

2
zTHz (1a)

s.t. Gz ≤ Sx+W (1b)

which is an equivalent to the standard multi-parametric
quadratic program including quadratic, linear and constant
terms in the cost function and is derived by applying ap-
propriate transformation. See for example [1]. Here z ∈ Rm
and x ∈ Rn denote the vectors of optimization variables and
parameters, respectively. Assume that the problem is strictly
convex, i.e. H > 0. As shown by [1], the Karush-Kuhn-Tucker

(KKT) optimality conditions can be used to characterize the
analytic solutions to the mpQP problem:

Hz +GTλ = 0, λ ∈ Rq, (2a)

λi(Giz −W i − Six) = 0, i = 1, . . . , q, (2b)
λ ≥ 0, Gz ≤ Sx+W (2c)

Defining Q = {1, . . . , q} as the index set of all constraints
in (1b), we recall that a constraint among q constraints in
(1b) is said to be active if it holds with equality for a given
z and x, and inactive if it holds with strict inequality. Thus
the active set A(z, x) can be described as A(z, x) := {i ∈
Q | Giz − Six −W i = 0} while the corresponding inactive
set J (z, x) is given by the set difference of Q and A i.e.
J (z, x) := Q\A(z, x). Denoting A and J as the active and
inactive sets, one can rewrite the KKT conditions as follows:

Hz +GA
T
λA = 0, (3a)

GAz −WA − SAx = 0, (3b)

GJ z −WJ − SJ x ≤ 0, (3c)

λA ≥ 0, λJ = 0 (3d)

Before going further, we recall some definitions and
theorems.

Definition 1. Redundant constraints: Let a polyhedron Θ
be represented by Aθ ≤ b. We say that Aiθ ≤ bi is redundant
if Ajθ ≤ bj ,∀j 6= i⇒ Aiθ ≤ bi (i.e., it can be removed from
the description of the polyhedron).

Definition 2. Minimal representation: A representation of a
polyhedron is minimal if there are no redundant constraints.

Assumption 1. The constraints in (1) are assumed, without
loss of generality, to form a minimal representation of the
polyhedral feasible set.

Definition 3. Linear Independence Constraints Qualification
(LICQ), (Nocedal and Wright, 1999): Given z∗(x) as the
optimal solution of (1) at which KKT conditions are satisfied
and the corresponding active set A, we say that LICQ holds
if the set of active constraint gradients {Gi | i ∈ A(z∗(x), x)}
is linearly independent, i.e., GA has full row rank.

Definition 4. Strict Complementarity Slackness (SCS),
(Nocedal and Wright, 1999): Given the pair (z∗(x), λ∗(x))
satisfying the KKT conditions, SCS holds if exactly one of
λi∗(x) and Giz∗(x)− Six−W i is zero for each i ∈ Q, i.e.,
λi∗(x) > 0 for each i ∈ A(z∗(x), x) and si > 0 for each
i ∈ J (z∗(x), x) where si is the slack variable of inactive
constraint i ∈ J such that Giz∗(x) + si = Six+W i .
For a constraint that is assumed to be active, if (3) is feasible
with the associated Lagrange multiplier λi∗ equal to zero, we
define that constraint as weakly active constraint. On the other
hand, if (3c) holds with strict equality for a constraint that
is assumed to be inactive, we call that constraint as weakly
inactive constraint. Furthermore, an optimization problem for
which both the LICQ condition and the SCS condition hold
is known to be non-degenerate according to the definition of
degeneracy in [5].

Definition 5. Full-dimensional polyhedron: Let X be a
polyhedron in Rn. If the dimension of the affine hull of X ,



defined as the set of affine combinations of points in X , is
equal to n, then X is full-dimensional.

Theorem 1:
Consider the problem in (1) with H > 0. Let X ⊆ Rn be
the problem’s polyhedral feasible set and let x ∈ X . Then
the solution z∗(x) and the Lagrange multipliers λ∗(x) of a
mpQP are piecewise affine functions of the parameter x and
z∗(x) is continuous. Moreover, if LICQ holds for all x ∈ X ,
λ∗(x) is also continuous.
Proof: See [1]

Assuming that we know an optimal active set A and that
LICQ holds, we can use (2a) and (2b) to derive the parameter-
dependent optimizer [1]:

zA(x) = H−1(GA)TH−1
GA

(WA + SAx) (4)

where the existence of H−1
GA

:= (GAH−1(GA)T )−1 is guar-
anteed due to the LICQ and positive definiteness of H . The set
of inequalities in (2c) characterize the so-called critical region
(CR) for the considered optimal active set A. The CR is in
the form of a polyhedron in the parameter space defined by
the following inequalities:

H−1
GA

(WA + SAx) ≤ 0 (5a)

GH−1(GA)TH−1
GA

(WA + SAx) ≤W + Sx (5b)

This polyhedron is the largest set of parameters x ∈ X
for which the combination of active constraints A at the
optimizer remains unchanged and hence, the optimizer is
given by (4).

