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Convex Liftings: Theory and Control Applications
N. A. Nguyen1, M. Gulan2, S. Olaru3, P. Rodriguez-Ayerbe3

Abstract—This paper presents the so-called convex lifting
concept which will be proven to enable significant implementation
benefits for the class of piecewise affine controllers. Accordingly,
two different algorithms to construct a convex lifting for a given
polyhedral/polytopic partition will be presented. These two algo-
rithms rely on either the vertex or the halfspace representation
of the related polyhedra. Also, we introduce an algorithm to
refine a polyhedral partition, which does not admit a convex
lifting, into a convexly liftable one. Furthermore, two different
schemes will be put forward to considerably reduce both the
memory footprint and the runtime complexity which play a key
role in implementation of piecewise affine controllers. Finally,
these results will be illustrated via a numerical example and a
complexity analysis.

Index Terms—Convex lifting, model predictive control, explicit
solutions, parametric programming.

I. MOTIVATION

Explicit model predictive control (MPC) has received sig-
nificant attention in control community due to its relevance
for rather small-dimensional systems [10], [17], [36], [37],
[41]. However, even if the controllers are explicitly obtained,
there exist major problems in terms of implementation once
the number of regions in the state-space partition becomes
large. In particular, they require storing all the regions at
the hardware level, making their implementation, namely on
embedded computing platforms, difficult due to their limited
memory storage and computational performance.

Various efficient implementation algorithms have been put
forward [24], [25], however the requirement of substantial
memory for storing the given partition is inevitable. Another
contribution about efficient storage strategy has been presented
in [7]. This proposal can avoid storing the state-space parti-
tion, however the point-location problem, determining which
region the current state belongs to, becomes more demanding;
see among the other point-location algorithms [8], [9], [42].
Therefore, it is necessary to investigate other implementation
approaches for this class of controllers which can avoid
storing the state-space partition and possibly to facilitate the
point-location problem. This work presents a convex lifting
concept which allows for efficient implementation of piecewise
affine (PWA) controllers. We have recently learned that an
independent study in [1] exploits the linear machine concept
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which is actually similar to the convex lifting notion exploited
in this paper. It is worth noting that existence conditions for
convex liftings are not available in this reference. Also, the
treatment of convexly non-liftable partitions therein has not
been investigated. In this paper, we present constructions based
on two different polyhedra representations—the vertex and the
halfspace one. Also, an algorithm to refine a convexly non-
liftable partition into a convexly liftable one is introduced.

For ease of presentation, let us start with some special cases
of parametric linear programming problem where the optimal
cost function presents an interesting property. To illustrate
these points, consider a linear MPC problem with respect to a
linear cost function. Such a problem can easily be transformed
into a parametric linear programming problem as follows:

u∗(x) = arg min
u
CTu subject to Du ≤W + Ex. (1)

It has been shown through Theorems IV-3 and IV-4 in [16] that
CTu∗(x) is a convex, continuous, PWA function defined over
a polyhedral partition {Xi}i∈IN , where IN = {1, 2, . . . , N} .
Let us denote the optimal cost function and optimal solution
of (1) as follows:

CTu∗(x) = aTi x+ bi for x ∈ Xi,
u∗(x) = Hix+Gi for x ∈ Xi.

(2)

Since CTu∗(x) is also a convex function, this optimal cost
function can alternatively be written in the following form:

CTu∗(x) = max
j∈IN

(aTj x+ bj). (3)

Accordingly, as advocated in [7], if the optimal solution to
the parametric linear programming problem (1) is unique,
then implementation of the optimal control law u∗(x) can be
carried out according to Algorithm 1.

Algorithm 1 Efficient implementation of PWA controllers

1: Store (Hj , Gj) and (aj , bj)
2: At each sampling time, obtain the current state x
3: Find index i ∈ IN such that:

aTi x+ bi = max
j∈IN

(aTj x+ bj).

4: Evaluate the controller u∗(x) = Hix+Gi.
5: Return to step 2.

A significant advantage of this implementation is that it
enables to avoid storing the state-space partition and facilitates
the point-location problem. However, as emphasized above,
this implementation only holds if the optimal solution to
(1) is unique, because in this case for any pair of different
regions (Xi,Xj), their optimal cost function satisfies (ai, bi) 6=
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(aj , bj). Note also that in the case the uniqueness of the
optimal solution to (1) is fulfilled, the optimal cost function
of the parametric linear programming problem (1) is, from a
geometrical point of view, nothing other than a convex lifting
associated with the state-space partition {Xi}i∈IN (this will
be formally proven later in Theorem II.7), since a convex
lifting can equivalently be understood as a convex, continuous,
piecewise affine function defined over a polyhedral partition
such that any pair of different regions is lifted onto two distinct
hyperplanes. Otherwise, in case the optimal solution to (1) is
not unique or the state-space partition obtained from a linear
MPC problem with respect to a quadratic cost function, this
implementation is no longer applicable, even if the state-space
partition admits a convex lifting. Motivated by this limitation,
algorithms to verify the existence of a convex lifting and to
construct it for a given partition are required. It is worth
recalling that an algorithm to construct a convex lifting based
on the vertex representation has recently been presented in
[30], [32]. However, efficiency of this algorithm is limited
to rather small-dimensional partitions, since it requires vertex
enumeration. To overcome this issue, in this paper we com-
plete the convex lifting methodology with an algorithm relying
on the halfspace representation. Accordingly, the feasibility of
the formulated optimization problem is shown to represent an-
other necessary and sufficient condition for the existence of a
convex lifting. This paper further addresses the convexly non-
liftable partitions by introducing an algorithm to refine a given
convexly non-liftable partition into a convexly liftable one.
Moreover, applications of these results in implementation of
PWA controllers are put forward. Both numerical example and
complexity analysis show promising results of the proposed
implementations in comparison with some existing methods.
This allows PWA control laws to be implemented even on
embedded hardware with low computation performance and
available memory.

II. PRELIMINARIES

R,R+,N>0 denote the field of real numbers, the set of non-
negative real numbers and the positive integer set, respectively.

Given an arbitrary set S, conv(S) denotes the convex hull
of S; aff(S) denotes the affine hull of S. Also, dim(S) stands
for the dimension of aff(S). If S is a full-dimensional set, then
int(S) denotes its interior. Given a set S ⊆ Rd and a subspace
S of Rd, then Proj SS denotes the orthogonal projection of S
onto the space S. We use |S| to denote the cardinality of the
set S. If Ω denotes a polyhedral partition, then |Ω| denotes
the number of its regions.

A polyhedron is defined as the intersection of finitely
many closed halfspaces. A polytope is defined as a bounded
polyhedron. Given a polyhedron S, we use V(S) to denote
the set of its vertices and R(S) denotes the set of its extreme
rays. Further, if S ⊆ Rd is a full-dimensional polyhedron, a
face of S is the intersection of S and one of its supporting hy-
perplanes. k−face represents a face of dimension k. A 0−face
is called a vertex, a 1−face is called an edge, a (d− 1)−face
is called a facet. Also, F(S) denotes the set of all facets of
the polyhedron S. Given two sets S1, S2, we use S1\S2 to
denote the following set: S1\S2 := {x : x ∈ S1, x /∈ S2} .

Given a matrix G ∈ Rm×n, we denote size(G, 1) = m and
size(G, 2) = n. Also, G(i, ·) denotes the i-th row of matrix
G, while G(i, j : k) denotes the i-th row of G, truncated
from the j-th column to the k-th column, for 1 ≤ i ≤ m and
1 ≤ j ≤ k ≤ n. If j = k, then G(i, j) denotes the element
of the i-th row and the j-th column. Let us recall also some
useful definitions.

Definition II.1 A collection of N ∈ N>0 full-dimensional
polyhedra Xi ⊂ Rd, denoted by {Xi}i∈IN , is called a
polyhedral partition of a polyhedron X ⊆ Rd if:

1) X =
⋃
i∈IN Xi,

2) int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,
(Xi,Xj) are called neighboring or adjacent if (i, j) ∈ I2N ,
i 6= j and dim(Xi ∩ Xj) = d − 1. Also, if X is a polytope
then {Xi}i∈IN is called a polytopic partition.

In the case X is not a polyhedron, {Xi}i∈IN is still called a
polyhedral/polytopic partition but of a nonconvex polyhedral
set.

The definition of a cell complex was presented by Grünbaum
in [18]. For simplicity, a cell complex should be hereafter un-
derstood as a polyhedral partition whose face-to-face property
is fulfilled, i.e., the intersection of any pair of regions is either
empty or a common face. Also, if X is a polyhedron, then
a cell complex of X is understood as a polyhedral partition
whose facet-to-facet property is satisfied, meaning any pair of
neighboring regions share a common facet. For illustration,
the polytopic partition in Fig.1 is a cell complex.
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Fig. 1: A cell complex of a polytope in R2.

