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Abstract—This paper presents an efficient real-time implemen-
tation of embedded model predictive control, adopted in the con-
text of active vibration control with the objective of minimizing
the tip deflection of lightly damped cantilever beams. In particu-
lar, we focus on memory and time-efficient explicit solutions to
the associated constrained optimal control problem that are easily
implementable on low-end embedded hardware. To this end, we
exploit the concept of convex lifting and show how it can be used
to devise low-complexity, regionless piecewise affine controllers
without any loss of optimality and performance. Efficiency of this
constructive procedure is quantified via an extensive complexity
analysis, evidenced by a successful practical deployment and opti-
mal vibration control performance using a family of 32-bit ARM
Cortex-M based microcontroller platforms.

Index Terms—Model predictive control, explicit solutions, em-
bedded systems, vibration control, convex lifting.

I. INTRODUCTION

MODEL predictive control (MPC) has brought a tremen-
dous improvement to the quality of many industrial ap-

plications [1]. Since its early conception, MPC was adopted in 
petrochemical plants for its inherent ability to handle process 
constraints and its increased control performance. The relative- 
ly slow processes in the chemical industry as well as the lack 
of need to miniaturize and aggressively cost-optimize com- 
puting hardware were initially concealing the main drawback 
of predictive control methodology—its demand for computing 
resources. The utilization of advanced optimal control schemes 
was therefore at first limited to systems with slow dynamics, 
powerful computing implementations, or both. 

 Since then, the evolution of control theory and applied auto- 
mation has not stopped; besides the constantly dropping price 
of hardware and increased performance, new computationally 
efficient MPC methods have been devised. Thanks to the com- 
bination of these factors, new application areas are emerging. 
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Applications involving fast dynamics, like mechanical systems
with active vibration control (AVC)—the main interest of this
article—are now within the realm of practical implementation
possibilities.

There have been a plethora of academic works using various
adaptations of the predictive control algorithm for vibration at-
tenuation. However, with a few exceptions [2]–[4], these works
are restricted to computing hardware that is feasible only in a
laboratory setting due to its size and weight [5]. Whether one
may use MPC for fast systems like active vibration control in
consumer-level products, depends on an often overlooked but
essential practical factor: hardware price.

Embedded single-chip systems, also known as microcontrol-
ler units (MCU), can offer only a small fraction of execution
performance or memory compared to their laboratory or indus-
trial counterparts, but they may be mass-produced and built-
into miniaturized devices for very little money. Microcontroller
families and architectures that were once part of bulky personal
computers that were being slowly forgotten are now making
a comeback in miniaturized versions, partly due to their low
price [6].

This is where the efficiency-boosting achievements of con-
trol theory in the field of MPC come to the foreground: these
developments allow one to implement better control methods
with less resources. Because of the improvements in algorithm
efficiency, model predictive control can now be implemented
on embedded hardware such as MCUs [7], [8], programmable
logic controllers (PLC) [9]–[11], or field programmable gate
arrays (FPGA) [4], [12], [13], etc. Efficiency improvements in
nominal or deterministic MPC can be divided into two main
categories [14]. To the first belong online MPC algorithms that
attempt to minimize the real-time computational requirements
by a context-oriented reformulation of the optimization prob-
lem, or by the use of advanced, often hardware-targeted opti-
mization solvers [15]–[17]; sometimes referred to as implicit
MPC. The other group consists of a family of methods known
as explicit MPC (EMPC), which essentially turn the real-time
optimization problem into a simple table-lookup procedure by
precomputing its optimal solution [18], [19].

Computationally efficient developments in implicit MPC at-
tempt to minimize the online execution requirements, so that
simpler control hardware is sufficient. These methods still re-
quire a considerable computing power, however, are usually
not memory-intensive. The explicit approach is quite different;
it trades execution speed for memory footprint. EMPC may be
executed with very little computing effort, but it is known for
its memory complexity that grows exponentially with the pre-
diction horizon [20], which may quickly make the hardware
deployment or the online evaluation intractable.
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In this paper, we resort to the explicit approach to solving
the MPC problem, since it inherently comes with several con-
venient features from the real-time applications’ perspective.
In particular, unlike its implicit counterpart, the structure and
properties of the explicit solution allow for a straightforward
implementation in a division-free fashion, and moreover pro-
vide a tool for exact worst-case certification of the implemen-
tation and closed-loop analysis [21]. We look at a particular
possibility to dramatically decrease both the memory and run-
time complexity of the EMPC code, so that it can be imple-
mented in low-cost embedded microcontrollers. Our work is
focused on a particular class of systems with fast dynamics—
the aforementioned problem of active vibration control. Nowa-
days, experimental AVC systems start to leave laboratories and
appear in consumer products, like active car suspensions [22]
or even miniaturized medical devices to reduce hand tremor
in the sufferers of Parkinson’s disease [23]. Vibration control
systems are this way getting smaller and thus require tiny and
cheap microcontrollers that have limited power consumption.
There is indeed no good reason why these devices and pro-
ducts should not benefit from advanced control algorithms, but
are current embedded devices up to the task?

Of course, embedded model predictive control has been ap-
plied to AVC systems before. Possibly the first work of its kind
used implicit approaches and machine level code optimization
on digital signal processors (DSP) [3]. While therein achieved
sampling speeds measured in tens of kilohertz were remark-
able, high-end DSP hardware still remains prohibitively expen-
sive for low-cost mass-produced applications. Many have sug-
gested explicit MPC as the ideal formulation for cheap embed-
ded hardware [9], [24]. Former trials with EMPC for vibration
attenuation evaluated memory needs and algorithm timing, al-
beit on powerful hardware that is suitable only for laboratory
tests [5], [25]. Explicit MPC without efficiency modifications
was recently applied to AVC via embedded hardware, showing
the limits of hardware and software on high-end microcontrol-
lers [26]. Thanks to the underlying formulation of EMPC, exe-
cution speed does not create any prohibitive issues in embed-
ded MCU, but the available volatile and non-volatile memory
of a microcontroller does affect its class and therefore its cost.
In an ideal case, microcontrollers closer to what is today con-
sidered as average should be capable of running model predic-
tive vibration control. Nevertheless, contemporary mid-range
MCUs are simply not sufficient for vibration attenuation based
on explicit MPC [26].

To this end we introduce an efficient methodology to trans-
form the nominal, memory-intensive EMPC into an equivalent
formulation that enables to meet the strict requirements im-
posed by technical specifications of low-end embedded control
hardware, with no implications in loss of optimality or closed-
loop stability. To this end, we exploit the concept of convex
lifting, recently adopted in [27]–[29] in the context of control
design, and show that it can be used to devise regionless yet
fully optimal EMPC controllers implementable in embedded
AVC applications with fast sampling speeds. Compared with
the former study [26], we aim at EMPC solutions with guaran-
teed stability—that render much smaller domains of attraction
and hence need longer prediction horizons [30]. The resulting

algorithm will be implemented in a range of 32-bit embedded
microcontrollers, to provide an overview of its memory foot-
print and execution timing. This embedded AVC system will
be used to minimize the tip deflections of an aluminum canti-
lever beam, by supplying the input decisions of the proposed
control algorithm to the piezoceramic actuators in the form of
a driving voltage, while gaining its feedback from the position
measurements. The purpose of the active cantilever beam fea-
tured here is via release tests to emulate the dynamic behavior
of a class of flexible mechanical structures under transient ex-
ternal disturbances [31].

Note that there are several well-known control algorithms
routinely used in AVC, the standard one being the positive po-
sition feedback (PPF) controller [32], which is, however, not
in the scope of this study. The use of PPF along with nominal
EMPC for AVC can be found in our previous work [26].