To enumerate all optimal active sets, [10] suggests to choose
the candidate active sets from the power set of Q in the order
of increasing cardinality. It should be noted that for a QP
with m decision variables and q constraints, only a maximum
of m̃ = min{m, q} linearly independent constraints can be
strongly active at the optimal solution [19]. For each candidate
active set, Ai, the following LP should be solved to check
whether it can be optimal or not:

max
z,x,λAi ,sJi

t (6a)

s.t. te1 ≤ λAi , te2 ≤ sJi (6b)

t ≥ 0, λAi ≥ 0, sJi ≥ 0 (6c)

Hz + (GAi)TλAi = 0 (6d)

GAiz − SAix−WJi = 0 (6e)

GJiz − SJix−WAi + sJi = 0 (6f)

Here t is a scalar optimization variable and e1 = [1, . . . , 1]T

and e2 = [1, . . . , 1]T are vectors of appropriate sizes corre-
sponding to the vector of Lagrangian multipliers λAi and the
vector of slack variables sJi , respectively. Inequalities (6b)
form an upper bound on the optimization variable t as the
minimal value contained in λAi and sJi . This formulation
allows the immediate identification of failure of the SCS con-
dition whenever t = 0. Note that, according to the formulation
in (6), we adopt the freedom to split the set of constraints in

Fig. 1: Combinatorial enumeration strategy used in [10]

Active and Inactive while both are capable of violating the
SCS condition through a zero Lagrange multiplier or a zero
slack variable, respectively. However, since the objective in
(6) is optimized over the parameter space x as well, (6) does
not yield a zero Lagrange multiplier or a zero slack variable
unless it is zero over the entire critical region corresponding to
Ai whether it is full-dimensional or lower-dimensional. Hence,
the situations where both λi = 0 and GAiz−SAix−WJi = 0
hold for constraint i on the boundaries of a full-dimensional
critical are not considered as violation of SCS condition. If the
candidate active set is found not to be optimal, i.e., if the op-
timization problem in (6) is not feasible, another optimization
problem should be solved by removing all constraints arising
from the optimality condition (namely all constraints including
λAi in (6)), to check for the feasibility of the candidate active
set. If this optimization problem is not feasible, we can exclude
Ai and all its supersets from the combinatorial tree. This
is the only pruning criterion in this method which is based
on the infeasibility of a combination of active constraints. A
graphical illustration of the combinatorial enumeration strategy
and the involved pruning process is given in the form of a
combinatorial tree diagram in Fig. 1. As it can be seen from
Fig. 1, all feasible combinations of active constraints remain in
the combinatorial tree for exploring the levels below while for
many cases, none of their supersets become optimal in future.

In order to exclude a noticeable number of feasible
candidate active sets which are not optimal from the
combinatorial tree, a joint downward and upward method
for exploration of the combinatorial tree is suggested in
[17] based on finding all the adjacent critical regions of any
critical region while avoiding the geometric computations. As
it is explained in [4], critical regions can be considered as
nodes of a finite, fully connected graph. There are no isolated
regions that could not be reached by starting from any region
and going from one neighbour to another neighbour. Thus we
can explore the entire feasible space starting from anywhere,
while all critical regions are guaranteed to be found.
The downward and upward exploration method is based on
the following theorem from [5].

Theorem 2 (mpQP without Degeneracy):
Consider an optimal active set {i1, i2, . . . , ik} and its
corresponding minimal representation of the critical region
CR0. Let CRi be a full-dimensional neighbouring critical
region to CR0 and assume LICQ holds on their common



Fig. 2: Combinations of optimal active constraints in adjacent
critical regions in a non-degenerate system

facet F = CR0 ∩H where H is the separating hyperplane
between CR0 and CRi. Moreover, assume that there are no
constraints which are weakly active at the optimizer z∗(x)
for all x ∈ CR0. Then:

Type I: If H is given by Gik+1z∗0(x) = W ik+1 + Sik+1x,
then the optimal active set in CRi is {i1, i2, . . . , ik, ik+1}.

Type II: If H is given by λik0 (x) = 0, then the optimal
active set in CRi is {i1, i2, . . . , ik−1}.

According to Theorem 2, the combinations of optimal active
sets in two adjacent CRs differ only in one constraint in
non-degenerate mpQPs. Therefore, one can only keep the
track of optimal active sets and for every optimal active set
which is found with a full-dimensional CR, find all optimal
active sets corresponding to its adjacent CRs by adding one
feasible constraint to or removing one existing constraint from
the current optimal active set (See Fig. 2 for illustration).
Repeating this for all optimal active sets which are found,
guarantees finding the complete solution in non-degenerate
cases. Therefore, this method for finding optimal active sets
requires joint downward and upward exploration of the com-
binatorial tree. To this aim, one can explore the combinatorial
tree as before, in the order of increasing cardinality. The
difference is that in this method, we only use the optimal active
sets for building the levels below (downward exploration).
Hence if a combination of active constraints is not optimal,
the feasibility check of LP (6) is not required any more. For
every optimal active set found during downward exploration,
we should explore the combinatorial tree upward to check
for the optimality of all its subsets with one element less if
they are not enumerated yet (upward exploration). Then for
every newly found optimal set during upward exploration, we
should explore the combinatorial tree downward and upward
again, until no new non-enumerated combination is found. For
each eliminated feasible but not optimal combination of active
constraints, the number of LPs in the form of (6) that should be
solved decreases by two (one for checking the optimality and
the other for checking the feasibility of the candidate active
set). However, when the non-degeneracy assumption is not
fulfilled for some combinations of optimal active constraints,
some CRs may remain unexplored using this procedure. One
way to handle this limitation is to do a post-processing, using
geometric approaches, to find the regions that could be missed

as it is suggested in [17]. In accordance with our work in [18],
we suggest an alternative approach for handling degenerate
cases rather than post processing in the next section. This
approach is not based on geometric operations and hence
is faster and more reliable when the number of parameter
variables and the number of constraints increases.