Definition II.2 For a given polyhedral partition {Xi}i∈IN of
a polyhedron X ⊆ Rd, a piecewise affine lifting is described
by a function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (4)

and ai ∈ Rd, bi ∈ R, ∀i ∈ IN .
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Definition II.3 Given a polyhedral partition {Xi}i∈IN of a
polyhedron X ⊆ Rd, a piecewise affine lifting

z(x) = aTi x+ bi for x ∈ Xi,

is called a convex piecewise affine lifting if the following
conditions hold true:
• z(x) is continuous over X ,
• for each i ∈ IN , z(x) > aTj x+ bj for all x ∈ Xi\Xj and

all j 6= i, j ∈ IN .

The second condition in the above definition implies that z(x)
is a convex function defined over X . Moreover, the strict
inequalities ensure that any pair of neighboring regions is
lifted onto two distinct hyperplanes. For ease of presentation,
a slight abuse of notation is used henceforth: a convex lifting
is understood as a convex piecewise affine lifting.

With respect to the above definition, if a polyhedral partition
{Xi}i∈IN admits a convex lifting, then it has to be a cell
complex. This observation was stated via Proposition 2.1 in
[30]. It is recalled in the sequel for completeness, the interested
reader is referred to this reference for the proof.

Proposition II.4 A polyhedral partition of a polyhedron,
which admits a convex lifting, is a cell complex.

According to Proposition II.4, a convex lifting is always
defined over a cell complex. However, the cell complex
characterization of {Xi}i∈IN is a necessary condition for the
existence of a convex lifting, but not a sufficient one.

Remark II.5 Note also that Proposition II.4 does not neces-
sarily restrict {Xi}i∈IN to polyhedral partition of a polyhe-
dron. In other words, a polyhedral partition of a suitable set
X ⊆ Rd, which admits a convex lifting, should also be a cell
complex.

Definition II.6 A given cell complex {Xi}i∈IN in Rd has
an affinely equivalent polyhedron if there exists a polyhedron
X̃ ⊂ Rd+1 such that for each i ∈ IN :

1) ∃Fi ∈ F(X̃ ) satisfying: ProjRd Fi = Xi,
2) if z(x) = min

z
z s.t.

[
xT z

]T ∈ X̃ , then
[
x
z(x)

]
∈ Fi for

x ∈ Xi.

An illustration can be found in Fig.2 where a cell complex in
R consists of the multicolored segments along the horizontal
axis. One of its affinely equivalent polyhedra in R2 is the pink
shaded region. Moreover, the lower facets of this polytope are
an illustration of the facets Fi appearing in Definition II.6.
Note that given a polyhedron X̃ ⊂ Rd+1, if z denotes the
last coordinate of X̃ such that

[
xT z

]T ∈ X̃ , then the opti-
mal solution to the following parametric linear programming
problem:

z∗(x) = min
z
z subject to

[
xT z

]T ∈ X̃ . (5)

is nothing other than a convex lifting for the cell complex
associated with this optimal solution. This observation will be
proven in the sequel.
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Fig. 2: An illustration of an affinely equivalent polyhedron.

First, consider the parametric linear programming problem
(1) and its optimal solution (2). We will prove that if the
optimal solution to (1) is unique, then the optimal cost function
of (1) is a convex lifting for the polyhedral partition associated
with the optimal solution (2).

Theorem II.7 If the optimal solution to the parametric linear
programming problem (1) is unique, then the optimal cost
function CTu∗(x) is a convex lifting for the polyhedral par-
tition associated with u∗(x).

Proof: According to Theorems IV-3 and IV-4 in [16],
CTu∗(x) is a convex, continuous and piecewise affine func-
tion defined over the polyhedral partition {Xi}i∈IN , associ-
ated with the optimal solution u∗(x). Accordingly, to prove
CTu∗(x) to be a convex lifting for {Xi}i∈IN , it suffices to
show that for any pair of different regions (Xi,Xj),

(CTHi, C
TGi) 6= (CTHj , C

TGj).

Suppose the converse situation happens, i.e., there exist two
different regions (Xi,Xj), i 6= j, (i, j) ∈ I2N such that
(CTHi, C

TGi) = (CTHj , C
TGj). We prove that both cases

(Hi, Gi) = (Hj , Gj) and (Hi, Gi) 6= (Hj , Gj) never happen.
If (Hi, Gi) = (Hj , Gj), we denote the set of constraints

active at u∗(x) = Hix+Gi for x ∈ Xi as below

D[i]u ≤W [i] + E[i]x. (6)

As (Hi, Gi) = (Hj , Gj), we then obtain D[i](Hjx + Gj) =
W [i] + E[i]x. Note that this end holds for all x ∈ Xi as a
full-dimensional polyhedron, which thus yields

D[i]Hj = E[i], D[i]Gj = W [i]. (7)

Note however that for x ∈ int(Xj), there exists at least one
constraint in (6) which is inactive at u∗(x) = Hjx + Gj ,
due to Xj 6= Xi and the uniqueness of the optimal solu-
tion. Without loss of generality, suppose this constraint is
D[i](1, ·)u ≤W [i](1) + E[i](1, ·)x. Accordingly, it yields:

D[i](1, ·)(Hjx+Gj) < W [i](1) + E[i](1, ·)x. (8)
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Inclusions (7) and (8) are clearly contradictory. In other words,
the case (Hi, Gi) = (Hj , Gj) cannot happen.

Otherwise, if (Hi, Gi) 6= (Hj , Gj), consider x1 ∈ int(Xi),
x2 ∈ Xj and a scalar α ∈ [0, 1] . Due to the convexity of
CTu∗(x), we can see that

CTu∗(αx1 + (1− α)x2)

≤ αCT (Hix1 +Gi) + (1− α)CT (Hjx2 +Gj).
(9)

If we choose α close enough to 1 such that αx1+(1−α)x2 ∈
Xi, then

CTu∗(αx1 + (1− α)x2) = CT (Hi(αx1 + (1− α)x2) +Gi).
(10)

Note also that according to the assumption (CTHi, C
TGi) =

(CTHj , C
TGj), it follows that

αCT (Hix1 +Gi) + (1− α)CT (Hjx2 +Gj)

= CTHi(αx1 + (1− α)x2) + CTGi.
(11)

Also, since Hix1 +Gi, Hjx2 +Gj satisfy the constraint set in
(1), so does α(Hix1 +Gi) + (1−α)(Hjx2 +Gj). According
to (9), (10), (11), α(Hix1 + Gi) + (1 − α)(Hjx2 + Gj) is
also an optimal solution to (1). Due to the uniqueness of the
optimal solution to (1), we obtain the following:

Hi(αx1+(1−α)x2)+Gi = α(Hix1+Gi)+(1−α)(Hjx2+Gj),

leading to
Hix2 +Gi = Hjx2 +Gj . (12)

It is worth emphasizing that (12) holds true for all x2 ∈ Xj .
Since (Hi, Gi) 6= (Hj , Gj), the set of x ∈ Rd satisfying Hix+
Gi = Hjx+Gj represents a polyhedron of dimension lower
than d, while Xj is a full-dimensional polyhedron in Rd. This
is clearly contradictory. Therefore, the initial hypothesis is not
true. In other words, if the optimal solution to (1) is unique,
the optimal cost function CTu∗(x) describes a convex lifting
for the associated polyhedral partition {Xi}i∈IN .
Now, let us come back to prove that the optimal solution to
(5) stands for a convex lifting of the associated polyhedral
partition.

Lemma II.8 Given the parametric linear programming prob-
lem (5), if {Xi}i∈IN denotes the polyhedral partition associ-
ated with z∗(x), then z∗(x) is a convex lifting for {Xi}i∈IN .

Proof: First, we will prove that the optimal solution to (5)
is unique. Indeed, suppose there exist two optimal solutions
to (5), denoted by z∗1(x) and z∗2(x), respectively. Without loss
of generality, suppose z∗1(x), z∗2(x) are defined on the same
polyhedral partition {Xi}i∈IN . Consider a region Xi in this
polyhedral partition and denote these optimal solutions over
Xi as follows:

z∗1(x) = (a
(1)
i )Tx+ b

(1)
i for x ∈ Xi,

z∗2(x) = (a
(2)
i )Tx+ b

(2)
i for x ∈ Xi.

Since z∗1(x), z∗2(x) represent optimal cost function of (5), we
thus obtain:

(a
(1)
i )Tx+ b

(1)
i = (a

(2)
i )Tx+ b

(2)
i . (13)

Note that (13) holds for all x ∈ Xi, as a full-dimensional
polyhedron. Accordingly, this holds only if (a

(1)
i , b

(1)
i ) =

(a
(2)
i , b

(2)
i ). In other words, the optimal solution to (5) is

unique. According to Theorem II.7, the optimal cost function
of (5) represents a convex lifting of {Xi}i∈IN .