The rest of the paper is structured as follows. After introduc-
ing the system model, Section II recalls the concept of explicit
model predictive control and presents two convex lifting based
methods for efficient embedded hardware implementation of
MPC in active vibration control, followed by a detailed memo-
ry and runtime complexity analysis. Section III describes the
laboratory setup and the experimental deployment of the auto-
generated code on a class of 32-bit ARM Cortex-M microcon-
troller units. Finally, vibration damping performance, memory
and timing properties of the proposed algorithms are discussed
in Section IV.

Notation

We denote by R, Rn, Rn×m, N and by N+ the sets of real
numbers, n-dimensional real vectors, n×m dimensional real
matrices, non-negative and positive integers, respectively. For
a vector-valued function f :Rn→Rm, dom(f) denotes its do-
main. Given an arbitrary set S, conv(S) and dim(S) denote
its convex hull and the dimension of its affine hull. Moreover,
if S is full-dimensional, int(S) denotes its interior. Given a
set S ⊆ Rn and a subspace S of Rn, ProjS S denotes the or-
thogonal projection of S on the space S. Given two sets S1, S2,
we define the following set: S1\S2 := {x | x∈S1,x /∈S2}. In
addition, a finite index set of N ∈N+ elements will be denoted
as IN := {1, . . . , N}, and its cardinality by |IN |.

II. CONTROLLER DESIGN

A. Modeling

The mechanical behavior of a given physical object mainly
depends on its modal properties and energy dissipation, known
as damping. There are infinitely many resonance frequencies
and modes for every real-life object, however, it is sufficient to
include the principal ones in a mathematical representation to
achieve a good match with the measured behavior [22], [33].
The dynamic response of a flexible cantilever beam is clearly
dominated by its first resonant frequency and its corresponding
mode of vibration [5], [34]. Thus, in order to enable the real-
time tractability of model predictive control on an embedded
system, we chose to represent a beam driven by piezoceramics
by a simplified nominal dynamic model—an equivalent single
degree of freedom (SDOF) linearly driven mass-spring-damp-
er unit.



GULAN et al.: EFFICIENT EMBEDDED MODEL PREDICTIVE VIBRATION CONTROL VIA CONVEX LIFTING 3

By assuming a viscous damping model, the system equiva-
lent in its response can be described by a second order linear
differential equation as q̈(t)+2ζωq̇(t)+ω2q(t) = cu(t), where
q(t) [m] is the position of the free end of the beam, ω [rad s−1]
is the first natural resonance frequency and ζ [-] is the unitless
damping ratio [33]. The change of the voltage u(t) to driving
force is linear in the piezoceramic actuators, and the constant
c [N V−1 kg−1] represents this conversion ratio. Choosing posi-
tion and velocity for the state vector x(t), we may express the
continuous-time state-space representation of the beam as

ẋ(t) =

[
0 1
−ω2 −2ζω

]
x(t) +

[
0
c

]
u(t), (1)

with the state-transition and input matrix, A ∈ R2×2 and B ∈
R2×1, given as above, while assuming only the measurement
of position gives the output matrix as C =

[
1 0

]
. The driven

beam was identified using a pseudo-random binary excitation
signal, supplied to the actuating elements for a period of 100 s.
Using a grey-box prediction error method system identification
procedure, the unknown parameters for the laboratory system
that is further described in Section III were determined as ω =
50.89 rad s−1 (8.10 Hz), ζ = 0.005 and c = 5.91 N kV−1 kg−1.

We remark that the assumption that the beam dynamics may
be represented by an SDOF model is, apart from providing sa-
tisfactory results, an essential premise to this work, as it is un-
likely that complex prediction models are able to preserve real-
time implementation feasibility on simple microcontrollers [5].
Although by using embedded computing devices with gener-
ous memory capacities one may be able to utilize EMPC for
the vibration control of up to 2–3 resonant modes or multi-in-
put multi-output systems, it is unreasonable to expect a com-
plex electromechanical model derived e.g. by a finite element
analysis to be viable on current hardware.

Before proceeding, let us emphasize that the following the-
oretical developments are valid for the class of linear systems,
however, in the sequel we will specifically focus on the active
vibration control problem which is central to this study.

B. Explicit model predictive control

Let us assume control of linear discrete-time systems in the
state-space form, given as

x(t+ 1) = Adx(t) + Bdu(t), (2)

where t denotes multiplies of the sampling period Ts, and the
pair (Ad,Bd) is stabilizable. In the presence of input (and/or
state) constraints, we may formulate the following constrained
finite-time optimal control problem:

min
U

N−1∑
k=0

{
xT
kQxk + uT

kRuk

}
+ xT

NPxN (3a)

s.t. xk+1 = Adxk + Bduk, k = 0, . . . , N − 1, (3b)
uk ∈ U , xk ∈ X , k = 0, . . . , N − 1, (3c)
xN ∈ C∞, (3d)

where xk and uk denote, respectively, state and control input
predictions over a finite horizon N ∈ N at time instant t+ k,
initialized by the current state, i.e. x0 = x(t), and subject to
polytopic constraints given by X ⊆ Rnx and U⊆ Rnu . Within

the quadratic objective (3a), the stage costs are weighted with
Q � 0, R � 0, while the terminal penalty uses P � 0 usually
determined as a solution of the discrete-time algebraic Riccati
equation (DARE) for the unconstrained problem (3a). Refor-
mulating (3) into a quadratic program (QP) and solving it for
a feasible initial state x0 yields a sequence of optimal control
moves U? =

[
u?T
0 , . . . ,u

?T
N−1

]T∈RNnu . The receding horizon
MPC feedback thus becomes u?

0, which is actually implemen-
ted to the controlled system, and the procedure is repeated at
the next sampling instant for a new value of the state. In addi-
tion, persistent feasibility and stability may be guaranteed by
employing a maximal control invariant set C∞ [35] as terminal
constraint set in (3d).

Note also that for ease of presentation and without loss of
generality we will in further developments assume single-input
systems, such as the vibration system (1).

In view of practical implementation aspects discussed in the
introductory section, let us focus on the explicit representation
of the optimizer to the MPC problem (3), u?0, rather than its
considerably more expensive computation in the implicit fash-
ion outlined above. As shown e.g. in [18], this can be achieved
by recasting and solving (3) as a parametric QP (pQP) using
the technique of parametric programming, which allows us to
precompute the MPC control law U?(x) for all feasible values
of parameter x, explicitly, as a continuous and piecewise affine
(PWA) function. In the receding horizon implementation, the
closed-loop explicit MPC feedback has the following form:

u?0(x) = κ(x) :=


fT1 x + g1 if x ∈ R1,

...
fTRx + gR if x ∈ RR.

(4)

A polyhedron denotes the intersection of a finite set of closed
halfspaces. The collection of the polyhedral regions Ri in (4),
{Ri}Ri=1, is referred to as a partition of the set of feasible pa-
rameters; a formal definition is given in next subsection. The
online implementation effort thus reduces to a simple function
evaluation, as per (4), where the most time is spent on the point
location, i.e. determining which polyhedral region Ri = {x ∈
Rnx | Hix ≤ hi}, Hi ∈ Rni

h×nx ,hi ∈ Rni
h , the current state

resides in, by checking its defining inequalities, i.e. halfspaces.
A straightforward way for searching the state-space partition
is the direct sequential region traversal (see Algorithm 1) with
runtime complexity linear in the number of regions. The other
crucial EMPC implementation factor is the amount of memory
needed to store the regions Ri and the optimal PWA feedback
κ(x). Both of the aforementioned complexity indicators are of
a great practical importance, namely in case of deployment on

Algorithm 1 Standard online EMPC implementation via di-
rect sequential search

1: At each sampling instant t, measure or estimate the current
state x0 =x(t). If x0∈R (see Def. 1), proceed to step 2.