III. MPQP ALGORITHM WITH DEGENERACY HANDLING

Theorem 2 implies that when the optimal active sets in
two adjacent full-dimensional CRs differ in more than one
constraint, at least one of the LICQ condition or SCS condition
is violated. In order to explain different degenerate cases that
might happen in the problem and propose proper methods
for handling each of them, let us split different combinations
of optimal active constraints in two adjacent critical regions
which do not fulfill the conditions of Theorem 2 into two
categories.

Categ. I: Let CRi and CRj be two adjacent critical regions
with the corresponding optimal sets Ai and Aj , respectively.
If | (Ai \ Aj) |=| (Aj \ Ai) |= 1 where | · | denotes the
cardinality of a set, then CRi and CRj lie in Categ. I.

Categ. II: Let CRi and CRj be two adjacent critical
regions with the corresponding optimal sets Ai and Aj ,
respectively. If max{| (Ai \ Aj) |, | (Aj \ Ai) |} ≥ 2,
then CRi and CRj lie in Categ. II.

For all adjacent CRs classified in Categ.I, the following
theorem states the two possible circumstances which can be
characterised on their common facet.

Theorem 3 (Categ.I degeneracy)
Let two full-dimensional neighbouring CRs with the mini-
mal representation be classified as Categ.I, i.e., the optimal
active sets in these two regions can be defined by Ai =
[i1, . . . ik, ik+1] and Aj = [i1, . . . ik, ik+2]. Then one of these
conditions holds:
a) LICQ is violated for the combination of optimal active
constraints on their common facet.
b) LICQ holds on the common facet and SCS is violated for
the optimal sets of those two CRs.

Proof: Since the combinations of the optimal active
constraints in two adjacent CRs differ in more than one
constraint, the possibility of violation of LICQ condition on
the common facet follows directly from Theorem 2. Now,
assume that LICQ holds on the common facet F . If none of
the constraints in Ai are weakly active, then we have that
λip > 0, ∀p ∈ {1, . . . k + 1}. Furthermore, inactiveness of
ik+1 in CRj leads in λik+1 = 0 for x ∈ CRj and since
λik+1 is continuous due to Theorem 1 and the fact that
LICQ holds on the common facet, λik+1 should be equal to
zero on F as well. This means than the common facet for
CRi can be expressed by λik+1 ≥ 0. On the other hand, if
there is no constraint being weakly inactive in Ai, we have
Gk+2z∗ < Sk+2x + W k+2, ∀x ∈ CRi except from on the
common facet where Gk+2z∗ = Sk+2x + W k+2 (since ik+2

is active in Aj , and due to continuity of the optimizer) Hence,
Gk+2z∗ ≤ Sk+2x+W k+2 is also defining the common facet
for CRi. This contradicts with the minimal representation of



CRi as for the minimal representation to hold, each facet
should be represented by only one of the inequalities (5a)
or (5b). Hence either λik+1 must be zero on the entire CRi
meaning that ik+1 is weakly active in CRi or if this cannot
hold, due to strict convexity of the problem, sik+2 must be
zero on CRi which means ik+2 is weakly inactive over the
entire CRi. �

Theorem 4 describes the characteristic of combinations of
active constraints on the common facet between two CRs that
are classified as Categ.II.

Theorem 4 (Categ.II degeneracy)
Let two full-dimensional neighbouring CRs be classified as
Categ. II, i.e., the optimal active set in one of the regions have
at least two constraints which do not appear in the optimal
set of the adjacent CR. Then SCS condition is violated on F ,
i.e., the common facet between these two critical regions.

Proof: Let us denote the critical region containing at
least two constraints which do not appear in the optimal
active set of the neighbouring critical region as CRi, those
two constraints as ik+1 and ik+2, and Aj as the optimal
active set in the adjacent critical region CRj . It can be
proved that AF1

, Aj ∪ ik+1 is an optimal active set on the
common facet with the associated critical region CRF1 due
to feasibility of the LP in (6) with Aj for all x ∈ F and the
trivial value for λik+1 equal to zero (Note that λik+1 = 0
gives a feasible point for LP in (6) with AF1

, Aj ∪ ik+1

which guarantees the optimality of AF1
there. However, this

does not declare that the obtained optimal value for λik+1

should be necessarily zero). Similarly it can be proved that
AF2

, Aj ∪ ik+1 ∪ ik+2 is an optimal active set on F
with the trivial values λik+1 = λik+2 = 0 in (6) and the
corresponding critical region CRF2

. Since the optimizer
z∗(x) is unique due to positive definiteness of H , for all
x ∈ F we have that Gk+2z∗(x) + sk+2 = Sk+2x + W k+2

with some sk+2 ≥ 0 as x ∈ CRF1 and simultaneously we
have Gk+2z∗(x) = Sk+2x + W k+2 as x ∈ CRF2

. This
means that sk+2 = 0 for all x ∈ CRF1

, which completes the
proof that ik+2 is weakly inactive on F . �

Remark 1. Whenever the facet-to-facet property [20] does
not hold for two adjacent critical regions, the same results
as in Theorem 3 and Theorem 4 still hold by substituting F
with the part of the facet that is common between CRi and
CRj in the proofs.