III. CONSTRUCTIONS OF CONVEX LIFTINGS

A. Existing results on convex liftings

The definition of a convex lifting has been presented earlier.
In control theory, so far, convex liftings have been used
to solve the inverse parametric linear/quadratic programming
problem [28]–[35]. Many necessary and sufficient conditions
for the existence of convex liftings for cell complexes were
investigated in different studies [3]–[5], [13], [14], [27], [38],
[40]. It is shown in [38] that there exists a convex lifting for a
cell complex in Rd if and only if one of the following holds:
• it admits a strictly positive d−stress;
• it is an additively weighted Dirichlet-Voronoi diagram;
• it is an additively weighted Delaunay decomposition.

The interested reader is referred to [28] for further details
of the above notation and to [3]–[5], [38] for other related
results. Note that the above results cover the general class of
cell complexes in Rd. Unfortunately, despite the mathematical
completeness of the existing results, the verification of these
conditions is in general expensive. Furthermore, they do not
provide any hint for the construction of a convex lifting. On
the other hand, control applications require specific algorithms
to verify the convex liftability of the cell complexes and
construct their convex liftings if they exist. These elements
are detailed in the following subsections. We remark that
the construction of convex liftings for some special cases,
e.g., Voronoi diagrams and Delaunay triangulations and their
recognition were already investigated in [5], [15], [21].

B. Construction of convex liftings based on the vertex repre-
sentation

The main objective of this subsection is to present an
algorithm for the construction of a convex lifting for a given
cell complex via linear/quadratic programming. Given a cell
complex {Xi}i∈IN of a polytope X ⊂ Rd, let a convex lifting
z(x) of {Xi}i∈IN be denoted by z(x) = aTi x+bi for x ∈ Xi,
one needs to determine (ai, bi) for all i ∈ IN . The construc-
tion of z(x) based on the vertex representation is presented
in [30] and is recalled in Algorithm 2 for completeness. We
remark that this construction is limited to polytopic partitions
since it hinges on suitable constraints imposed at the vertices
of this partition. Extension of this construction to polyhedral
partitions of unbounded polyhedra can be found in [32].

Note that the cost function in (16) is chosen so as to
avoid the unboundedness of optimal solution. Other choices
are possible as long as the boundedness of optimal solution is
guaranteed. Also, as seen in (15), the strict inequality in the
second condition of Definition II.3 can easily be transformed
into inequality constraints of an optimization problem by
adding a positive constant c on the right-hand side of (15),
thus > can be replaced with ≥ .
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Algorithm 2 Construction of a convex lifting for a given cell
complex {Xi}i∈IN of a polytope X ⊂ Rd.
Input: {Xi}i∈IN and a given constant c > 0.
Output: (ai, bi), ∀i ∈ IN .

1: Register all pairs of neighboring regions in {Xi}i∈IN .
2: For each pair of neighboring regions (Xi, Xj),

• add continuity conditions ∀v ∈ V(Xi ∩ Xj):

aTi v + bi = aTj v + bj ; (14)

• add convexity conditions ∀v ∈ V(Xi)\V(Xj):

aTi v + bi ≥ aTj v + bj + c. (15)

3: Solve the following convex optimization problem by min-
imizing a chosen cost function, e.g.,

min
ai, bi

N∑
i=1

(aTi ai + bTi bi) subject to (14), (15). (16)

Now, we will step by step prove that the feasibility of
the optimization problem (16) serves as another necessary
and sufficient condition for the convex liftability of the given
polytopic partition of a polytope.

Proposition III.1 If problem (16) is feasible, then function

z(x) = aTi x+ bi for x ∈ Xi

is a convex lifting over the given cell complex {Xi}i∈IN .

The interested reader is referred to Theorem 4.1 in [30] for the
proof of Proposition III.1. We remark that this proposition only
provides a sufficient condition for the existence of a convex
lifting, while no result has been presented in [30] to clarify
how the choice of the scalar constant c in Algorithm 2 affects
the feasibility of the optimization problem (16). Theoretically,
if the given cell complex is convexly liftable, then any positive
value of c does not have any effect on the feasibility of the
optimization problem (16).

Proposition III.2 Given a cell complex {Xi}i∈IN of a poly-
hedron X ⊆ Rd, if z(x) = aTi x+bi for x ∈ Xi is a convex lift-
ing for this cell complex, then so is z̃(x) = (αai)

Tx+(αbi)+β
for x ∈ Xi, for any α > 0, β ∈ R.

Proof: In fact, if z(x) represents a convex lifting for the
given cell complex {Xi}i∈IN , then according to the definition
of a convex lifting, for each pair of neighboring regions
(Xi,Xj), it follows that:

aTi x+ bi = aTj x+ bj for x ∈ Xi ∩ Xj
aTi x+ bi > aTj x+ bj for x ∈ Xi\Xj .

(17)

Accordingly, for any α > 0, β ∈ R, (17) amounts to:

(αai)
Tx+ αbi + β = (αaj)

Tx+ αbj + β for x ∈ Xi ∩ Xj ,
(αai)

Tx+ αbi + β > (αaj)
Tx+ αbj + β for x ∈ Xi\Xj .

(18)

Inclusion (18) means that z̃(x) = (αai)
Tx + (αbi) + β for

x ∈ Xi is also a convex lifting for the given cell complex for
any α > 0, β ∈ R.
We now prove that the feasibility of the optimization problem
(16) serves as a necessary and sufficient condition for the
convex liftability of the given polytopic partition {Xi}i∈IN
of polytopes.

Theorem III.3 The given polytopic partition {Xi}i∈IN of a
polytope X , is convexly liftable if and only if the optimization
problem (16) is feasible for any constant c > 0.

Proof: ←− This inclusion directly follows according to
Proposition III.1.
−→ If the given polytopic partition, denoted by {Xi}i∈IN ,
is convexly liftable, then there exists a constant c̃ > 0 and a
function z(x) = aTi x + bi for x ∈ Xi such that for any pair
of neighboring regions (Xi,Xj), the following holds:

aTi v + bi = aTj v + bj for v ∈ V(Xi ∩ Xj)
aTi v + bi ≥ aTj v + bj + c̃ for v ∈ V(Xi)\V(Xj).

(19)

According to Proposition III.2, if we choose α = c/c̃ > 0, β =
0, (19) is equivalent to:

(αai)
T v + (αbi) = (αaj)

T v + (αbj) for v ∈ V(Xi ∩ Xj)
(αai)

T v + (αbi) ≥ (αaj)
T v + (αbj) + c

for v ∈ V(Xi)\V(Xj).

In other words, (αai, αbi) for all i ∈ IN also make the con-
straint set (14) and (15) feasible. Therefore, the optimization
problem (16) is feasible with any given constant c > 0.

Remark III.4 Note that Theorem III.3 holds true not only for
polytopic partitions of polytopes but also for cell complexes
of nonconvex polyhedral sets in Rd.

Remark III.5 According to Proposition II.4, if a polyhedral
partition is convexly liftable, then it should be a cell complex.
Therefore, the optimization problem (16) is infeasible for the
polytopic partitions of polytopes whose facet-to-facet property
is not fulfilled.

To illustrate Algorithm 2, a cell complex of a polytope is
shown in Fig.3. One of its convex liftings is also presented
therein. Further, Fig.4 depicts a cell complex of a nonconvex
set which is the underlying partition. One of its convex liftings
is also illustrated above.

C. Construction of convex liftings based on the halfspace
representation

Recall that Algorithm 2 relies on the vertex representation of
related polytopes. Note also that the pivoting algorithm by Avis
and Fukuda in [6] can carry out the vertex enumeration in time
O(ndv), where d denotes the dimension of the given polytope,
v represents the number of vertices of this polytope and n
denotes the number of facets of this polytope. However, the
vertex enumeration is not necessary in many cases, particularly
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Fig. 3: A cell complex of a polytope and its convex lifting
resulted from Algorithm 2.

−3
−1.5

0
1.5

3

−3
−1.5

0
1.5

3
0

0.05

0.1

0.15

Fig. 4: A cell complex of a nonconvex polyhedral set and its
convex lifting resulted from Algorithm 2.

in control theory where the implementation of state-space
partition mostly relies on the halfspace representation. More-
over, the construction of convex liftings based on the vertex
representation is limited to polytopic partitions, therefore, this
construction for partitions of unbounded polyhedra may cause
computational complications, see [32]. Motivated by these
limitations, this subsection presents an approach to construct
convex liftings based on the halfspace representation.