2: Among{Ri}Ri=1, search for the i?-th polyhedral regionRi?

that contains x0, i.e. Hi?x0 ≤ hi? .
3: Evaluate the optimal control input as u?0 = fTi?x0 + gi? .
4: Implement u?0 and return to step 1.
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Fig. 1. The explicit MPC vibration controller we aim to implement (N = 50,
κ = 100, κ = −100, R = 5207, |Iuns| = 679, |Imax| = |Imin| = 2264).

embedded control hardware, which has given rise to numerous
techniques over the last decade, focused on reduction of both
memory and runtime complexity of EMPC; see e.g. [36] and
[37] for an overview of recent lower-complexity implementa-
tions and faster point location algorithms, respectively.

The explicit MPC vibration controller for the experimental
system (to be introduced in Section III) described by Eq. (1)
is illustrated in Fig. 1. The PWA feedback law was obtained
assuming the sampling period of 20 ms and the prediction ho-
rizon of 50 steps. The underlying state-space partition {Ri}Ri=1

consists of 5207 regions and is omitted for clarity. More details
on the computation are given in Section III.

C. Efficient embedded EMPC via convex lifting

This section aims to introduce the main algorithmic develop-
ments towards memory and time-efficient embedded vibration
EMPC implementations using the geometric concept of convex
lifting.

With respect to the scope of this paper we restrict ourselves
to the essential theoretical concepts and focus on the controller
synthesis and its practical deployment on embedded control
hardware. A comprehensive overview of theoretical and struc-
tural properties of the convex lifting can be found in [38].

To put forward the algorithmic implementation, let us first
recall some formal and necessary definitions.

Definition 1. A finite collection of R∈N+ full-dimensional
polyhedra Ri⊂Rnx, denoted by{Ri}i∈IR , is called a polyhe-
dral partition of a polyhedron R ⊆ Rnx if:
• R =

⋃
i∈IR Ri,

• int(Ri) ∩ int(Rj) = ∅ with i 6= j, (i, j) ∈ I2R.

Regions (Ri,Rj) are referred to as neighbors if (i, j)∈I2R,
i 6= j and dim(Ri ∩ Rj) = nx − 1. Also, if R is a polytope
(bounded polyhedron), then {Ri}i∈IRis called a polytopic par-
tition. In addition, a cell complex of polyhedron R is defined
as a polyhedral partition whose facet-to-facet property holds,
meaning any pair of neighboring regions share a common facet
[39]. In the context of MPC problem, R constitutes its feasible
set [20]. The definition of a convex lifting is given next.

Definition 2. Given a polyhedral (polytopic) state-space parti-
tion {Ri}i∈IR of a polyhedron (polytope) R ⊆ Rnx , the func-
tion z : R → R with

z(x) := aTi x + bi for x ∈ Ri, (5)

ai ∈ Rnx , bi ∈ R, ∀i ∈ IR, is called a convex piecewise affine
lifting (for brevity henceforth referred to as convex lifting) if
the following conditions hold:
• z(x) is continuous over R,
• for each i ∈ IR, z(x) > aTj x + bj for all x ∈ Ri\Rj

and all j 6= i, j ∈ IR.

We remark that the partition that admits a convex lifting is a
cell complex [28]. The cell complex characterization is indeed
a necessary, but not a sufficient condition for the existence of
a convex lifting; and holds for non-degenerate MPC problems.
In the following, we will suppose the polyhedral/polytopic par-
tition to have the properties of a cell complex. Note that even
a convexly non-liftable partiton may be easily modified into a
liftable one by appropriate hyperplane arrangement [38], [40].

Let us append some useful definitions to be used next [41].

Definition 3. Let κ and κ denote, respectively, the maximum
and minimum values which the PWA function κ(x) = fTi x+
gi, i ∈ IR in (4) attains over its domain R. Denote by Imax

(Imin) the index set of regions where κ(x) is saturated at the
maximum (minimum), i.e. κ(x) = κ (κ(x) = κ) for all x ∈
Ri, i ∈ Imax (i ∈ Imin), and let Isat = Imax∪Imin. A region
Ri with i ∈ Isat is therefore called the saturated region either
at the minimum or at the maximum. Otherwise Ri is called
unsaturated, with the index set denoted by Iuns = IR \ Isat.

Definition 4. Given a continuous PWA function κ(x), defined
over a parameter-space partition {Ri}i∈IR , we call the PWA
function κ̃(x) := f̃Tj x+ g̃j a suitable augmentation of κ(x) if
the following properties hold:
• κ̃(x) is defined over {R̃j}j∈IR̃ such that

⋃
j∈IR̃
R̃j =⋃

i∈IRRi, i.e. dom(κ̃(x)) = dom(κ(x)),
• κ̃(x) = κ(x), ∀x ∈ RIuns ,
• κ̃(x) ≥ κ, ∀x ∈ RImax ,
• κ̃(x) ≤ κ, ∀x ∈ RImin

.

Herein, RI denotes the subset of regions {Ri}i∈IR for some
index set I ⊆ {1, . . . , R}.

Note that the premise of existence of saturated regions does
not hold in general, however, |Iuns| �R is a common case
in most practical MPC setups [36] (see the explicit vibration
controller in Fig. 1 with |Iuns|=679), and we show it can be
efficiently exploited in the proposed controller implementation.
Denoting the vertex set of a polytope P by V(P), let us recall
the algorithmic procedure for construction of a convex lifting
for a given state-space partition [28], herein aiming specifically
at its unsaturated regions. It is summarized in Algorithm 2, and
its outcome are the gains of a convex lifting defined over the
unsaturated regions.

Note that the feasibility of the optimization problem (8) can
serve as a necessary and sufficient condition for the existence
of a convex lifting of a given partition. Since there exist in fact
infinitely many candidates for z(x) belonging to the epigraph
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Algorithm 2 Construction of a convex lifting for unsaturated
regions of a given polytopic partition.
Input: Polytopic partition {Ri}i∈IR , a constant c > 0.
Output: Convex lifting gains (ai, bi), ∀i ∈ Iuns.

1: Find the index set of unsaturated regions Iuns ⊆ IR.
2: Register all pairs of neighboring regions in RIuns .
3: For each pair of neighboring regions (Ri, Rj), (i, j) ∈
I2uns, add:
• continuity conditions ∀v ∈ V(Ri ∩Rj):

aTi v + bi = aTj v + bj ; (6)

• convexity conditions ∀u ∈ V(Ri),u /∈ V(Ri ∩Rj):

aTi u + bi ≥ aTj u + bj + c. (7)

4: Solve the following convex optimization problem by min-
imizing a chosen cost function, e.g.,

min
ai,bi

∑
i∈Iuns

(aTi ai + b2i ) subject to (6)–(7). (8)

to obtain the gains of a convex lifting

zuns(x) := a?i
Tx + b?i = `uns(x), for any x ∈ RIuns .

of z(x), let us exclusively denote the convex lifting z(x) ob-
tained as per Algorithm 2 by `(x), in this case `uns(x), which
is to be exploited by the two efficient EMPC implementation
techniques presented next. Before proceeding, let us therefore
denote the quantities resulting from Section II-C1 and II-C2
by superscripts I and II, respectively.

1) Inverse parametric optimization based implementation:
In the following we recall a recent technique that exploits the
concept of inverse parametric convex programming via convex
liftings [28], [42], [43]. It will be briefly described here since
it had drawn attention to the interesting properties of convex
lifting that ultimately led to the main developments presented
in Section II-C2; and was also shown to be relevant in robust
and explicit MPC design [27], [29].