Exploiting the results in Theorem 3 and Theorem 4, we
can now modify the downward-upward algorithm in [17]
such that the degenerate cases are explicitly considered. As
a result, all critical regions are found during exploration
of the combinatorial tree while on average, the number
of LPs needed to be solved reduces. To this aim, in the
downward-upward exploration we consider combinations
of active constraints for which either LICQ condition or
SCS condition is violated as well. If in the exploration of
the entire tree, no combination of active constraints with
failure of SCS condition is found, then due to Theorem 4,

no adjacent CRs which can be classified as Categ.II exists
in the whole partitioned feasible parameter domain. Thus,
the only possibility for the combinations of optimal active
sets in two adjacent CRs, except for the cases for which
degeneracy does not occur on their common facet, is due to
Theorem 3-a. Hence one can explore the combinatorial tree
up to level-(m̃ + 1) where m̃ = min{m, q}, simultaneously
considering combinations of optimal active constraints for
which LICQ is violated, and for all optimal sets with LICQ
violation explore their subsets which have one constraint
less and are not explored yet. This procedure guarantees the
enumeration of all optimal active sets in such cases.

Remark 2. Note that the exploration of combinatorial tree
up to level-(m̃ + 1), which is one level deeper than what
is considered in the exploration method suggested by [10],
is crucial for assuring that all optimal sets are enumerated.
This is due to the fact that optimal sets which lie in the first
category may appear in the last level of the combinatorial
tree, i.e. level-(m̃), and the violation of LICQ condition takes
place for the optimal active set in level-(m̃ + 1) forming
the common facet between two adjacent critical regions.
However, this does not impose significant computational
burden to the problem as we built the lower levels using only
the optimal sets (not all the feasible sets) in the level above.

On the other hand, if the SCS condition fails for some
combinations of active constraints in a full-dimensional CR
or in a lower-dimensional CR which corresponds to the
common facet between full-dimensional CRs, identifying the
combination of optimal active constraints in the adjacent
CR is not straightforward. This is, in particular, due to
the possibility of many overlapping lower-dimensional CRs
which leads to a significantly different combination of active
constraints in the full-dimensional adjacent CR. To make it
more clear, consider the following example.

Example 1 (Lower-dimensional critical regions with SCS
violation): Fig. 3 shows the partition of the feasible parameter
domain for the first example in [20]. As it can be seen, two
full-dimensional CRs with the optimal sets Ai = [1, 3, 6]
and Aj = [2, 4, 5] are adjacent, which shows 6 different
constraints in the neighbouring critical regions. In other
words, the combination of optimal active sets in these two
regions are completely different. This is due to violation
of the SCS condition in the overlapping lower-dimensional
CRs which form the common facet (or part of it) between
them. More detailed, a possible transition of combinations
of optimal active constraints from Ai to Aj takes place via
Ai = [1, 3, 6] −→ [1, 3, 5, 6] −→ [1, 5, 6] −→ [1, 2, 5, 6] −→
[1, 2, 5] −→ [1, 2, 4, 5] −→ Aj = [2, 4, 5] where the SCS
condition fails for all the intermediate optimal active sets and
their corresponding CRs partially overlap. Fig. 4 depicts this
overlapping lower-dimensional CRs.

Since any of the weakly inactive constraints may appear in
the full-dimensional adjacent CR, depending on which lower-
dimensional critical regions with violation of SCS overlap on
the common facet, one way to deal with such situations is to



Fig. 3: Example with violation of the SCS condition in lower-
dimensional CRs from [20].

Fig. 4: A closer consideration of Fig. 3 with respect to the
lower-dimensional critical regions, where line “ab”, “ac”, “ad”,
“ae” and “af” show critical regions corresponding to optimal
sets [1, 3, 5, 6], [1, 5, 6], [1, 2, 5, 6], [1, 2, 5] and [1, 2, 4, 5] re-
spectively

determine the set including all constraints that are active or
weakly inactive for each optimal active set with violation of
SCS condition and then explore all its unexplored full row
rank subsets which have at most m̃ elements.

For illustration, in the presented example constraints 2, 3
and 4 are weakly inactive for A = [1, 5, 6]. Hence we can
build the superset Sup = [1, 2, 3, 4, 5, 6] and then explore all
its full row rank subsets which have at most m̃ = 3 elements
if they have not been already explored. This is the same
exploration method of the combinatorial tree as suggested by
[10]. However, as we have observed a priori, the combination
of all these constraints is feasible. Therefore, there is no need
to check the feasibility of non-optimal subsets as we are sure
that all of them are feasible. By doing so, Aj = [2, 4, 5]
will be found even if it is not found as an adjacent critical

region of its other neighbouring critical regions. Note that
the indices of all weakly inactive constraints can be simply
obtained by identifying all slack variables equal to zero.
Theoretically, this can be done for every optimal set with
SCS failure separately. But as the constructed supersets
can share many constraints in common or even they can
be exactly identical (e.g., the supersets for all intermediate
optimal active sets in the above example are identical and
equal to Sup = [1, 2, 3, 4, 5, 6]), we have observed in the
numerical examples that it would be beneficial if we first
determine the union of all found supersets for optimal sets
with violation of SCS, and then explore all its unexplored full
row rank subsets as mentioned before. Consequently we avoid
constructing too many repetitive subsets. On the other hand, if
the cardinality of the obtained superset is considerably large
with respect to each of such sets, meaning that the sets with
SCS violation do not share many constraints, it can happen
that considering the sets with SCS violation individually
results in less computational complexity. The approximate
number of LPs that should be solved in each case can be
computed first in order to help choosing the best strategy.
Note that using the superset, the maximum number of
C(r, 1) +C(r, 2) + · · ·+C(r, nz) LPs should be solved while
the number of required LPs considering each set separately is
approximately ns × [C(ra, 1) + C(ra, 2) + · · · + C(ra, nz)],
where C(r, k) denotes the combination of k elements out of r
and r, nz , ns and ra are the cardinality of the superset, number
of control variables, number of sets with SCS violation and the
average cardinality of all sets with SCS violation, respectively.