Given a convexly liftable cell complex {Xi}i∈IN of a
polyhedron X ⊆ Rd, as denoted in Definition II.3, we use

z(x) = aTi x+ bi for x ∈ Xi (20)

to denote a convex lifting for {Xi}i∈IN . Since a convex lifting
z(x) has to fulfill the continuity and convexity conditions, for
any pair of neighboring regions (Xi, Xj), the corresponding
affine functions aTi x + bi and aTj x + bj have to satisfy:

aTi x+ bi ≥ aTj x+ bj for all x ∈ Xi, (21a)

aTj x+ bj ≥ aTi x+ bi for all x ∈ Xj . (21b)

It can be easily observed that according to (21a) and (21b)

aTi x+ bi = aTj x+ bj for all x ∈ Xi ∩ Xj , (22)

implies the continuity of z(x) at any point x ∈ Xi ∩ Xj .
Furthermore, given the halfspace representation of region Xi,
i.e., Xi =

{
x ∈ Rd : Rix ≤ Ki

}
, (21a) holding for all x ∈

Xi, leads to:

Xi =
{
x ∈ Rd : Rix ≤ Ki

}
⊆ P =

{
x ∈ Rd : (aj − ai)Tx ≤ bi − bj

}
.

(23)

According to the extended Farkas lemma [39], (23) leads to
the existence of a suitable vector λij such that

λij ≥ 0, λijRi = (aj − ai)T , λijKi ≤ bi − bj . (24)

Similarly, given the halfspace representation of region Xj , i.e.,
Xj =

{
x ∈ Rd : Rjx ≤ Kj

}
, (21b) leads to the existence of

a suitable vector λji such that

λji ≥ 0, λjiRj = (ai − aj)T , λjiKj ≤ bj − bi. (25)

It should be emphasized that the constraints in (21) cannot
guarantee that the affine functions corresponding to regions
Xi and Xj are distinct, i.e., (ai, bi) 6= (aj , bj). Therefore, in
order to ensure this property of a convex lifting, one needs to
impose additional constraints. A simple way to avoid nonlinear
constraints is to require:

aTi x0 + bi ≥ aTj x0 + bj + c, (26)

for a given scalar constant c > 0 and x0 ∈ int(Xi). Constraint
(26) is meaningful to guarantee (ai, bi) 6= (aj , bj). In fact,
if the converse situation happens, constraint (26) will be
infeasible. Also, x0 can be arbitrarily chosen as long as it lies
in the interior of Xi; the Chebyshev center is also a possible
candidate. Recall that Chebyshev center of a polyhedron X is
the center of the largest inscribed ball of X . More precisely,
finding Chebyshev center xc of polyhedron X amounts to
solving the following problem

max
xc,r

r s.t.

xc ∈ X ,
{
x ∈ Rd : (x− xc)T (x− xc) ≤ r

}
⊆ X .

Note also that this problem can easily be transformed into a
linear programming problem, see [12].

For completeness, a procedure to construct convex liftings
based on the halfspace representation for a given convexly
liftable cell complex is summarized in Algorithm 3.

Remark III.6 Note that Chebyshev center of a polyhedron
may not always be unique or may lie at infinity. As emphasized
above, other candidate of this point is possible as long as it
lies in the interior of Xi.

Remark III.7 We remark that for each pair of neighboring
regions, two additional variables are added in the problem
formulation, as shown in constraints (27), (28). Therefore, the
number of additional variables, besides ai, bi, scales quadrati-
cally with the number of regions, since this number is bounded
above by N(N − 1).
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Algorithm 3 Construction of a convex lifting for a given
convexly liftable cell complex {Xi}i∈IN of a polyhedron
X ⊆ Rd

Input: {Xi}i∈IN of a polyhedron X ⊆ Rd, the halfspace
representation of Xi =

{
x ∈ Rd : Rix ≤ Ki

}
and a scalar

constant c > 0.
Output: gains ai, bi.

1: Find Chebyshev center for each region Xi, denoted by xi.
2: Register all pairs of neighboring regions in {Xi}i∈IN .
3: For each pair of neighboring regions (Xi, Xj), add the

following constraints:

λij ≥ 0, λijRi = (aj − ai)T , λijKi ≤ bi − bj ; (27)

λji ≥ 0, λjiRj = (ai − aj)T , λjiKj ≤ bj − bi; (28)

aTi xi + bi ≥ aTj xi + bj + c. (29)

4: Solve the following convex optimization problem by min-
imizing a chosen cost function, e.g.,

min
ai,bi,λij ,λji

N∑
i=1

(aTi ai + bTi bi) s.t. (27), (28), (29). (30)

The following results present important formal properties of
the construction in Algorithm 3.

Proposition III.8 If the optimization problem (30) is feasible,
then the function z(x) = aTi x + bi for x ∈ Xi represents a
convex lifting for cell complex {Xi}i∈IN .

Proof: If the optimization problem (30) is feasible, then
the constraints (27), (28) and (29) are all feasible. According
to the extended Farkas lemma [39], constraint (27) leads to:

aTi x+ bi ≥ aTj x+ bj for all x ∈ Xi. (31)

Similarly, it follows from constraint (28) that

aTj x+ bj ≥ aTi x+ bi for all x ∈ Xj . (32)

According to (31) and (32), the continuity of z(x) at the
common boundary of Xi and Xj is verified by

aTi x+ bi = aTj x+ bj for all x ∈ Xi ∩ Xj .

This leads to the following inclusions for the vertices and the
extreme rays of Xi ∩ Xj :

aTi v + bi = aTj v + bj for all v ∈ V(Xi ∩ Xj),
aTi r = aTj r for all r ∈ R(Xi ∩ Xj).

(33)

Moreover, constraint (29) implies

aTi xi + bi ≥ aTj xi + bj + c > aTj xi + bj . (34)

From (33) and (34), any point x, described in the following
form:

x = γxi +
∑

v∈V(Xi∩Xj)

α(v)v +
∑

r∈R(Xi∩Xj)

µ(r)r

with α(v), µ(r) ∈ R, γ +
∑
v∈V(Xi∩Xj)

α(v) = 1 satisfies:

aTi x+ bi > aTj x+ bj for all γ > 0, (35a)

aTi x+ bi = aTj x+ bj for γ = 0. (35b)

In other words, any point x, in the halfspace containing Xi
but not in aff(Xi ∩ Xj), satisfies (35a). Otherwise, any point
x ∈ aff(Xi ∩ Xj), satisfies (35b).

The same inclusion holds for the other pairs of neighboring
regions, leading to the fact that:

aTi x+ bi > aTj x+ bj for all x ∈ Xi\Xj and j 6= i. (36)

Therefore, function z(x) = aTi x+ bi for x ∈ Xi represents a
convex lifting for {Xi}i∈IN according to Definition II.3.
Similar to Subsection III-B, any value of the given scalar c in
Algorithm 3 does not affect the feasibility of the optimization
problem (30) as long as c > 0.

Theorem III.9 The given cell complex {Xi}i∈IN of a poly-
hedron X ⊆ Rd, is convexly liftable if and only if the
optimization problem (30) is feasible for any constant c > 0.

Proof: ←− This inclusion directly follows according to
Proposition III.8.
−→ If the given cell complex {Xi}i∈IN is convexly liftable,
then there exists a function z(x) = aTi x+ bi for x ∈ Xi such
that for any pair of neighboring regions (Xi,Xj), inclusions
(31) and (32) hold. Accordingly, the extended Farkas lemma
leads to the existence of two suitable vectors λij , λji such that:

λij ≥ 0, λijRi + (ai − aj)T = 0, λijKi ≤ bi − bj , (37a)

λji ≥ 0, λjiRj + (aj − ai)T = 0, λjiKj ≤ bj − bi, (37b)

where Xi,Xj are again given as Xi =
{
x ∈ Rd : Rix ≤ Ki

}
,

Xj =
{
x ∈ Rd : Rjx ≤ Kj

}
.

Also, since z(x) is a convex lifting for {Xi}i∈IN , there
exists a constant cij > 0 for each pair of neighboring regions
(Xi,Xj) such that

aTi xi + bi ≥ aTj xi + bj + cij , (38)

where xi represents Chebyshev center of Xi. Let c̃ be the
minimal value of cij for the pairs of neighboring regions
(Xi,Xj), i.e.,

c̃ = min
(i,j)∈I2N | dim(Xi∩Xj)=d−1

cij .

Accordingly, for any pair of neighboring regions (Xi,Xj), we
obtain:

aTi xi + bi ≥ aTj xi + bj + c̃.

By choosing δ = c/c̃ > 0, it follows that

(δai)
Txi + (δbi) ≥ (δaj)

Txi + (δbj) + c. (39)

According to (37a), (37b) and (39), it can be deduced that
(δai, δbi) for all i ∈ IN make the constraints (27), (28)
and (29) feasible, since δλij , δλji ≥ 0. In other words, the
optimization problem (30) is feasible with any given constant
c > 0.
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Remark III.10 Note that according to Theorem III.9, the
feasibility of the optimization problem (30) serves as another
necessary and sufficient condition for the convex liftability of
the polyhedral partitions of polyhedra.