Inverse parametric convex programming is defined as an in-
verse optimality problem of parametric convex programming
(pCP), which aims to build an alternative optimization problem
characterized by an appropriate constraint set and a cost func-
tion such that its optimal solution coincides with the one of an
original problem. In particular, the goal of inverse parametric
linear/quadratic programming (IpL/QP) is to construct a linear
constraint set and a linear/quadratic cost function such that the
optimal solution of this newly formulated problem is equiva-
lent to a given PWA function defined over a given polyhedral
partition. Construction of such an optimization problem based
on convex lifting was proposed in [28] and provided a novel
perspective on the structural link between linear MPC design
and pCP that can be stated as follows: every continuous PWA
control law can be recovered via a linear optimal control prob-
lem with control horizon at most equal to 2 prediction steps.

Considering e.g. the IpLP problem, a given continuous PWA
function κ(x) defined over a polyhedral partition {Ri}i∈IR is
the image via the orthogonal projection onto Rnu (= R in this

case) of the optimal solution to the parametric LP below [28]:

min
[z u]T

z subject to
[
xT z u

]T ∈ Π[xT z u]T , (9)

where z represents a 1–dimensional auxiliary ‘lifting’ variable,
and the constraint set Π[xT z u]T is obtained as follows:

V[xT z u]T :=

{[
vT `(v) κ(v)

]T
: v ∈

⋃
i∈IR

V(Ri)

}
, (10)

Π[xT z u]T := conv
(
V[xT z u]T

)
, (11)

and can be equivalently expressed as Hxx+Hzz+Huu≤K.
The vertex set V[xT z u]T =V(Π[xT z u]T) is simply composed
of the partition vertices v ∈

⋃
i∈IRV(Ri) appended by corre-

sponding values of convex lifting `(v) and control action κ(v)
in the augmented space Rnx+1+nu , in case of system (1), R4.

Since the solution of the ‘horizon 2’ IpLP (9) exactly reco-
vers the original ‘horizon N ’ pLP/pQP-based EMPC solution,
its structural complexity and hence also online implementation
effort remain the same. Let us therefore recall the extension
proposed recently in [29], aiming at practical EMPC problems
featuring active input constraints, i.e. a large number of satu-
rated regions which typically inhibit the direct convex liftabil-
ity. The so-called extended IpLP procedure is summarized in
Algorithm 3. It starts by finding the lifting `uns(x) to be used
for construction of a polyhedron Πuns

[xT z u]T
in the augmented

space. This is then exploited by keeping only the constraints
(facets of Πuns

[xT z u]T
) which practically contribute to the opti-

mal solution [29], yielding a constraint set Π̃ of the extended
IpLP (12). Its solution consists of ˜̀I(x), κ̃I(x) defined over

Algorithm 3 Extended IpLP with clipping [29]
Input: Saturated continuous PWA function κ(x) defined over
a polytopic partition {Ri}i∈IR of a polytope R ⊂ Rnx .
Output: κ̃I(x), φ(κ̃I(x)), ˜̀I(x), defined over {R̃I

j}j∈IR̃I .
1: Compute the gains of convex lifting `uns(x) corresponding

to a possibly non-convex collection of unsaturated regions
{Ri}i∈Iuns via Algorithm 2.

2: Construct the set Πuns
[xT z u]T

, defined over RIuns , analo-
gously to (10)–(11).

3: Form a new constraint set Π̃ associated with {R̃I
j}j∈IR̃I ,

as described in Algorithm 3.1 in [29].
4: Formulate and solve the extended IpLP problem with the

constraints on x, z, u given by the polyhedron Π̃ to obtain:[
z̃?(x)
ũ?(x)

]
= arg min

[z u]T
z s.t.

[
xT z u

]T ∈ Π̃. (12)

5: Extract the appropriate component of the above optimizer:

ũ?(x) = Proju

[
z̃?(x)
ũ?(x)

]
= κ̃I(x) (13)

to obtain a PWA function κ̃I(x) defined over a rearranged
partition {R̃I

j}j∈IR̃I . The other component, z̃?(x) = ˜̀I(x)
denotes the corresponding convex lifting.

6: Employ a clipping filter φ(·) as per (14) to maintain equiv-
alence between κ̃I(x) and κ(x).
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{R̃I
j}j∈IR̃I —a rearranged partition of R.

The PWA function κ̃I(x) (13) obtained from the extended
IpLP (12) is by Definition 4 a suitable augmentation of κ(x)
(4), i.e. only the portion defined overRIuns

is retrieved exactly.
To establish the equivalence between the two over the entire
feasible domain R = dom(κ(x)), and thus the optimality, we
employ a clipping filter φ(·) adopted from [41] as follows:

κ(x) = φ(κ̃(x)) :=


κ if κ̃(x) ≥ κ,
κ if κ̃(x) ≤ κ,
κ̃(x) otherwise.

(14)

This way κ̃(x) inherits all the performance, closed-loop stabil-
ity and feasibility guarantees of the original EMPC feedback.

We remark that if the EMPC problem yields a partition with
|Iuns|�R, then |Iuns| ≤ R̃I�R tends to hold as well [29].
While in [29] we proposed the traditional EMPC implementa-
tion via point location, yet using the lower-complexity problem
data given by κ̃I(x), {R̃I

j}j∈IR̃I , in the following we show
that it may be performed in a substantially more efficient—
regionless fashion, employing the lifting `uns(x) instead.

2) ‘Pure’ convex lifting based implementation:
Recall that the output of Algorithm 2 are the gains (ai, bi),∀i ∈
Iuns of a convex lifting `uns(x), defined over RIuns

. Now, let
us define the following convex lifting:

˜̀II(x) := max
i∈Iuns

(aTi x + bi) for x ∈ R. (15)

Since ˜̀II(x) = `uns(x) for all x ∈
⋃

i∈Iuns
Ri, let us for ease

of presentation denote the polytopic partition of R associated
with ˜̀II(x) (15) by {R̃II

j }j∈IR̃II , R̃II = |Iuns|. The corre-
sponding PWA control law has the following property [38]:

κ̃II(x) = f̃Tj x + g̃j = fTi x + gi for x ∈ R̃II
j ,

such that i ∈ Iuns, Ri ⊆ R̃II
j . (16)

Denoting ˜̀II(x) as ˜̀II(x) = ãTj x + b̃j for x ∈ R̃II
j , it may be

used within online implementation in the following fashion:

x0 ∈ R̃II
j? ⇔ ãTj?x0 + b̃j? = max

j∈IR̃II

(ãTj x0 + b̃j). (17)

This property enables to easily identify index j? of the j?–th
affine control law to be evaluated at a given x0 ∈ R, without
the need to search for R̃II

j? by traversing {R̃II
j }j∈IR̃II , yielding

a regionless EMPC controller. As in the case of κ̃I(x), optimal-
ity of the PWA feedback κ̃II(x) (possibly discontinuous over
RIsat ) for any x ∈ R can be achieved by taking φ(κ̃II(x)).

We remark that an explicit MPC implementation exploiting
property (17) was proposed in [44], yet employing the optimal
cost function, which for the explicit solutions based on pLP
(only if the optimizer is unique) represents nothing else than
a convex lifting from the geometrical viewpoint. However, in
the pQP case such approach is no longer applicable.

The online (convex) Lifting-based EMPC (LEMPC) imple-
mentation is summarized in Algorithm 4. Note that executing
Step 2 practically amounts to a mere searching for the maxi-
mum among the list {ãTj x0 + b̃j}R̃

II

j=1 by sequential comparing
of its components evaluated at x0. A more illustrative, pseudo-
code implementation can be found in Appendix.

Algorithm 4 Efficient regionless on-line EMPC implementa-
tion using convex lifting and clipping

1: At each sampling instant t, measure or estimate the current
state x0 = x(t). If x0 ∈ R, proceed to step 2.

2: Find index j? ∈ IR̃II such that

j? = arg max
j∈IR̃II

(ãTj x0 + b̃j).