The following theorem shows that it is not required to
consider the optimal active sets for which LICQ is violated
in the downward exploration of the combinatorial tree.

Theorem 5
If a superset Al of an optimal active set Aj for which LICQ
is violated, is also optimal, then the SCS condition is violated
for the optimal active set Aj .

Theorem 5 guarantees the enumeration of all sets which
have similar characteristics to Al while dealing with their
subsets which are optimal with violation in SCS condition.
Hence it preserves us from solving the optimization problem
(6) for candidate active sets which can arise from exploring
the supersets of optimal sets with LICQ violation if it is not
needed. Before proceeding further, we state the following
lemma which gives us required tools for proving Theorem 5.

Lemma 1.
If the LICQ condition fails for the optimal active set Ai in a
full-dimensional critical region, then all its subsets Aj ⊂ Ai
with GAj having full row rank, are optimal active sets with
violation of the SCS condition.

Proof: Assume the full-dimensional critical region CRi
with corresponding optimal set Ai = [i1, . . . , ik−1, ik] and the
Lagrange multipliers {λ1, . . . , λk} for which LICQ is violated.
Moreover, assume that Aj = [i1, . . . , ik−1] is one of its full
row rank subsets. This means that the kth row of matrix GAi



can be written as GAi,k = c1G
Ai,1+. . .+ck−1G

Ai,k−1 where
GAi,j represents the jth row of matrix GAi . Let x0 be a
point in the interior of CRi. Since Ai is optimal at x0, we
have the optimality condition as Hz∗ + (GAi,1)

T
λ1 + . . . +

(GAi,k−1)
T
λk−1 + (GAi,k)

T
λk. Using the equality GAi,k =

c1G
Ai,1 + . . . + ck−1G

Ai,k−1 we can rewrite the optimality
condition as Hz∗ + (GAi,1)

T
λ1 + . . . + (GAi,k−1)

T
λk−1 +

(c1G
Ai,1 + . . .+ ck−1G

Ai,k−1)
T
λk = Hz∗+(GAi,1)

T
(λ1+

c1λ
k) + . . .+ (GAi,k−1)

T
(λk−1 + ck−1λ

k). This means that
Aj = [i1, . . . , ik−1] is also optimal active set at x0 with
λ
l

= λl + clλ
k,∀l ∈ {1, . . . , k − 1} and the slack variable

corresponding to the kth constraint is equal to zero (sk = 0).
Hence Aj = [i1, . . . , ik−1] is an optimal set for which SCS
does not hold. �

Regarding Lemma 1 it is worth noting that an optimal active
set for which LICQ is violated can have a full-dimensional
critical region as pointed out in [1]. Such CRs can be obtained
by a projection algorithm [See Appendix for more details]. The
following example gives an illustration for these cases.

Example 2 (LICQ violation in a full-dimensional CR):
Consider the following mpQP,

V ∗N (x) = min
z

1

2
zT z (7a)

s.t. G =


1 0 −1 0.5
−1 0 −1 0.5
0 1 −1 0.5
0 −1 −1 0.5

 z ≤


1 0
−1 0
0 −1
0 1

x+


−1
−1
−1
−1


(7b)

and −2 ≤ xi ≤ 2; i = 1, 2, 3, 4

where nz = 4 indicates that up to 4 different constraints can
appear in the optimal active sets with full-dimensional CRs.
Fig. 5a shows the critical region corresponding to the optimal
set A = {1, 2, 3, 4} which is obtained by projection. Based
on Lemma 1, we expect that any arbitrarily chosen subset of
A with 3 constraints should be degenerate in the sense of
SCS violation. The simulation results meet this expectation
and confirm that for all optimal sets A1 = [1, 2, 3], A2 =
[1, 2, 4], A3 = [1, 3, 4] and A4 = [2, 3, 4] SCS condition is
violated while their corresponding CRs are full-dimensional
as shown in Fig. 5b.

Lemma 1 proves that an optimal set with violation of
LICQ condition (Aj), built by adding one feasible constraint
to an optimal set for which both LICQ and SCS hold, should
be lower-dimensional. The low-dimensionality of Aj is then
used in the proof of Theorem 5 as follows:

Proof (Theorem 5): Assume that Ai = [i1, . . . , ik] is an
optimal active set with a full-dimensional critical region CRi
where both LICQ and SCS conditions hold. Further assume
that its superset Aj = [i1, . . . , ik, ik+1] is an optimal active
set with violation of the LICQ condition. By Lemma 1 it is
clear that the corresponding critical region CRj cannot be full-
dimensional since otherwise, SCS condition should fail for Ai.
Then if Al = [i1, . . . , ik+1, ik+2] which is built by adding the
feasible constraint ik+2 to Aj is also optimal with CRl, two

(a) a full-dimensional critical region corresponding to an optimal set with
LICQ violation

(b) Optimal sets with violation of SCS condtion

Fig. 5: Optimal sets and their corresponding CRs for Example
2

different situations may happen. i) CRl is low-dimensional:
This means that two low-dimensional critical region CRj and
CRl are neighbouring. Therefore they must overlap. Hence
ik+2 is weakly inactive for Aj . ii) CRl is full-dimensional:
This means that CRi and CRl are two full-dimensional CRs
which are adjacent. Therefore they lie in the Categ.II and the
SCS condition fails on their common facet (with Aj) as a
result of Theorem 4. �

Based on the above theories, the downward-upward algo-
rithm can be summarized as in Algorithm 1.

