
HAL Id: hal-01720263
https://centralesupelec.hal.science/hal-01720263

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A piecewise affine control Lyapunov function for robust
control

Ngoc Anh Nguyen, Sorin Olaru

To cite this version:
Ngoc Anh Nguyen, Sorin Olaru. A piecewise affine control Lyapunov function for robust control. 16th
European Control Conference (ECC 2018), Jun 2018, Limassol, Cyprus. �10.23919/ecc.2018.8550436�.
�hal-01720263�

https://centralesupelec.hal.science/hal-01720263
https://hal.archives-ouvertes.fr


A piecewise affine control Lyapunov function for robust control

Ngoc Anh Nguyen1, Sorin Olaru1

Abstract— This paper presents the construction of a convex
piecewise affine control Lyapunov function for constrained
linear discrete-time systems, affected by bounded additive
disturbances. Exploiting the properties of this control Lyapunov
function, the closed-loop dynamics are shown to converge to a
given full-dimensional robust positively invariant set. Moreover,
the proposed method leads to a simple robust control algorithm
which only requires solving a linear programming problem
at each sampling instant. Finally, the controller design is
illustrated via a numerical example.

I. INTRODUCTION

Lyapunov stability stands for a fundamental concept in
control theory [23], since it has been applied in intensive
studies related to both stability analysis and control design.
Accordingly, control Lyapunov functions are usually em-
ployed to design controllers ensuring closed-loop stability
in the sense of Lyapunov [20], [39]. Such control Lyapunov
functions are usually chosen a priori with special properties.
In the case of linear optimal control, suitable quadratic cost
functions represent common control Lyapunov candidates,
see for instance [1], [8], [10]. Also, polynomial control
Lyapunov functions are used for linear/bilinear systems with
nonlinear control laws in [37], [38]. Moreover, model predic-
tive control (MPC) usually employs infinite horizon quadratic
control Lyapunov functions, as shown in [9], [22], [24]. In
case the underlying system is subject to constraints, such
control Lyapunov functions should be determined such that
the recursive feasibility is ensured. This problem is closely
related to determining the feasible region.

One of the first studies on piecewise linear control Lya-
punov functions for linear systems was presented in [16] for
the nominal case, this result was subsequently extended for
the robust case to cope with bounded additive disturbances
and/or polytopic uncertainties in [6], [26], [35]. Although
these studies lead to simple design formulations as linear
programming problems, using these piecewise linear control
Lyapunov functions cannot however provide explicitly the
convergence region over which these functions are no longer
strictly decreasing along the trajectories. Such a convergence
region is usually known to be a robust positively invariant
set. On the other hand, the recent study in [32] shows that
a suitable convex lifting can ensure the convergence of the
closed-loop dynamics to a given full-dimensional robust pos-
itively invariant set. Unfortunately, the closed-loop stability
shown in this reference is not characterized in the sense
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of Lyapunov. In this paper, these drawbacks are resolved
by means of a suitable construction of control Lyapunov
function. More precisely, we present the construction of a
convex piecewise affine control Lyapunov function which
is more general than the piecewise linear family. Also, the
constructed control Lyapunov function is able to ensure
that the closed-loop dynamics converge to a given full-
dimensional robust positively invariant set as time tends to
infinity, leading to a simple control design procedure which
only requires solving a linear program at each sampling
instant. This result could be useful for systems with fast
dynamics, e.g. active vibration system [14], [15].

Generalities and basic notions

Throughout the paper, R,N,N>0 denote the field of real
numbers, the set of nonnegative integers and the positive
integer set, respectively. The following index set is also
defined for a given N ∈ N>0: IN = {1, 2, . . . , N}. A poly-
hedron is defined as the intersection of finitely many closed
halfspaces. A polytope is defined as a bounded polyhedron.
Also, V(P ) denotes the set of vertices of polytope P. We
use int(S) to denote the interior of a full-dimensional set
S, while conv(S) denotes the convex hull of S. Given two
sets S1, S2 ⊂ Rd, by S1\S2, we denote the following set:
S1\S2 =

{
x ∈ Rd : x ∈ S1, x /∈ S2

}
. Also, the Minkowski

sum of these two sets, denoted by S1 ⊕ S2, is defined as
follows: S1 ⊕ S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2} .