3: Evaluate the optimal control input as per (14), encoded as

u?0 = max
{
κ,min

{
f̃Tj?x0 + g̃j? , κ

}}
.

4: Implement u?0 and return to step 1.

The interested reader is referred to [28], [38] for a compre-
hensive theoretical background on the convex lifting concept.
It is also shown therein that both the constructive and the im-
plementation procedure may be easily generalized for systems
with multiple inputs. An alternative construction of `(x) based
on halfspace representation of {Ri}i∈IR is shown in [38] and
shall be preferred in case of higher-dimensional systems since
it allows to avoid the vertex enumeration. Scalability of both
vertex and halfspace based construction are also shown there.

Note that a component of explicit solution of the extended
IpLP (12) in Section II-C1, the convex lifting ˜̀I(x), can be
also employed to accelerate the online EMPC implementation
using Algorithm 4. However, in contrast to the latter, simplified
procedure relying only on construction of the convex lifting
`uns(x) itself (Algorithm 2), obtaining ˜̀I(x) per Algorithm 3
requires an extra offline effort spent on constructing the con-
straint set Π̃ for the LP (12) and its subsequent explicit solu-
tion, i.e. steps 2–5, which renders this variant from computa-
tional perspective clearly redundant.

3) Complexity analysis:
In terms of complexity, let us first assess the memory footprint
of particular EMPC implementations described above. Taking
the original EMPC controller as a reference, the total memory
consumed by the PWA feedback κ(x) and its underlying par-
tition {Ri}i∈IR , given in general (u∈Rnu) by{Fi,gi,Hi,hi},
is (nx+1)

∑R
i=1(nih+nu) real numbers, where nih is number of

halfspaces defining the i-th region. On the other hand, memory
footprint of the regionless LEMPC controllers (either I or II),
given by {F̃j , g̃j , ãj , b̃j}, amounts to R̃(1 + nu)(nx + 1) +
2nu real numbers, where the second negligible term represents
memory needed to encode {κ, κ} used by the clipping function
φ. Recall that in case of variant II (Sect. II-C2) R̃II = |Iuns|;
while R̃I ≥ |Iuns| in general.

Secondly, let us quantify the necessary online computational
effort. The critical time-consuming task in the standard EMPC
implementation is the point location, i.e. finding the index i of
the region Ri that contains x0, followed by simple evaluation
of the associated i-th affine control law. Performing the direct
sequential search per Algorithm 1 amounts in the worst case to∑R

i=1n
i
h(2nx+1)+2nunx floating point operations (FLOPs).

The regionless LEMPC implementation can solve this problem
in an efficient way exploiting clipping (Algorithm 4), avoiding
the expensive region-based point location. In total, it requires a
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Fig. 2. Illustration of the inverse parametric optimization (N = 2) based EMPC implementation (acc. Section II-C1) for the experimental vibration system.
(a) A convex lifting ˜̀I(x) and the associated state-space partition R̃I (for illustration only). (b) The recovered PWA control law κ̃I(x) in blue, and the result
of clipping φ(κ̃I(x)) at κ = 100 and κ = −100 in orange color (illustration only, cf. Fig. 1); R̃I = 1160.
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Fig. 3. Illustration of the convex lifting based EMPC implementation (acc. Section II-C2) for the experimental vibration system. (a) A convex lifting ˜̀II(x)
and the associated state-space partition R̃II (for illustration only). (b) The associated PWA control law κ̃I(x) in blue, and the result of clipping φ(κ̃I(x)) at
κ = 100 and κ = −100 in orange color (illustration only, cf. Fig. 1); R̃II = |Iuns| = 679.

constant number of 2R̃nx+2nunx+2nu FLOPs (R̃II = |Iuns|),
which implies a significant reduction in runtime complexity;
even if |Iuns|=R was the case, while typically |Iuns| � R�∑R

i=1n
i
h.

Note that none of the terms above consider storing or eval-
uating the full optimizer U? with Nnu elements since only its
first element u?

0 is required for implementation in a receding
horizon fashion. The offline computation times needed to con-
struct ˜̀(x), κ̃(x) are reported in Sect. III-A for completeness.

One may also compare the above LEMPC techniques with
other complexity reduction approaches in EMPC, e.g. with the
clipping-based one in [41] as they both exploit the concept of
clipping. The latter, however, relies on replacing the saturated
regions with extensions of the unsaturated ones, for which the
achievable reduction may range from none (R̃[41] = R) to the
case when the new partition of R has R̃[41] = |Iuns| regions.
Another approach of [36] requires to store only the unsaturated
regions by devising a separating function. Clearly, the family

of these methods still requires storing a modified state-space
partition, and hence performing the traditional point location.
On the contrary, techniques aiming at faster online evaluation
in EMPC usually come at a price of a larger memory footprint
or preprocessing time [37], [45]. Alternatively, a memory-effi-
cient regionless EMPC implementation was proposed recently
in [46], combining the approaches of [47] and [48]. Its nature
renders it applicable for problems with even moderately large
parametric space, however, only very short prediction horizon;
and does not imply reduction in evaluation effort. LEMPC, as
indicated above, enables a significant reduction in both storage
and online computation requirements with a relatively low pre-
processing load. For completeness we remark that study [49]
recently presented a linear machine concept, which is similar
to convex lifting presented in this paper. However, necessary
and sufficient conditions for the existence of a convex lifting
are not available therein, while these are stated in our previous
studies such as [28], [38].
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Fig. 4. Schematic representation of the experimental setup.

The concepts presented in Sections II-C1 and II-C2, adopted
for the experimental vibrating system described by Eq. (1), are
illustrated in Figs. 2 and 3, respectively. In particular, Fig. 3a
visualizes the piecewise affine convex lifting ˜̀II(x) (15) for
all x ∈ R. We recall that the associated state-space partition
{R̃II

j }j∈IR̃II needs not to be constructed, and is depicted for
illustration only. Fig. 3b in blue shows the associated control
law κ̃II(x) (16). From the geometrical point of view, these can
be interpreted as continuous extensions of `uns(x) and κ(x),
∀x∈

⋃
i∈Iuns

Ri, respectively, over the entire feasible domain
R. The number of local control laws and convex lifting terms
of such a regionless EMPC implementation is R̃II = |Iuns| =
679. On the other hand, Figs. 2a and 2b illustrate the convex
lifting ˜̀I(x) and the PWA feedback κ̃I(x), both obtained as
optimal solution of the ‘horizon 2’ extended IpLP (12). These
can be geometrically interpreted as orthogonal projections of
Π̃ onto the respective subspaces. Number of the affine lifting
as well as feedback terms in this case is R̃I =1160. Recall that
in case of the original MPC problem (3) with N = 50 solved
as pQP the number of regions was R = 5207. Finally, the re-
sult of clipping per (14) allowing to maintain the equivalence
between κ̃II(x) (κ̃I(x)) and κ(x) is visualized in Fig. 3a (2a)
in orange color; cf. Fig. 1.

III. EXPERIMENTAL IMPLEMENTATION

A. Active Beam Test

The active cantilever beam first introduced in Section II-A
is illustrated in Fig. 5, where the fixed-free aluminum beam
is shown mounted to a sturdy base. The deflection of the free
end of the beam is measured by a Keyence LK-G80 spot-type
laser triangulation head, providing its signal to a Keyence LK-
G3000 series central processing unit. The beam is actuated by
a pair of cross-coupled MIDÉ QP16N piezoceramic actuators
on its clamped end, receiving the same amplified input signal
with inverted polarity.

Fig. 5. Laboratory device with the actively controlled mechanical structure.