Remark III.11 As proven in Proposition II.4, a polyhedral
partition admitting a convex lifting should be a cell complex.
Accordingly, for any polyhedral partition of polyhedron whose
facet-to-facet property is not fulfilled, the optimization prob-
lem (30) is infeasible.

D. Convexly non-liftable partitions

This subsection addresses polyhedral partitions whose con-
vex liftability is not fulfilled. This is usually the case in control
theory, in particular for polyhedral partitions obtained from
linear MPC problems with respect to quadratic cost functions.
It is worth emphasizing that rearranging a given polyhedral
partition is possible. However, any modification of the initial
boundaries of the given polyhedral partition is not allowed
due to the fact that it destroys the original structure of PWA
controller. This may lead to the case where two different
affine control laws are defined over the same region of state
space. Therefore, the problem is formulated as follows: by
preserving the internal boundaries, is it possible to refine
a given polyhedral partition in order to recover the convex
liftability property?

It will be proven that there exists at least one subdivision
which can retrieve the convex liftability for a given polyhe-
dral partition. The proof shows that the so-called hyperplane
arrangement technique, defined as the decomposition of a
space by a set of hyperplanes, can be used to perform this
subdivision.

Theorem III.12 Given a convexly non-liftable polyhedral
partition {Xi}i∈IN of a polyhedron X ⊆ Rd, there exists
at least one subdivision, preserving the internal boundaries
of this partition, such that the new cell complex is convexly
liftable.

The proof is referred to Appendix for reading ease.

Remark III.13 Note that Theorem III.12 states the existence
of a suitable refinement, while the proof points to a specific
technique for the refinement. In a broader perspective, for a
given polyhedral partition which does not admit a convex
lifting, there exist multiple practical solutions for suitable
refinements into a convexly liftable cell complex, hyperplane
arrangement is only one of them. An alternative, fitting planar
cell complexes into Voronoi diagrams, can be found in [2].

Return to the hyperplane arrangement technique, an algorithm
to carry out this decomposition is presented in Algorithm 4
for a given polyhedral partition.

To illustrate Algorithm 4, consider the cell complex in Fig.5,
the result is depicted in Fig.6. Again, the convex liftability of
this cell complex can be verified by the feasibility of problem
(16) or (30).

Algorithm 4 An algorithm to carry out the hyperplane ar-
rangement technique for a given polyhedral partition.
Input: Convexly non-liftable partition Ω = {Xi}i∈IN in Rd.
Output: Convexly liftable cell complex Ω̃ = {Yj}j∈IM .

1: G = [ ]
2: For i = 1 : N
3: Xi = {x : Rix ≤ Ki} , G = [G;Ri Ki]
4: End
5: Remove redundant rows of matrix G.
6: For i = 1 : size(G, 1)
7: Ω̃ = ∅
8: For j = 1 : |Ω|
9: Xj = {x : Rjx ≤ Kj}

10: Y(1) =

{
x :

[
Rj

G(i, 1 : d)

]
x ≤

[
Kj

G(i, d+ 1)

]}
11: Y(2) =

{
x :

[
Rj

−G(i, 1 : d)

]
x ≤

[
Kj

−G(i, d+ 1)

]}
12: If dim(Y(1)) = d & dim(Y(2)) < d then

Ω̃← Ω̃ ∪
{
Y(1)

}
13: Elseif dim(Y(1)) < d & dim(Y(2)) = d then

Ω̃← Ω̃ ∪
{
Y(2)

}
14: Elseif dim(Y(1)) = d & dim(Y(2)) = d then

Ω̃← Ω̃ ∪
{
Y(1), Y(2)

}
15: End
16: End
17: Ω← Ω̃
18: End
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Fig. 5: A convexly non-liftable cell complex in R2.

IV. APPLICATIONS OF CONVEX LIFTING IN CONTROL

This section aims to employ the convex lifting concept to
facilitate the implementation of PWA control laws. Note that
earlier studies in this subject can be found in [19], [28]. In
control theory, since the performance of physical systems is
always limited, the control signal is usually bounded [25].
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Fig. 6: Cell complex resulted from Algorithm 4.

Therefore, without loss of generality, the constraints on current
control variable denoted by u ∈ Rdu , are assumed to be in the
following form:

umin ≤ u ≤ umax.

For ease of presentation, we use u(i) to denote the i−th
component of vector u. By an unsaturated region, we denote a
region whose associated control law is not of componentwise
saturation, i.e., u(i)min < u(i) < u

(i)
max for at least one i ∈ Idu .

Furthermore, a saturated region implies a region correspond-
ing to a componentwise saturated control law, i.e., either
u(i) = u

(i)
min or u(i) = u

(i)
max for all i ∈ Idu . Accordingly, given

a state-space partition, the unsaturated partition consists of the
unsaturated regions. Such a partition may not be a partition
of a polyhedron but of a nonconvex set. The developments of
this section are motivated by two following observations:
• the complexity of state-space partitions is mainly due

to the saturation [24], the boundaries between saturated
regions of the same controller can thus be appropriately
modified;

• in many practical MPC setups, the unsaturated partition
is convexly liftable [19].

Note that the existence of unsaturated partition is the premise
of works on complexity reduction in explicit MPC controllers,
e.g., [24], [25]. For ease of presentation, the following assump-
tions are convenient for the next developments.

Assumption IV.1 The control input is a scalar variable, i.e.,
dim(u) = du = 1.

Assumption IV.2 The unsaturated partition is a convexly
liftable polytopic partition.

Assumption IV.3 The state space X is a polytope.

Assumption IV.4 The given PWA control law is continuous.

Assumption IV.1 is not restrictive, since the development pre-
sented in the sequel can easily be extended to the multivariable
case. Note also that even if the unsaturated partition is not

convexly liftable, one can use Algorithm 4 to split it into a
convexly liftable cell complex. This is meaningful to avoid a
complete hyperplane rearrangement of the original state-space
partition. Therefore, Assumption IV.2 loses no generality of
the proposed schemes. Also, Assumption IV.3 restricts our
attention to polytopic partitions of the state space. This is not
restrictive, since the construction can easily be extended to
polyhedral partitions. Finally, we are exclusively interested
in implementation of the continuous PWA controllers as
presented in Assumption IV.4.

Given a PWA controller

u(x) = Hix+Gi for x ∈ Xi, (40)

defined over a polytopic partition {Xi}i∈IN of a polytope
X ⊂ Rd satisfying Assumptions IV.1, IV.2 and IV.4, let
Iuns ⊂ IN denote the index set such that {Xi}i∈Iuns rep-
resents the unsaturated partition of {Xi}i∈IN and u(x). Also,
we use `uns(x) to denote a convex lifting for {Xi}i∈Iuns , i.e.,

`uns(x) = (aunsi )Tx+ bunsi for x ∈ Xi, i ∈ Iuns. (41)

In order to use Algorithm 1, we need to construct a convex
lifting, denoted by `(x), which is defined over the whole X
and coincides with `uns(x) over {Xi}i∈Iuns . To this goal,
two different constructions will be presented in the sequel; the
first one aims to rearrange the saturated regions to reduce the
number of regions and also find a suitable convex lifting over
the rearranged partition, while the second one incorporates the
clipping concept with convex lifting.

A. Construction based on convex lifting for the vertices of the
state space X

The first construction aims to compute an appropriate height
h∗ corresponding to the vertices of X . This height has to
satisfy that the augmented vertices

[
vT `uns(v)

]T
for v ∈⋃

i∈Iuns V(Xi) and
[
vT h∗

]T
for v ∈ V(X )\

⋃
i∈Iuns V(Xi)

build a convex lifting `(x) over X such that `(x) = `uns(x) for
x ∈

⋃
i∈Iuns Xi and `(x) = h∗ for x ∈ V(X )\

⋃
i∈Iuns V(Xi).

This construction is presented in Algorithm 5.
The following lemma represents the most important prop-

erty of `(x) resulted from Algorithm 5.

Lemma IV.5 `(x) obtained from Algorithm 5 satisfies:

`(x) = `uns(x) for all x ∈
⋃

i∈Iuns
Xi.