IV. SIMULATION RESULTS

In this section, the simulation results of the combinatorial
approach using the suggested method in Algorithm 1 for three
different cases are shown and compared with other methods
implemented in MPT3 .

Case 1: As the first case, we consider the fuel cell breathing
control system with 8 state variables and 1 input and discretize
it with Td = 1 sec. This case does not have optimal sets
in which SCS fails. However, the condition in Theorem 3-a
occurs in the fuel cell system with N = 6 in which m̃ = 3 and
Ai = [3, 11, 13] and Aj = [11, 13, 16] are the optimal sets in
two full-dimensional adjacent CRs and AF = [3, 11, 13, 16] is
the optimal set on their common facet with the violation of the
LICQ condition as |AF | > m̃. Algorithm 1 is implemented
in MATLAB using GLPK, intended for solving large-scale
linear programmings, as the LP solver. The simulation results
using this routine and the algorithm in [10], implemented in



Algorithm 1 Downward-upward exploration strategy of the
combinatorial tree

Phase I (Initialization):
1) i = 1, Explore the entire level-1, use (6) to check

the optimality of each constraint. For each optimal
constraint with violation of the SCS condition, create
its superset including the active and all weakly inactive
constraints and store it in “SCS Set”. If the constraint
is not optimal, use (6) without optimality conditions
to check the feasibility of that constraint. Store all
optimal constraints for which the SCS condition holds
in “Optimal Set” and all feasible constraints, whether
they are optimal or not, in “Feasible Set”;
x if no constraint is found to be optimal without vio-

lation of SCS condition in 1), then:
x while Optimal Set is empty, explore the entire

level-(i+ 1), check only for optimality of the
generated combinations. For each found opti-
mal set with violation in SCS condition, cre-
ate its superset including all active and weak-
ly inactive constraints and store them in SCS
Set;

x i := i+ 1;
Phase II (Recursive Exploration):

2) (Downward Exploration) Construct level-(i + 1) by
adding one feasible constraint from level-1 to all sets
in Optimal Set which are found in level-i and check
only for the optimality of new combinations whether
LICQ holds for them or not. For each optimal active
set which is found during this step:
x if both LICQ and SCS hold (Theorem 2)

compute control law and critical region, and add
the combination to Optimal Set;

x elseif SCS fails (Theorem 4)
compute the superset including all active and wea-
kly inactive constraints, and add it to SCS Set;

x elseif LICQ fails (Theorem 3-a and Theorem 5)
add it to LICQ Set to check its subsets with one
element less to find possibly missed CRs as in
Theorem 3-a;

i := i+ 1;
x if i < m̃ = min{m, q} then go to 2), else go 3);

3) (Upward Exploration) For all optimal active sets which
are added to Optimal Set or LICQ Set, check the
optimality of all its subsets with one element less that
have not been enumerated yet. Store all newly found
optimal sets in “New Set”;

4) For each optimal set Ai ∈ New Set:
New Set := New Set \Ai
x if both LICQ and SCS hold (Theorem 2)

add Ai to Optimal Set and compute the correspo-
nding critical region and control law, check the
optimality of all its subsets with one element less
and supersets with one element more that have
not been enumerated yet (joint upward and down-
ward exploration of the tree for a newly found
non-degenerate optimal set). Add all found optimal

sets to New Set;
x elseif SCS fails (Theorem 4)

compute the superset including all active and weakly
inactive constraints and add it to SCS Set;

x esleif LICQ fails (Theorem 3-a and Theorem 5)
add it to LICQ Set and explore only its subsets with
one element less and check for the optimality, add all
found optimal sets to New Set;
x if New Set is empty then go to 5), else go to 4);

Phase III (Handling Cases with SCS Violation):
5) Compute the union of all sets in SCS Set. Explore all

its full row rank subsets with cardinality less than or
equal to m̃ if it is not enumerated yet;
x add all newly found optimal active set for which

SCS holds to Optimal Set and go to 4);
x if no new set for which SCS holds is found,

stop

MPT3, on a 3.2 GHz core i5 CPU running MATLAB 2014a
are shown in Table I, where N , nCR, nLP and SF represent
the prediction (and control) horizon, number of found CRs,
number of solved LPs and the speedup factor defined as the
ratio of the computational time using algorithm in [10] to the
computational time using the suggested algorithm here. It can
be seen that as the prediction horizon increases, the speedup
factor increases dramatically which indicates the superiority
of the suggested algorithm for systems with a large number
of constraints.