The configuration of the experimental setup is summarized
in the simplified scheme shown in Fig. 4. The LEMPC algo-
rithms introduced in Sect. II-C1 and Sect. II-C2 were deployed
in the stand-alone mode to a microcontroller unit. The inputs
generated by the controller are fed to an operational amplifier
(Texas Instruments TLC2272CP), then to a signal processor
that shifts signal levels to a bipolar configuration (Advantech
ADAM 3014) needed for the final capacitive amplifier (MIDÉ
EL-1224) feeding the piezoceramic actuators. The input is read
directly by the microcontroller in the form of a single analog
signal from the laser triangulation system.

The cantilever beam had been tested in a scenario that is fre-
quently referred to as a release test. Release tests are often used
to emulate transient mechanical behavior often encountered in
aerospace applications in the laboratory environment [31]. In
a release test, the free end of the beam is deflected by a force
to an initial position, and then released to reach its equilibrium
with or without feedback control. The repeat release tests were
generated by a stinger mechanism (not shown in Fig. 5), that
pushes the end of the beam away from its zero position upon
receiving a digital signal. The experiment itself is launched,
controlled and logged using an external computer, sending the
engage signals to the release tests, and capturing input, output
and timing data. This external computer contains a laboratory
measurement card and runs a simple experiment control and
data logging program under the Simulink Real-Time algorithm
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prototyping suite.
The microcontroller used in the experimental testing was an

STMicroelectronics (STM) 32-bit (STM32) F051x-series mi-
crocontroller unit, specifically STM32 F051R8T6. This MCU
features 64 kB non-volatile read only memory (ROM) and 8 kB
volatile random access memory (RAM). The MCU considered
for the laboratory test and the rest of the investigated devices
belong to a family of microcontrollers that use the very popular
ARM Cortex-M core design. The ARM Cortex-M family con-
sidered in this paper represents modern 32-bit embedded de-
vices that are used in a wide variety of applications, including
control systems technology. The F051x-series MCU in the lab-
oratory test incorporates the basic M0 core architecture and is
marketed as a low-cost entry-level device with a unit cost of
approximately $1.50 for large quantities. The maximum clock
speed of 48 MHz is more than that of the typical 20 MHz of
budget 8-bit devices, however, it is still a true embedded device
without the power and possibilities of its more expensive coun-
terparts.

This microcontroller was tested using a STM32 F0 Discov-
ery prototyping and evaluation board that integrates the MCU
with a programmer and debugger and provides an easy access
to the physical pins of the MCU. The prototyping board em-
ployed in the beam tests is shown in Fig. 6. Input is generated
and output is acquired via the integrated digital-to-analog and
analog-to-digital converters of the MCU. The task execution
timing (TET) is sent as an output to the data logging computer
in the form of a simple digital signal that is logical true when
the algorithm runs, and false when it idles. The board outputs
two TET signals, one for the LEMPC algorithm only, and the
other for the entire feedback control algorithm including input
and output data processing and state estimation.

The peripheral initialization code for the processor was dev-
eloped using the STM32CubeMX initialization code generator.
Subsequently, the rest of the program was finished and com-
piled to target using the IAR Embedded Workbench for ARM
(EWARM) in C-language. The feedback LEMPC algorithms
proposed in Sect. II-C received state estimates from a time-

varying linear Kalman filter employing the model from Sect.
II-A. Input and output measurements were re-scaled linearly
according to the input and output measurement chains.

Finally, let us shed more light on the essential computation
of the controllers discussed so far and used in the experiments.
As described in Sect. II-A, the beam dynamics (1) was exper-
imentally identified and then discretized with Ts = 0.02 s. The
sampling time was chosen so as to enable implementation on
low-cost hardware and it is also related to the dominant reso-
nant frequency of the beam, such that the closed-loop system
is sampled over six times an oscillation period. The MPC prob-
lem (3) was formulated with control horizon of N = 50 steps
which practically amounts to the prediction over 1 second. The
choice for this horizon is motivated by the stability guarantees
assumed in the problem formulation and allows the expected
range of positions and velocities to be covered by the control-
ler’s domain of attraction, see [25]. In addition, state and input
penalties were chosen as Q = I and R = 1, respectively, PN

set to the solution of DARE and C∞ designed as the maximal
control invariant set—rendering the controller response such
that it attenuates the beam tip vibration efficiently and yet does
not behave like an overly aggressive ‘bang-bang’-like control-
ler. The controllers used symmetric ±100 V bounds to prevent
depolarization of the piezoceramics. We remark that although
state constraints are also allowed by the formulation, it is not
practical to impose them on this process as it would unneces-
sarily restrict the performance of vibration damping and their
feasibility cannot be guaranteed in presence of transient exci-
tation. The resulting MPC problem was solved parametrically
using the Multi-Parametric Toolbox (MPT) [50]. The explicit
MPC feedback in Fig. 1 was obtained in 10 min on a 2.2 GHz
i7 core CPU with 8 GB of RAM running MATLAB 8.5, MPT3
and YALMIP [51]. The respective data were used to construct
the LEMPC controllers per Sect. II-C1 and II-C2, visualized
in Figs. 2 and 3. In particular, the ‘legacy’ convex lifting ˜̀I(x)
was obtained in 250 s (via Algorithm 3), whereas finding the
convex lifting ˜̀II(x) took mere 3 s (Algorithm 2 and Eq. (15))
which is a negligible post-processing effort compared with the
time spent on computing the nominal EMPC controller. The
obtained LEMPC controllers were then independently passed
through a custom code generation routine to provide an effi-
cient C-code—tailored for the embedded target and integrated
into the main code described above.

B. Cross-Platform Comparison
The cross-platform microcontroller comparison tests were

performed similarly to the experimental investigation with the
active cantilever beam, but in processor only, without the phys-
ical beam assembly. The goal of these tests is not to evaluate
the vibration damping performance of the controllers as this
should be the same in all the cases, but to provide a common
foundation for comparing the memory needs and the execution
timing of the algorithms. The critical question to ask then is,
whether a given class of microcontrollers has enough memory
or computation power for similar applications employing the
LEMPC methodology proposed here.

Therefore, in these trials, only the C-code for the LEMPC
algorithms without state estimation or input–output pre- and
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Fig. 7. Microcontrollers used in the cross-platform comparison, size-compared to a e1 coin.

post-processing was implemented on various microcontrollers.
Each controller implementation was tested in double and sin-
gle numeric precision version. The former represents the base-
line controller version in finite-precision digital computing, but
in certain cases, one may limit memory footprint and compu-
tation needs by using only single precision data without signif-
icantly affecting the quality of control [52]. This in turn allows
usage of better performing controllers on the same hardware
or further reduction of hardware cost by using less expensive
MCUs. The numeric precision was varied only in the feedback
control algorithms, not on the MCU initialization code; how-
ever, the chip, clock and peripheral initialization routines are
unlikely to contain floating point arithmetic anyway.

In order to make the timing and memory data meaningful for
comparison, all controllers were created using the same model
and identical parameters. In every single test case, a common
and fixed initial state of x(0) = [−5 mm 400 mm s−1]T was
considered. This state simulated an initial condition where the
beam is deflected to the position of −5 mm and having the
initial speed of 400 mm s−1. This initial state is far outside the
terminal set of the controllers and emulates a state for which
constraints will be guaranteed to remain active.

Just as in case of the experiments with the active beam, here
the MCUs were initialized using the automatically generated
code from STM32Cube MX, then it was compiled and deploy-
ed by IAR EWARM. In order to minimize the code overhead
in addition to the LEMPC algorithms, all the peripherals were
disabled in software besides a single digital output pin and the
single wire debugging capability of the chip. This means that,
though the memory footprint listed here includes a minimal
overhead for initializing the MCU, this is kept at an absolute
possible minimum. The digital signal from the remaining pin
was used to measure TET using an oscilloscope.