II. PROBLEM SETTINGS

In this paper, we consider a linear time-invariant system,
affected by additive disturbances:

xk+1 = Axk +Buk + wk, (1)

where xk, uk, wk denote the state, control variable and
additive disturbance at time k. These variables satisfy

xk ∈ X, uk ∈ U, wk ∈W, (2)

where the constraint sets X ⊂ Rdx ,U ⊂ Rdu ,W ⊂ Rdx
are assumed to be polytopes, containing the origin in their
interior, for given dx, du ∈ N>0. This system is assumed to
satisfy the following assumption.

Assumption 1: The pair (A, B) is controllable.
In the sequel, the aim is to construct a control Lyapunov
function, usually referred to as a convex lifting [27]. More
clearly, the control Lyapunov function presented in this paper
represents the convex and piecewise affine properties, which
is more general than the piecewise linear family as in [6],
[26], [35]. Furthermore, this control Lyapunov function leads
to a result stronger than the one presented in the above



references, i.e., the closed-loop dynamics converge to a given
full-dimensional robust positively invariant set as time tends
to infinity.

III. CONSTRUCTION OF CONTROL LYAPUNOV FUNCTION

Before presenting the main result, several important con-
cepts will be recalled. They are instrumental in the proposed
construction of control Lyapunov function. Positive invari-
ance concept has been investigated in many studies [3]–[5],
[7] and has been used in different control strategies. In case
the system is affected by disturbances, the robust positive
invariance concept is of use instead.

Definition 3.1: Given an admissible control law u =
Kx ∈ U, a set Ω ⊆ X is called robust positively invariant
with respect to system (1) subject to constraint (2) iff

(A+BK)Ω⊕W ⊆ Ω.
Such a controller u = Kx ∈ U can be obtained by
solving the discrete-time algebraic Riccati equation. This
controller is only used to obtain a robust positively invariant
set via existing algorithms [12], [21], [26], [36], which is an
important element for the construction of a control Lyapunov
function in this paper.

Another important component for the proposed construc-
tion is the feasible region. In this paper, we restrict our
attention to a λ−contractive set for a given λ ∈ [0, 1) . Its
definition is recalled below.

Definition 3.2: Consider system (1) subject constraint (2).
A set X ⊆ X is called λ−contractive for a given 0 ≤ λ <
1, if there exists a control law u = κ(x) ∈ U such that
(Ax+Bκ(x))⊕W ⊆ λX , ∀x ∈ X .
The maximal λ−contractive set, denoted as Pλ, is defined
as the smallest set in X containing all the λ−contractive
sets in X. Algorithms for the computation of the maximal
λ−contractive set are referred to [6], [19]. Throughout the
rest of this paper, we will use Pλ as the feasible region and
Ω as the given robust positively invariant set. Pλ and Ω are
assumed to satisfy the following properties.

Assumption 2: Ω, Pλ are full-dimensional polytopes and
satisfy Ω ⊂ Pλ.
It is worth emphasizing that Assumption 2 is not restrictive,
since one can choose a value of λ ∈ [0, 1) sufficiently large
to satisfy Ω ⊂ Pλ. Given a robust positively invariant set Ω
and a constant δ > 0, we define the following elements:

V̂0 :=
{[
vT δ

]T
: v ∈ V(Ω)

}
∪ {0} ⊂ Rdx+1,

Π̂0 := conv(V̂0),

τ(x) := arg min
z
z s.t.

[
xT z

]T ∈ Π̂0.

(3)

Important properties of function τ(x), defined in (3), are
presented in the following lemma.

Lemma 3.1: τ(x), defined in (3),
1) is a convex, continuous, piecewise affine function;
2) satisfies 0 ≤ τ(x) ≤ δ for all x ∈ Ω;
3) satisfies τ(x) = 0 only if x = 0;
4) satisfies τ(x) = δ for x ∈ V(Ω).

The proof is referred to Subsection VII-A for reading ease.

Remark 3.1: We remark that one can choose any value of
constant δ > 0 to construct τ(x) as in (3) without affecting
its properties shown in Lemma 3.1.

We now construct a control Lyapunov function `(x) de-
fined over the maximal λ−contractive set. As will be clear
later, function `(x) is required to be convex, piecewise affine
and its values over the vertices of Pλ not belonging to Ω are
identical. More precisely, we need to give a suitable height h
to the vertices of Pλ such that `(v) = h for all v ∈ V(Pλ)\Ω.
Furthermore, function `(x) should satisfy `(x) = τ(x) for
all x ∈ Ω. These requirements will be of use later to prove
the strict decrease of `(x) along the trajectories in Pλ\Ω.