Proof: Consider any point
[
xT z

]T ∈ Π, defined in (43).
This point can be described as a convex combination of the
points in Π1,Π2 as follows:

α(v), β(v) ≥ 0,∑
v∈

⋃
i∈Iuns V(Xi)

α(v) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v) = 1,

[
xT z

]T
=

∑
v∈

⋃
i∈Iuns V(Xi)

α(v)
[
vT `uns(v)

]T
+

∑
v∈V(X )\

⋃
i∈Iuns V(Xi)

β(v)
[
vT h∗

]T
.
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Algorithm 5 Construct a convex lifting over X ⊂ Rd, coinci-
dent with `uns(x) over the unsaturated partition {Xi}i∈Iuns .
Input: {Xi}i∈Iuns , `uns(x) defined in (41), X and a given
constant c > 0.
Output: h∗, `(x).

1: Solve the problem:

h∗ = min
h
h s.t. h ≥ c+ (aunsi )T v + bunsi ,

∀i ∈ Iuns, ∀ v ∈ V(X )\
⋃

i∈Iuns

V(Xi)
(42)

2: Construct the polytope

Π1 =

{[
v

`uns(v)

]
: v ∈

⋃
i∈Iuns

V(Xi)

}
⊂ Rd+1,

Π2 =

{[
v
h∗

]
: v ∈ V(X )\

⋃
i∈Iuns

V(Xi)

}
⊂ Rd+1,

Π = conv (Π1 ∪Π2)

(43)

3: Solve the following parametric linear program:

`(x) = arg min
z
z subject to

[
xT z

]T ∈ Π. (44)

Denote also z(x) = max
j∈Iuns

(aunsj )Tx+bunsj for x ∈ X . Clearly,

z(x) = `uns(x) for x ∈
⋃
i∈Iuns Xi and is known to be a

convex function over X . According to (42), it follows that:∑
v∈

⋃
i∈Iuns V(Xi)

α(v)`uns(v) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)h∗

≥
∑

v∈
⋃

i∈Iuns V(Xi)

α(v)z(v)

+
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)(c+ z(v))

≥ z(x) +
∑

v∈V(X )\
⋃

i∈Iuns V(Xi)

β(v)c ≥ z(x).

If x ∈ Xi for i ∈ Iuns, then the equality only happens when
β(v) = 0 for v ∈ V(X )\

⋃
i∈Iuns V(Xi). In other words, when

x ∈
⋃
i∈Iuns Xi the minimal cost function of (44) satisfies

`(x) = z(x) = `uns(x).
Let {Yj}j∈IM denote the state-space partition associated with
`(x) obtained from Algorithm 5. The following corollary
presents another property of such a function `(x).

Corollary IV.6 `(x) obtained from Algorithm 5, represents a
convex lifting for the polytopic partition {Yj}j∈IM of the state
space X .

Proof: The proof follows as a direct consequence of
Lemma II.8.
According to Lemma IV.5, for each region Xi of the un-
saturated partition {Xi}i∈Iuns , there exists a region Yj of
{Yj}j∈IM such that Yj = Xi. If Imax ⊂ IN (Imin ⊂ IN )
denotes the set of indices such that each region Xj , j ∈ Imax

(j ∈ Imin) is associated with saturated controller u(x) = umax

(u(x) = umin) for x ∈ Xj , then IN = Iuns∪Imax∪Imin. De-
fine the following controller, denoted by f̃pwa(x), associated
with {Yj}j∈IM :

f̃pwa(x) =



u(x) if x ∈ Yj s.t. ∃i ∈ Iuns,Yj = Xi
umax if x ∈ Yj s.t. Yj ⊂

⋃
i∈Imax

Xi

umin if x ∈ Yj s.t. Yj ⊂
⋃

i∈Imin

Xi

Note that the newly obtained PWA control law f̃pwa(x) is
equivalent to the given one u(x) in the sense that f̃pwa(x) =

u(x) for all x ∈ X . Therefore, it suffices to implement f̃pwa(x)
as in Algorithm 1.

Remark IV.7 In the case the given PWA control law u(x) is
of multiple inputs, then implementation of this controller ac-
cording to the construction of convex liftings as in Algorithm
5 can be carried out componentwise. Roughly speaking, the
implementation of u(x) can be summarized as follows:

• construct a convex lifting (`uns)(i)(x) for the unsaturated
partition, denoted by {Xj}j∈I(i) , of the state-space par-
tition {Xj}j∈IN (I(i) ⊆ IN ) associated with the i-th
component u(i)(x) of the given PWA controller u(x);

• construct an extended convex lifting, denoted by `(i)(x)
defined over X for (`uns)(i)(x) as in Algorithm 5;

• rearrange each component u(i)(x) of the given PWA con-
troller u(x) according to `(i)(x); denote this rearranged
component by ũ(i)(x)

• implement each rearranged component ũ(i)(x) as in Al-
gorithm 1.

Note also that in this multiple-input case, the unsaturated parti-
tions {Xj}j∈I(i) of {Xj}j∈IN associated with the components
u(i)(x) of u(x), may not be identical.

B. Construction based on convex lifting and clipping

Although the construction of `(x) in Algorithm 5 shows
an advancement in terms of efficient storage, the number of
affine functions composing `(x) may be still relatively large.
We now present a more efficient construction that can consid-
erably reduce the number of affine functions. This construction
employs convex liftings and the concept of clipping presented
in [24].

As mentioned in the proof of Lemma IV.5, we can choose
such a convex lifting `(x) as follows:

`(x) = max
j∈Iuns

(aunsj )Tx+ bunsj for x ∈ X . (45)

Obviously, this construction ensures that `(x) = `uns(x) for all
x ∈

⋃
i∈Iuns Xi. Let {Yi}i∈IM denote the polytopic partition

of X associated with the convex lifting `(x) defined in (45).
For ease of presentation, denote `(x) as follows:

`(x) = ãTi x+ b̃i for x ∈ Yi. (46)
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According to the new state-space partition {Yi}i∈IM , a (non-
equivalent) rearrangement of the given control law u(x),
denoted by f̃pwa(x), is put forward as follows:

f̃pwa(x) = H̃ix+ G̃i = Hjx+Gj for x ∈ Yi
such that j ∈ Iuns, Xj ⊆ Yi.

(47)

Note that determining the new partition {Yi}i∈IM in (46)
requires solving a linear parametric programming problem
with the number of constraints equal to |Iuns| = M and a
1-dimensional decision variable. Accordingly, the definition
of f̃pwa(x) in (47) just involves in set comparisons available,
e.g., in MPT 3.0 [22]. The following corollary represents a
property of f̃pwa(x) constructed in (47).

Corollary IV.8 If u(x) defined in (40) is continuous, then
f̃pwa(x) is continuous over

⋃
i∈Iuns Xi.

Proof: It can be observed that f̃pwa(x) = u(x) over⋃
i∈Iuns Xi. Obviously, the proof directly follows.

Note also that the continuity of f̃pwa(x) may not be guaranteed
over X\

⋃
i∈Iuns Xi, as this property is not accounted for in

the definition of f̃pwa(x) in (47). However, in implementation,
f̃pwa(x) will be saturated over this region such that the given
constraints are respected. The implementation is summarized
in Algorithm 6.

Algorithm 6 Efficient implementation of PWA controllers
based on convex lifting and clipping

1: Store `(x) defined in (45), denoted as in (46) and the PWA
controller f̃pwa(x) defined as in (47).

2: At each sampling time, obtain the current state x.
3: Find index i ∈ IM such that:

ãTi x+ b̃i = max
j∈IM

(ãTj x+ b̃j).

4: Evaluate the control law

u∗(x) =


H̃ix+ G̃i if umin ≤ H̃ix+ G̃i ≤ umax

umax if H̃ix+ G̃i > umax

umin if H̃ix+ G̃i < umin.

5: Return to step 2.

Note that by the saturation in Step 4, u∗(x) is equivalent to
the given PWA controller, i.e., u∗(x) = u(x), see [19], [24].

Remark IV.9 Algorithm 6 can be easily extended to the
multiple-input case. More precisely, unlike the implementation
in Subsection IV-A, this implementation, based on convex
lifting and clipping, only requires the construction of a sin-
gle convex lifting for the unsaturated partition of {Xi}i∈IN
associated with u(x) instead of a convex lifting for each
component of u(x). Accordingly, the given multiple-input
u(x) can be implemented as in Algorithm 6 where Step 4
has to be modified to carry out the componentwise saturation.
Namely, if du denotes the dimension of u(x), then

u∗(x) =
[
(u∗)(1)(x) . . . (u∗)(du)(x)

]T
,

where (u∗)(j)(x) for j ∈ Idu are defined as follows:

(u∗)(j)(x) =


H̃

(j)
i x+ G̃

(j)
i if u(j)min ≤ H̃

(j)
i x+ G̃

(j)
i ≤ u

(j)
max

u(j)max if H̃
(j)
i x+ G̃

(j)
i > u(j)max

u
(j)
min if H̃

(j)
i x+ G̃

(j)
i < u

(j)
min,

and H̃
(j)
i , G̃

(j)
i , u

(j)
max, u

(j)
min again denote the j-th row of ma-

trices H̃i, G̃i, umax, umin.