Case 2: As an example for cases with violation of SCS
condition, we augmented example 1 from [20] by adding
random matrices to G, S and W such that the number of
inputs and the number of constraints are increased in the
problem. Table II shows the comparison for four different
randomly augmented examples for which SCS condition fails
for some of the combinations of active constraints. Here
nz , q, nCR, nLP , tcomp and SF represent the number of
control variables, number of constraints, number of found
CRs, number of solved LPs, computational time required by
different algorithms and speedup factor, respectively. It can be
seen that the suggested algorithm has a significant reduction

TABLE I: Comparison between different algorithms for fuel
cell breathing system

Method N nCR nLP tcomp[s] SF
Alg. 1 3 71 574 2.7608
Alg. 2 71 287 2.0150 0.7298
Alg. 1 4 133 1551 5.9922
Alg. 2 133 1701 5.0730 0.8466
Alg. 1 5 191 2653 9.4219
Alg. 2 191 6001 11.4970 1.2202
Alg. 1 6 241 3888 13.2536
Alg. 2 241 18561 29.5160 2.2270
Alg. 1 7 279 4622 16.3629
Alg. 2 279 47017 69.8420 4.2683
Alg. 1 8 307 5840 19.6120
Alg. 2 307 149319 230.5860 11.7574

Alg.1: Algorithm suggested here
Alg.2: Algorithm by Gupta et al.



TABLE II: Comparison between different algorithms for the
system with violation in the SCS condition

Method nz q nCR nLP tcomp[s] SF
Alg. 1 4 34 263 2.0614
Alg. 2 10 34 452 0.8500 0.4123
Alg. 1 6 54 925 3.7631
Alg. 2 20 54 14376 16.6200 4.4165
Alg. 1 8 70 1763 7.3106
Alg. 2 30 70 223211 423.8800 57.9815
Alg. 1 10 79 2835 9.6660
Alg. 2 40 - 6439332* 5h* -

* Matlab ran out of memory in the ninth-level, after approximately 5 hours
of execution and solving 6439332 LPs.
Alg.1: Algorithm suggested here
Alg.2: Algorithm by Gupta et al.

TABLE III: Comparison between different algorithms for the
system in (8)

Method N nx nCR tenum[s] ttot[s]
mpt solvemp 4 4 19 0.6460

mpt enum plcp 19 1.7340
mpt enumpqp 19 0.6026 1.0170

suggested method 19 0.3523 0.7404
mpt solvemp 4 10 23 5.0120

mpt enum plcp 22 3.1640
mpt enumpqp 27 0.8254 1.6530

suggested method 27 0.5346 1.5370
mpt solvemp 10 4 21 0.7600

mpt enum plcp 12 201.1730
mpt enumpqp 21 788.1386 788.5990

suggested method 21 0.8911 1.3498
mpt solvemp 10 10 499 67.8480

mpt enum plcp 45 3235.0
mpt enumpqp 536 8h* -

suggested method 537 39.6771 72.8494

* Matlab ran out of memory in the ninth-level, after approximately 8 hours
of execution.

of computational time in comparison with the algorithm in
[10] for the combinatorial approach and as the the number of
control variables and the number of constraints increase, the
superiority of the suggested algorithm becomes significantly
noticeable.

Case 3: In the following, we show how Algorithm 1
compares to other methods for solving mpQP implemented
in MPT3, i.e. the geometric approach using the function mpt-
solve, the enumeration based method of [10] using function
mpt-enumpqp and the enumeration based partial complemen-
tarity problem using function mpt-enum-plcp. The simulations
are performed by considering the example in [13], i.e. a mpQP
constructed from the typical MPC setup of the form

min
u0,··· ,uN−1

xTNPxN +

N−1∑
k=0

xTkQxk + uTkRuk (8a)

s.t. xk+1 = Axk +Buk (8b)
x ∈ X , u ∈ U (8c)

with x ∈ Rnx , u ∈ R, P = Q = Inx , R = 1, X =
{x| − 10 ≤ xi ≤ 10, i = 1, · · · , nx}, U = {−1 ≤ u ≤ 1}.
The prediction model (8b) is obtained by discretizing the
model 1/(s+ 1)nx with sampling time of 1 second and then

converting the discretized model to a state-space form. The
number of optimization variables depends on the control
horizon N . Different values for nx and N are considered
in simulations in order to assess the performance of various
parametric solvers for varying dimension of the parameter
space and optimization variables. Simulation results are
summarized in Table III, where tenum and ttot indicate the
required time for enumerating all optimal active sets and
the total time needed for enumerating all optimal active
sets and creating their corresponding CRs. It can be seen
that for low dimensional parameter spaces, the geometric
approach succeeds to find all critical regions with a small
computational time, which indicates its priority for such
cases. The computational time of the suggested method in
these cases, however, is not far from the computational time
for geometric approaches, specially when building the critical
regions is not of interest, e.g. in region-free explicit model
predictive control. It can be seen that for cases having a
higher number of parameters, the enumeration based methods
show better performance in finding all CRs. While the method
by [10] does not scale well with increasing control horizon
in terms of the computational time, the suggested method is
able to find the complete solution in a considerably shorter
time.

V. CONCLUSION
In this paper, a new enumeration-based method for solving

the mpQP problems was suggested based on exploiting
the properties of full-dimensional adjacent critical regions.
By excluding a large number of feasible but not optimal
combinations of active constraints from the combinatorial
tree, the computational time decreases dramatically while all
critical regions in both non-degenerate and degenerate cases
are guaranteed to be found. Furthermore, its enumerative
nature makes it a suitable method for region-free explicit
model predictive control purposes. Simulation results confirm
the efficiency and priority of the suggested method for
problems with a large number of parameters and constraints.