The range of MCUs tested in this paper represents a good
cross-section of the devices typically available on the market
at current time. The microcontrollers considered in this article
are photographed and compared in geometric scale in Fig. 7.
All MCUs were tested using electronic prototyping boards by
STMicroelectronics (Discovery-series boards) for easy phys-
ical pin access, integrated programming and debugging fea-
tures. The MCUs evaluated here range from devices that are
considered to be entry level (F051x), extremely cost efficient

(F030x), or low power (L100x); up to chips created for high-
performance embedded applications (e.g. F407x and F746x).
Obviously, the price point of the microcontrollers depends on
many factors not directly related to computing performance
or memory, such as peripheral selection or purchase quantity.
The unit cost of the devices considered here ranges from ap-
proximately $1.50 to $10 for large quantities.

The exact types and basic specifications of the MCU con-
sidered here will be introduced along with the experimental
results in the next section. The non-volatile memory used to
store the program on the microcontroller ranged from 64 kB
up to 2048 kB, while the volatile data memory ranged from
8 kB up to 340 kB. All microcontrollers were clocked to their
respective maximum clock speeds, ranging from 24 MHz up
to the considerable 216 MHz, except for STM F303x, which
was tested at 64 MHz instead of its 72 MHz maximum, due to
a hardware limitation of the prototyping board.

Besides the raw information on clock speed, the real per-
formance of a microcontroller depends on many other factors;
including that of the core design. The MCUs employed here
incorporate the so-called ARM Cortex M0, M3, M4 and M7
architectures. Generally speaking, the architecture may affect
both memory footprint and execution speed of the compiled
program, even when using the same exact high-level code and
accounting for clock speed differences. Some of the controllers
tested here featured a floating point unit (FPU) as well, which
may affect the computational performance of predictive cont-
rollers in theory—in fact, any task with floating point arithme-
tic. Although a previous work did not suggest a considerable
performance increase with MCUs using their FPU [52], and
while any EMPC implementation is an unlikely candidate for
FPU-boosted efficiency, we have turned these components on
for all tests featured in the paper—if available in the core.

IV. RESULTS AND DISCUSSION

A. Active Beam Test

First, let us review the results from laboratory experiments
with the active beam. A typical release test is shown in Fig.
8; with output (position), input (voltage) and execution timing
depicted from top to bottom. The open-loop response is shown
in the background, this is compared to feedback control using
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the LEMPC algorithm. As it is expected, the settling time of
the transients is reduced considerably (∼20 times) by the ac-
tive control. Also, although the input constraints are active for
a while, they are inherently respected by MPC. None of these
facts shall be surprising, as the LEMPC formulation proposed
here will create exactly the same outputs as any other optimal
control algorithm using dual-mode infinite-horizon predictive
control with guaranteed stability. In other words, neither theo-
retically nor practically is there any difference between the
inputs generated by the proposed LEMPC controllers and other
known MPC algorithms with the same configuration. This, of
course, also means that the vibration damping performance, or
more generally the control performance, remains unchanged.

Therefore, the important feature of the LEMPC framework
is not an increased control performance but the memory and
timing efficiency; which may enable the deployment of fast
sampling applications even on simple hardware. The bottom
of Fig. 8 shows the timing process for both versions of LEMPC
introduced in Sect. II-C in both double and single precision
implementations. The chosen baseline hardware executes the
controller from Sect. II-C1 with a total TET approaching the
20 ms sampling period, while the controller from Sect. II-C2,
central to this work, is executed in less than 11 ms. By employ-
ing single-precision floating-point format these figures can be
yet reduced nearly twice, without any noticeable deterioration
in the damping performance. Note that the overhead (state es-
timation and data processing) amounts to roughly 1 ms. The
timing chart shown here indicates that online execution timing
does not depend on state estimates for LEMPC; just as it was
suggested in Sect. II-C3. This is unlike the execution time of
nominal EMPC employing the sequential search that depends
on the location of state within the polyhedral partition as well

as the complexity of its regions [26]. The memory footprint of
the controller from Sect. II-C1 occupies most of the available
non-volatile memory of the F051x MCU; taking up 58 kB of
the available 64 kB. Approximately 22 kB of this memory is
used by the program itself, while 36 kB by the data—meaning
the static variables. The even more efficient controller of Sect.
II-C2 requires mere 36 kB of non-volatile memory for the en-
tire feedback control algorithm implementation, including state
estimation and data processing. Volatile memory needs for dy-
namic variables are minimal in all cases, well under 1 kB.

We remark that the nominal EMPC controller has been at-
tempted to be run on the F051x MCU as well. However, the
formulation with only a 14-steps long prediction horizon was
the maximum that could fit into the available memory of the
MCU. Nonetheless, such controller did not yield the feasible
set large enough to allow for experimental testing. More details
on the embedded implementation of explicit MPC for vibration
control, yet without stability guarantees, can be found in our
previous study [26].

To appreciate the mere fact that both LEMPC versions were
deployable in the fairly limited memory of the F051x MCU
and running in real time under 20 ms, one has to recollect the
typical hardware requirements for dual-mode infinite-horizon
MPC with stability guarantees. It is extremely unlikely that an
online QP strategy would be able to solve the same problem
within 20 ms using the available 24 MHz clock speed without
the possibility of suboptimal solution, although it could possi-
bly fit into the allocated 64 kB ROM. On the other hand, the
clock speed and architecture of this low-end MCU could be
sufficient to evaluate a nominal EMPC formulation online even
with sequential search, but it would be out of the question to fit
its memory footprint under 64 kB. To put this in perspective:
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TABLE I
CROSS-PLATFORM COMPARISON FEATURING 32-BIT STM MICROCONTROLLERS FOR ACTIVE VIBRATION CONTROL USING THE EFFICIENT REGIONLESS

LEMPC IMPLEMENTATION
(
Ts = 20ms, N = 50, x(0) = [−5mm 400mms−1]T

)
PROPOSED IN SECTION II-C.

Online implementation via Algorithm 4 using ˜̀I(x), κ̃ I(x) obtained per Section II-C1 using ˜̀II(x), κ̃ II(x) obtained per Section II-C2
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STM32F051R8T6‡ M0 48 64 8 22 836 37 180 58.6 552 18.43 485 13 124 18 604 31.0 536 9.99 263 15 140 21 788 36.1 552 10.75 283 9280 10 908 19.7 536 5.84 154
STM32F030R8T6 M0 48 64 8 22 820 37 180 58.6 552 18.48 458 13 108 18 604 31.0 536 10.02 249 15 124 21 788 36.0 552 10.79 268 9264 10 908 19.7 536 5.86 145
STM32F100RB M3 24 128 8 23 014 37 182 58.8 552 19.31 644 13 198 18 606 31.1 536 10.81 360 15 318 21 790 36.2 552 11.28 376 9354 10 910 19.8 536 6.35 212
STM32L100RCT6 M3 32 256 16 23 594 37 182 59.4 552 17.64 441 13 778 18 606 31.6 536 10.68 267 15 898 21 790 36.8 552 10.25 256 9934 10 910 20.4 536 6.54 163
STM32L152RCT6 M3 32 256 32 23 590 37 182 59.3 552 16.07 402 13 774 18 606 31.6 536 9.87 247 15 894 21 790 36.8 552 9.38 235 9930 10 910 20.4 536 5.83 146
STM32F303VCT6 M4 64 256 40 14 100 46 464 59.1 552 9.95 124 8264 23 248 30.8 536 1.63 20 10 252 27 224 36.6 552 5.80 73 11 770 8197 19.5 536 0.95 12
STM32F401VCT6 M4 84 256 64 13 832 46 464 58.9 552 5.16 49 7996 23 248 30.5 536 0.67 6 9984 27 224 36.3 552 3.03 29 11 502 8198 19.2 536 0.40 4
STM32F407VGT M4 168 1024 192 14 084 46 464 59.1 552 2.63 13 8248 23 248 30.8 536 0.35 2 10 236 27 224 36.6 552 1.54 7 11 754 8198 19.5 536 0.21 1
STM32F429ZI M4 180 2048 256 14 204 46 464 59.2 552 2.41 11 8368 23 248 30.9 536 0.32 1 10 356 27 224 36.7 552 1.42 6 11 874 8198 19.6 536 0.19 1
STM32F746NGH6 M7 216 1024 340 14 504 46 464 59.5 552 5.52 42 8668 23 248 31.2 536 1.03 2 10 656 27 224 37.0 552 2.99 6 12 174 8198 19.9 536 0.60 1
† ROM (non-volatile, read-only memory) = CODE (program) + DATA (static variables); RAM – volatile, random-access memory; TET – task execution time (MPC only); Normalized TET = TET/(clock × DMIPS/MHz),