C. Complexity analysis

In the following, we assess memory and runtime complexity
of the proposed approaches in the context of implementation of
PWA controllers. As a reference, the total memory consumed
by the original PWA control law together with its underlying
partition, {Xi}i∈IN , is

∑N
i=1(ci + du)(d + 1) real numbers,

where ci denotes the number of halfspaces defining the i-th
region. On the other hand, storing the simpler controller ob-
tained via Section IV-A and its associated control law requires
M(1 + du)(d + 1) real numbers, where M is the number of
affine terms of the convex lifting, resulted from Algorithm 5.
Finally, the memory footprint of the implementation proposed
in Section IV-B amounts to |Iuns|(1 + du)(d+ 1) + 2du real
numbers, where the second term denotes a negligible memory
needed to encode the clipping function in Algorithm 6.

In addition, we quantify the necessary on-line computational
effort. Specifically, the standard implementation of the original
PWA control law via sequential search consists of the point
location problem, i.e., finding index i of the region Xi that
contains x, and evaluation of the corresponding control law.
In the worst case, this amounts to

∑N
i=1 ci(2d + 1) + 2dud

floating point operations (FLOPs). Note that the proposed
implementations based on convex lifting may perform this
task in a very efficient way, in particular the one described
by Algorithm 6 exploiting clipping, without the need to carry
out expensive point location. In total, it requires a constant
number of 2|Iuns|d+2dud+2du FLOPs, which is a significant
reduction in runtime complexity, even if |Iuns| = N was the
case (typically |Iuns| �

∑N
i=1 ci).

It should be noted that all the above figures do not consider
evaluating and storing the full optimizer as only its first
element is required for implementation of PWA controllers
in a receding horizon fashion.

In terms of complexity reduction in explicit MPC, one may
compare the proposed convex lifting approach, e.g., with the
clipping-based implementation of [24] as they both exploit the
concept of clipping. The latter, however, relies on replacing
some of the saturated regions by extensions of the unsaturated
ones, while the achievable reduction may range from none to
the case when the new partition has |Iuns| regions. Another
technique of [25] in turn requires to only store the unsaturated
regions by employing a separating function. Clearly, both of
the aforementioned approaches necessitate storing a modified
state-space partition, and hence performing the point location
at each sampling instant. Alternatively, a regionless implemen-
tation of explicit MPC was proposed in [11], and recently
extended in [26]. Its nature, however, renders it applicable for
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MPC problems with rather larger parametric space and short
prediction horizons.

It is worth recalling that the technique presented in [7]
proposes for efficient implementation of PWA controllers the
use of a so-called descriptor function for parametric quadratic
programming and the optimal cost function for parametric lin-
ear programming, which allow to avoid storing the state-space
partition. Therefore, its storage demand is N(1 + du)(d + 1)
real numbers which is much less than

∑N
i=1(ci+du)(d+1) real

numbers required by the original implementation. However, it
is usually the case that N(1+du)(d+1)� |Iuns|(1+du)(d+
1) + 2du, since N � |Iuns|. Accordingly, the method in [7]
requires a larger memory footprint than the one by Algorithm
6. Moreover, the online implementation of the technique in [7]
requires (2d−1)N+

∑N
i=1 ci FLOPs in the worst case, which

is much more demanding than the one by Algorithm 6 with
2|Iuns|d+ 2dud+ 2du FLOPs since

∑N
i=1 ci � N � |Iuns|.

On the other hand, the method in [8] makes use of a hash
table which allows for acceleration of the online evaluation,
however, at the price of additional storage requirement besides
the memory needed to store the state-space partition. Con-
sequently, this method does not help reducing the memory
footprint. For reading ease, a summary of these aspects is
reported in Table II.

It is worth emphasizing that the method in [42] presents
a construction of binary search trees which can achieve a
logarithmic time for the point-location problem. However, the
memory footprint requirement is still much more demanding
than the proposed method in Subsection IV-B, since in addition
to the constructed binary search tree, it also requires to store
all the unique hyperplanes of the state-space partition whose
number is much larger than the number of unsaturated regions.
To illustrate this point, in the example of Subsection V-A
with Np = 20, the implementation presented in Subsection
IV-B requires to store 73 hyperplanes, while the one in [42]
needs to store 3270 hyperplanes besides a binary search tree
of 5189 nodes. Combination of lattice representation of PWA
functions and truncated binary search tree is introduced in
[9] to provide a better trade-off between the memory footprint
requirement and the online evaluation over the method in [42].
However, drawing a clear comparison between this method and
the convex lifting based ones is not straightforward.

Remark IV.10 We remark that the limited computational
accuracy might practically lead to the case where several
neighboring regions are associated with very similar affine
functions of a convex lifting, if the scalar constant c > 0
chosen in (15) or (29) is too small. This case can be avoided
by increasing c to a sufficiently large value, e.g., c should be
greater than a tolerable error but not large in absolute value as
long as it affects the slope of the respective affine functions.

In order to assess the scalability of the proposed imple-
mentations, one can see that it primarily depends on the
tractability of the construction of convex liftings. As for the
constructions of convex lifting in Algorithms 2 and 3, the
number of constraints of the optimization problems (16) and
(30) scales quadratically with the number of regions in the

given partition. Therefore, the construction of convex liftings
becomes more demanding, as the number of regions and di-
mension increase. However, since the construction of a convex
lifting is performed offline, it is reasonable to assume that
sufficient computational resources are available. In addition,
one may choose among a plethora of efficient linear/quadratic
programming solvers. Note also that the number of unsaturated
regions is usually much smaller than the one of the original
partition, i.e., |Iuns| � N, therefore we only need to work
with partitions of much less regions. To this end, we refer the
reader to Table I for illustration.

TABLE I: Computational time for the constructions of convex
liftings via different examples.

d du N |Iuns| Algo. 2 [s] Algo. 3 [s]

2 1

1089 99 0.495 0.400
3640 139 0.429 0.526
5583 173 0.567 0.503
5207 679 1.017 2.609

3 1
591 115 0.766 0.705

1887 223 2.492 1.491
2845 377 5.747 3.130

4 2

655 73 0.442 0.432
437 149 2.359 1.145

1681 401 18.642 1.907
1913 1425 1205.73 67.351

5

1 57 37 0.452 0.315

2
821 651 12.670 10.111
963 729 24.121 15.465

3 992 992 789.615 42.050

V. ILLUSTRATIVE EXAMPLES

A. Example 1

To illustrate the above proposed schemes, consider the
double integrator system:

xk+1 =

[
1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk. (48)

We design a PWA controller based on linear model predictive
control which minimizes the following quadratic cost function:

Np−1∑
i=0

(
xTk+i|kQxk+i|k + uTk+i|kRuk+i|k

)
+xTk+Np|kPxk+Np|k,

where Q = I2, (I denotes an identity matrix of suitable
dimension), R = 10, P is set to be the solution of discrete-
time Riccati equation and the prediction horizon Np equal
to 10. Note that xk+i|k, uk+i|k denote the state and control
variables at time k+ i, predicted at instant k. This problem is
subject to the following constraints:

− 2 ≤ uk+i|k ≤ 2 for 0 ≤ i ≤ Np − 1,

xk+Np|k ∈ Xf ,

where Xf denotes the terminal constraint set as the maximal
positively invariant set associated with the local control law
u =

[
−0.2554 −0.7590

]
x. The above problem is explicitly

solved using MPT 3.0 [22]. The resulting PWA controller is
presented in Fig.7 with the red and green controllers denoting
where the control action attains the minimal and maximal
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TABLE II: A comparison of memory footprint and online evaluation of different methods

Method Memory footprint [ # real numbers ] Online evaluation [FLOPs]

Original explicit solution
∑N

i=1(ci + du)(d+ 1)
∑N

i=1 ci(2d+ 1) + 2dud

Clipping-based approach [24]
∑

i∈I
Ñ
(c̃i + du)(d+ 1)a 2ddu +

∑
i∈I

Ñ
c̃i(2d+ 1)

Separation-based approach [25]
∑

i∈Iuns (ci + du)(d+ 1) 2ddu +
∑

i∈Iuns ci(2d+ 1)

CL-based approach per Sec. IV-B |Iuns|(1 + du)(d+ 1) + 2du 2|Iuns|d+ 2dud+ 2du

Descriptor function [7] |IN |(1 + du)(d+ 1) (2d− 1)|IN |+
∑N

i=1 ci

Hash table [8] >
∑N

i=1(ci + du)(d+ 1) ∗
∗ For simplicity, the complexity of online evaluation for this method is not reported, since additional notation is required.
a Ñ denotes the number of regions of the modified partition and c̃i denotes the number of halfspaces of its i-th region, while
|Iuns| ≤ Ñ ≤ N in general.

values, respectively. In particular, the corresponding state-
space partition consists of 73 unsaturated regions, 160 regions
where u(x) = −2 and 160 regions where u(x) = 2. Storing
all the 393 regions in this case amounts to 4758 real numbers,
with additional 1179 real numbers needed to encode the
PWA control law. Assuming double precision arithmetics, the
total memory footprint of the original MPC controller is 48
kilobytes. The worst-case computational effort required for its
online evaluation is 7934 FLOPs.