APPENDIX
CRITICAL REGION OF AN OPTIMAL ACTIVE SET WITH
VIOLATION OF LINEAR INDEPENDENT CONSTRAINTS

QUALIFICATION

Consider the multi-parametric quadratic program in (1) and
the optimal active set A such that the rows of GA are linearly
dependent. Since GAH−1(GA)T is not invertible due to rank
deficiency, the KKT conditions in (3) do not lead directly to
(5a) and (5b), but only to a polyhedron expressed in the (λ, x)-
space which can be lower-dimensional or full-dimensional. In
the sequel, the conditions under which the critical region is
forced to be lower-dimensional is investigated.
The optimality condition in (3a) yields z = −H−1(GA)Tλ.
Inserting this to (3b), we will have the following equality
which must hold for the optimal set A:

−GAH−1(GA)Tλ− SAx−WA = 0 (9)



Fig. 6: Full-dimensional critical region of an optimal active
set with LICQ violation

Denoting −GAH−1(GA)Tλ = UΣV T , using singular value
decomposition, where U and V are unitary matrices and Σ is
a rectangular diagonal matrix with non-negative real numbers
on the diagonal, we can rewrite (9) as:

UΣV Tλ = SAx+WA (10)

Since U is unitary matrix and hence invertible, (10) reads:

ΣV Tλ = U−1SAx+ U−1WA (11)

For a rank deficient matrix, Σ has p zero rows where p is
difference between number of rows in −GAH−1(GA)T and
its row rank. For simplicity, assume that p = 1. This means Σ
has one zero row, and the same holds for ΣV T , i.e., ΣV T =[
Σ̃
0

]
. Using this, we can rewrite the equality constraints of

(11) as follows:

Σ̃λ = S1x+W1 (12a)
0 = S2x+W2 (12b)

Where
[
S1

S2

]
= U−1SA and

[
W1

W2

]
= U−1WA.

Regarding (12b), different cases may happen:
• If S2 6= 0, the critical region of optimal set A will be

lower-dimensional since (12b) imposes a restriction on
the values of state variables.

• If S2 = 0 and W2 = 0, (12b) evidently holds. Therefore,
the critical region can be full-dimensional as there is
no restriction on the values of state variables. This
full-dimensional critical region can be obtained by a
projection algorithm [21] which projects the polyhedron
expressed in the (λ, x)-space, resulted from KKT condi-
tions, onto the state space.

• The case S2 = 0 and W2 6= 0 leads to infeasibility
and thus to a contradiction since A is assumed to be a
feasible active set.

(a) State space partitions

(b) Lower-dimensional critical region for optimal set A = [1, 2, 3, 4]

Fig. 7: Optimal sets and their corresponding CRs for Example
2 with altered S matrix

Consider for illustration Example 2 and the optimal active
set A = [1, 2, 3, 4] for which GAH−1(GA)T is rank defi-
cient. For this case, we have S2 = 0. Hence (12b) yields

0 =
[
0 0

] [x1
x2

]
+ 0 which does not impose any restriction

on state variables. Therefore, the corresponding critical region
can be full-dimensional. Fig. 6 shows this CR, obtained by
firstly computing its representation in (λ, x)-space and then
projecting it on x-space using the command projection of
MPT3.

Let us now change the last row of matrix S in Example

2 to
[
1 1

]
. From (12b) we have 0 =

[
0.5 0

] [x1
x2

]
+ 0.

This enforces x1 to be zero over the entire critical region of
optimal set A. Therefore, this CR is lower-dimensional (as x1
is constant). Fig. 7a depicts the critical regions of the this new
problem, and Fig. 7b shows the CR for A = [1, 2, 3, 4] which
is obtained by projection.

Besides, the latter case can be considered as another
example for the critical regions in Categ II and the associated



Theorem 4. Based on the definition of Categ II, the
adjacent critical regions with optimal sets A = [1, 3, 4] and
A = [1, 2, 3] lie in Categ II. The same holds for the critical
regions with optimal sets A = [1, 3, 4] and A = [1, 2, 4].
Hence, we expect to have SCS violation on the common facets
of these CRs due to Theorem 4. Results from solving LP in (6)
for A = [2, 3, 4] is consistent with this expectation as it yield
s1 = 0. This implies that constraint {1} is weakly inactive
on the entire critical region of A = [2, 3, 4] which exactly
overlaps the critical region of A = [1, 2, 3, 4] shown in Fig. 7b.

ACKNOWLEDGMENT

The authors would like to thank the contribution of the Peo-
ple Programme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement no 607957 (TEMPO), and the Research
Council of Norway, Statoil, DNV GL and Sintef through the
Centers of Excellence funding scheme, Grant 223254 - Centre
for Autonomous Marine Operations and Systems (AMOS) for
the financial support.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[2] A. Alessio and A. Bemporad, “A survey on explicit model predictive
control,” in Nonlinear model predictive control. Springer, 2009, pp.
345–369.

[3] E. Pistikopoulos, “Perspectives in multiparametric programming and
explicit model predictive control,” AIChE journal, vol. 55, no. 8, pp.
1918–1925, 2009.
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Automatik, Physikstraße 3, CH-8092, Switzerland, 2002.

[5] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit mpc solutions,”
Automatica, vol. 39, no. 3, pp. 489–497, 2003.

[6] ——, “Further results on multiparametric quadratic programming,” in
Proc. 42nd IEEE Conf. on Decision and Control, vol. 3. Citeseer,
2003, pp. 3173–3178.

[7] M. M. Seron, G. C. Goodwin, and J. A. Doná, “Characterisation of
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