DMIPS – Dhrystone MIPS (millions of instructions per second).
‡ The embedded target used in the experiments in Fig. 8.

an equivalent MPC formulation with guaranteed stability and
recursive feasibility would be near-impossible to deploy to the
same hardware by other currently known means.

B. Cross-Platform Comparison

Continuing in introducing and evaluating the results in this
spirit, in the upcoming paragraphs we will only focus on the
timing and memory footprint of the two LEMPC algorithms
in single and double numeric precision formats. Results of the
STM cross-platform comparison are summarized in Table I.
The left side of the table lists the type designation of the micro-
controllers, their architecture family, clock speed, and the max-
imum available non-volatile ROM for the program and data,
and volatile RAM for variable manipulation. Note also that the
maximum non-volatile memory refers to that available on the
chip itself; except F429 which also lists the external memory
of the prototyping board.

Table I is further divided into two variants of the LEMPC
algorithm, each of which was tested in double and single nu-
meric precision—creating a total of four test scenarios. Each
of these lists the non-volatile ROM footprint for the complete
algorithm including the overhead, and its program (CODE) and
static data (DATA) variables as reported by the compiler. The
RAM contains dynamic variables, though this footprint is min-
imal for the proposed controllers and keeps the same size be-
tween hardware versions.

Timing is characterized by the task execution time as mea-
sured for the single initial state x(0) without overhead, howev-
er, this timing metric is indicative for any other state as well.
The absolute execution timing is, of course, the function of the
computational performance of the microcontroller. The final
piece of information presented in Table I is the normalized
TET, which attempts to level the differences in the small var-
iation in architecture between various microcontrollers shown
here. The Dhrystone million instructions per second (DMIPS)
metric indicates the relative processor efficiency, but does not
include floating point operations. The DMIPS metric is readily

available for the processors tested here, and accounts for some
of the differences in architecture. A typical 8-bit microcontrol-
ler has 1.0 DMIPS for each MHz of its clock speed; essentially
performing a single elementary operation for each clock cycle.
The relationship is more complicated in modern 32-bit MCUs,
as the devices tested here range between 0.8–2.1 DMIPS/MHz.
Rescaling this to the actual clock speed, and then dividing the
TET by it yields the time necessary to evaluate the LEMPC
algorithm for one DMIPS, which we chose to call normalized
TET in Table I.

Let us first look at the differences and the similarities for a
given experimental configuration, that is, for a given LEMPC
variant and numeric precision. Upon inspecting the table, one
may see that the volatile memory remains virtually unchanged
across platforms for the same type of controller. This is also
true for different variants, as the RAM footprint remains well
under 1 kB for all cases. This size is not prohibitive even for
the most fundamental types of modern MCUs. The non-vola-
tile memory footprint varies only slightly for a given test case;
this can be caused by minor differences in architecture or even
the size of overhead that must include the initialization code
for the given MCU. Timing varies greatly amongst the tested
platforms for a given test case, as the timing depends on clock
speed an architecture.

On average, switching to the single precision yields an ∼1.9
times smaller footprint in ROM for both LEMPC implement-
ations. Changing the formulation from the one in Sect. II-C1
to the one in Sect. II-C2 will further reduce the non-volatile
memory footprint by a factor of ∼1.6 for both numerical pre-
cision cases. To approximate the effect of numerical precision
on computational effort, note that TET will be reduced any-
where from a factor of ∼1.5–7.7 (averaging around 4) which
depends on architecture and clock speed strongly. This sug-
gests that limiting the numeric precision—or even converting
to fixed point—can broaden the horizons for applying predic-
tive control on cheap hardware, if the reduced precision does
not affect algorithm convergence or control quality. We remark
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that the aspect of possible performance loss due to the lower
precision may be further investigated from a theoretical point
of view via a fragility analysis [53], based on the disturbances
of the explicit PWA control law.

Yet again, the relative differences between the two proposed
LEMPC techniques and the numerical precision is unimportant
compared to the fact that the traditional implementation of
EMPC or most implicit quadratic programming solvers could
not have solved the same problem on the majority of investi-
gated MCUs; either due to their large memory needs, or com-
putational requirements. We may consider the memory foot-
print and online evaluation effort of the proposed controllers
from two viewpoints. By using efficient MPC algorithms, one
can either opt for much cheaper control hardware for the same
application; or use more complex models or higher sampling
rates than before. Table I illustrates both of these critical as-
pects. By implementing the proposed algorithms, cheap entry-
level MCU like the F100x can compute the same optimal con-
strained MPC moves with guaranteed stability and even long
horizons that would otherwise need powerful hardware [25].
Conversely, high-end microcontrollers like the F407x can exe-
cute the benchmark vibration control problem in the microsec-
ond range, suggesting that even faster applications or better
mathematical models are within the realm of possibilities.

V. CONCLUSION

This paper presented a methodology to synthesize memory
and time-efficient MPC solutions, herein utilized to suppress
lateral vibrations of an active cantilever beam. The key feature
of the proposed convex lifting based implementation is that the
online algorithm is extremely simple with only a tiny footprint,
which makes it deployable even on low-end embedded control
hardware. In addition, the optimal explicit solution to a given
MPC problem can be evaluated at runtime with the pre-defined
online computation time guarantees, allowing for an easy ver-
ification of correctness of implementation in rapid prototyping
design and real-world applications. The proposed framework
was experimentally tested to provide optimal vibration control
performance, accompanied by a comprehensive cross-platform
comparison study using the family of 32-bit microcontrollers;
suggesting a step towards feasible embedded implementations
in memory- and time-critical optimal control applications.

The proposed framework will likely allow the use of more
complex structural vibration models that cover further resonant
frequencies and modes, possibly including rotational degrees
of freedom. Further research shall explore this possibility and
also discover theoretical and implementation challenges posed
by the need of more complex observer algorithms.
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APPENDIX

Algorithm 5 Pseudocode implementation of Algorithm 4

Stored data: Convex lifting and control input gains ãj , b̃j , f̃j ,
g̃j , ∀j ∈ IR̃II , input bounds κ, κ if any.

Input: State x0 ∈ R.
Output: Optimal control input u?0.

1: function LEMPCCONTROLLER(x0)
2: objmax← 0
3: for j ← 1 to R̃II do . R̃II = |Iuns|
4: obj ← ãTj x0 + b̃j
5: if obj > objmax then
6: obj ← objmax
7: j? ← j
8: end if
9: end for

10: ctrl← f̃Tj?x0 + g̃j?

. lines 11–15, and 17 are not needed if Isat = ∅
11: if ctrl > κ then
12: u?0 ← κ
13: else if ctrl < κ then
14: u?0 ← κ
15: else
16: u?0 ← ctrl
17: end if
18: return u?0
19: end function
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