Fig.8 in turn depicts a convex lifting obtained from Algo-
rithms 2 and 5. The associated state-space partition {Yj}j∈IM
is shown only for illustration, where the red and green regions
represent the rearrangement of the partitions {Xi}i∈Imin and
{Xi}i∈Imax , respectively, according to the constructed convex
lifting. The yellow regions represent {Xi}i∈Iuns , which does
not change after the rearrangement. This regionless MPC
implementation hence requires to only store the convex lifting
and the corresponding PWA feedback, which in total amounts
to 6.7 kB, implying a reduction by a factor of 7.2. Evaluating
the optimal control action requires 559 FLOPs, which is 14.2
times less than in the case of the original explicit solution.

Finally, a convex lifting constructed per Algorithm 2 and
equation (45) is depicted in Fig.9. The total memory footprint
of the resulting regionless controller is 3.5 kB, i.e., the memory
consumption is reduced by a factor of 13.7. Accordingly, the
online evaluation effort reduces to mere 298 FLOPs, which is
26.6 times faster than the worst-case runtime of the original
controller.

To assess how the controller complexity in the considered
MPC example scales with problem size, in particular with the
prediction horizon, we report the related memory consumption
data in Table III. The proposed approaches are also compared
with the clipping and separation based MPC implementations
of [24] and [25], respectively. One may observe the significant
complexity reduction of explicit solutions achieved via the
convex lifting based techniques (denoted by CL), in particular
the latter one, described in Section IV-B. The online evaluation
effort is omitted here for brevity, however, it scales better
in favor of the convex lifting based approach as it does not
perform the traditional point location (c.f. Section IV-C). This
clearly allows for controller deployment even on low-end em-
bedded microcontroller platforms with limited storage capacity
and computational power. Similarly, the offline computational
time is substantially lower for the proposed approach (1-2 s to
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Fig. 7: The original PWA controller.
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Fig. 8: A convex lifting obtained from Algorithms 2 and 5 and
its associated state-space partition.

obtain `uns(x) for Np = 50). We remark that the approach is
accordingly applicable for problems involving a higher number
of parameters or optimization variables.
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Fig. 9: A convex lifting obtained from Algorithm 2 and
equation (45) and its associated state-space partition.

TABLE III: Memory consumption in kilobytes for different
implementations of the MPC example.

Np= 20 30 40 50
Original explicit solution 133.4 265.1 445.7 681.7
Clipping-based approach [24] 49.6 95.3 242.8 401.9
Separation-based approach [25] 12.1 14.5a 17.0a 21.1a

CL-based approach per Sec. IV-A 10.8 14.6 18.5 24.1
CL-based approach per Sec. IV-B 4.8 5.7 6.7 8.3
a These figures were obtained from theoretical formulas since the computation failed

in these cases.

B. Example 2

In this subsection, we consider a higher-dimensional system
to show more clearly the efficiency of the proposed algorithms.
To this goal, the quadruple tank system in [23] is accounted
for and its mathematical model is represented as follows:

xk+1 = Axk +Buk

where matrices A,B are given below:

A =


0.9762 0 0.0129 0

0 0.9719 0 0.0086
0 0 0.9870 0
0 0 0 0.9913



B =


0.0024 0

0 0.0021
0 0.0014

0.001 0

 .
The state and control variable are subject to the following
constraints:

‖xk‖∞ ≤ 20, ‖uk‖∞ ≤ 2.

An explicit MPC controller is computed by minimizing the
same quadratic cost function as in Subsection V-A with
Q = I4, R = I2, P is also obtained from the Riccati
equation and Np = 20. For simplicity, terminal constraints
are not considered in this example, accordingly one obtains
a controller associated with 439 regions and 57 of them are
unsaturated. The memory footprint and the online evaluation
of different methods are reported in Table IV. This result again

emphasizes the benefit of the convex lifting based approach
in implementation of PWA controllers. Application of the

TABLE IV: Comparison of different implementation methods
where memory consumption and the worst-case online evalu-
ation are in kilobytes and FLOPs, respectively.

Methods Memory Onl. evaluation
Original explicit solution 167.6 30724
Clipping-based approach [24] 26.6 5128
CL-based approach per Sec. IV-B 6.7 476

proposed methods on the real-time cantilever beam system
is also studied in [20], the interested reader is referred to this
reference for further detail.

VI. CONCLUSION

This paper presented the concept of convex liftings and
its application in control theory. Accordingly, two different
algorithms to construct convex liftings have been put forward.
This concept was also shown to be useful for efficient imple-
mentation of PWA controllers via two proposed schemes. They
allow for significant reduction of both the storage requirement
and runtime complexity. Finally, complexity analysis and
numerical examples were considered to illustrate advantages
of the proposed techniques compared to existing methods.
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[20] M. Gulan, G. Takács, N. A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe,
and B. Roha-Ilkiv, “Embedded linear model predictive control for 8-bit
microcontrollers via convex lifting,” in the 20th IFAC World Congress,
Toulouse, France, July 9–14 2017.

[21] D. Hartvigsen, “Recognizing voronoi diagrams with linear program-
ming,” ORSA Journal on Computing, vol. 4, no. 4, pp. 369–374, 1992.

[22] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in European Control Conference (ECC), Zürich, Switzer-
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VII. APPENDIX

Proof of Theorem III.12

Let H(Xi) be the set of supporting hyperplanes of Xi at its
facets; also define H(X ) =

⋃
i∈IN H(Xi). We will show that

the decomposition of X by H(X ) leads to a new cell complex
{Yj}j∈IM which is convexly liftable. As presented above,
such a decomposition is denoted as hyperplane arrangement.
The convex liftability of such a decomposition can be proven
by returning to the concept of stresses. (Details about stresses,
star, inward unit normal vector, equilibrium can be found in
[28]).

We recall that the relative boundary of a cell complex
{Yj}j∈IM of a polyhedron X is the boundary of X . An
internal face of {Yj}j∈IM is a face which does not belong to
its relative boundary. Considering any internal (d − 2)−face
F0 of {Yj}j∈IM , this (d − 2)−face F0 is the intersection of
finitely many hyperplanes in H(X ). If F (d−1)(F0) denotes the
set of all (d−1)−faces in the star of F0 (i.e. the (d−1)−faces
of {Yj}j∈IM sharing a common facet F0), then for each
F

(d−1)
i ∈ F (d−1)(F0), there exists a unique F (d−1)

j 6= F
(d−1)
i

and F
(d−1)
j ∈ F (d−1)(F0) such that F (d−1)

i , F
(d−1)
j lie in a

common hyperplane of H(X ) and they have a common facet
F0. Accordingly, it can be seen that the inward unit normal
vectors to the faces F

(d−1)
i , F

(d−1)
j at their common facet

F0, denoted by n(F0, F
(d−1)
i ), n(F0, F

(d−1)
j ), respectively,

satisfy:
n(F0, F

(d−1)
i ) = −n(F0, F

(d−1)
j ).

Thus, a pair of coefficients of strictly positive stresses
s(F

(d−1)
i ), s(F

(d−1)
j ) exists ( e.g. s(F (d−1)

i ) = s(F
(d−1)
j ) =

1) such that:

s(F
(d−1)
i )n(F0, F

(d−1)
i ) + s(F

(d−1)
j )n(F0, F

(d−1)
j ) = 0.

Applying the same argument for all elements of F (d−1)(F0),
one can obtain a strictly positive d−stress such that F0 is in
equilibrium. �
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member of the CNRS Laboratory of Signals and
Systems and of the INRIA team DISCO, all these
institutions being part of the Paris-Saclay University
in France. His research interests are encompassing
the optimization-based control design, set-theoretic
characterization of constrained dynamical systems
as well as the numerical methods in control. He
is currently involved in research projects related to
embedded predictive control, fault tolerant control
and time-delay systems.

Pedro Rodrı́guez-Ayerbe received the technical
engineering Diploma in electronics from Mondragon
University, Arrasate, Spain, in 1993, and the Engi-
neering degree in electrical engineering from SU-
PELEC, Gif sur Yvette, France, in 1996. In 2003,
he received the Ph.D. degree in automatic control
from SUPELEC and the Universit Paris Sud, Orsay,
France. He is currently an Associate Professor in
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