As proven in Lemma 3.1, τ(x) defined in (3), is a
piecewise affine function, thus let {Ωj}j∈IM denote the
polytopic partition of Ω associated with τ(x) (the definition
of a polyhedral/polytopic partition is referred to [31]) and
we denote τ(x) as follows:

τ(x) = aTj x+ bj for x ∈ Ωj , (4)

where aj ∈ Rdx , bj ∈ R, j ∈ IM for a suitable M ∈ N>0.
Define also the following function:

τ̂(x) := max
j∈IM

aTj x+ bj for all x ∈ Rdx . (5)

Obviously, function τ̂(x) is convex over Rdx by its definition.
Moreover, this function possesses the following property.

Lemma 3.2: Function τ̂(x), defined in (5), satisfies
τ̂(x) = τ(x) for all x ∈ Ω.

Proof: As proven in Lemma 3.1, τ(x) is a convex,
piecewise affine function over Ω, accordingly it can also be
represented by:

τ(x) = max
j∈IM

aTj x+ bj for all x ∈ Ω. (6)

Therefore, the definition of τ̂(x) in (5) satisfies τ̂(x) = τ(x)
for any x ∈ Ω.
The construction of a control Lyapunov candidate `(x) over
Pλ, satisfying the above requirements, is put forward in the
sequel with respect to a given constant ε > 0:

h := min
z
z s.t. τ̂(v) + ε ≤ z, ∀v ∈ V(Pλ)\Ω,

V̂ :=
{[
vT h

]T
: v ∈ V(Pλ)

}
∪ V̂0,

Π̂ := conv(V̂ ),

`(x) := arg min
z
z s.t.

[
xT z

]T ∈ Π̂.

(7)

The construction of `(x) in (7) requires solving parametric
linear programming problems, which can be performed by
means of existing algorithms in [2], [13], [33], [34]. This
function represents the following properties.

Lemma 3.3: Function `(x) defined in (7) is convex, con-
tinuous and piecewise affine.

Proof: The proof follows similar arguments of claim
1) in Lemma 3.1.
For ease of presentation, let {Xi}i∈IN for a suitable N ∈
N>0 denote the polytopic partition of Pλ associated with
function `(x). It can also be proven that function `(x) repre-
sents a convex lifting for the polytopic partition {Xi}i∈IN .



The interested reader is referred to [27]–[29] for further
details about the definition of convex lifting and the proof
of the above observation.

We now prove that function `(x), defined in (7), satisfies
the aforementioned requirements. This is formally stated in
the following result.

Lemma 3.4: Function `(x), h, δ satisfy:

1) h > δ > 0;

2) 0 ≤ `(x) ≤ h for all x ∈ Pλ;

3) `(x) = h for all x ∈ V(Pλ)\Ω;

4) `(x) = τ(x) for all x ∈ Ω;

5) `(x) > 0 for all x ∈ Pλ\{0};
6) `(x) > δ for x ∈ Pλ\Ω;

7) `(βx) ≤ β`(x) for all 0 ≤ β ≤ 1 and all x ∈ Pλ.
The proof is presented in Subsection VII-B.

Remark 3.2: Note that any value of h larger than the value
obtained in (7) does not affect the properties of function `(x)
shown in Lemma 3.4.

IV. CONTROL DESIGN PROCEDURE

The construction and prominent properties of a control
Lyapunov candidate have been presented in the preceding
section. In this section, we prove that function `(x) defined
in (7) satisfies the properties of a control Lyapunov function.
Definition of a local input-to-state stability (ISS) Lyapunov
function is referred to [18], [20]. Note that since `(x) satisfies
the properties shown in Lemma 3.4, there always exist two
suitable constants c2 > c1 > 0 such that

c1‖x‖∞ ≤ `(x) ≤ c2‖x‖∞ for all x ∈ Pλ; (8)

the proof is referred to Lemma 5.1 in [30]. Therefore, to
prove `(x) to be a control Lyapunov function, one needs
to show that there exists a controller u = κ(x) ∈ U for
all x ∈ Pλ such that `(x) is strictly decreasing along the
trajectories outside the given robust positively invariant set
Ω. Such a controller is put forward in Algorithm 1.

Algorithm 1 Control design procedure
Input: `(x), Pλ.
Output: optimal control action u∗(xk) at each instant.

1: Compute `(xk)
2: Solve the following problem:[

γ∗ (u∗k)T
]T

= arg min
γ, uk

γ

s.t. `(Axk +Buk + w) ≤ γ`(xk), ∀w ∈ V(W)

(Axk +Buk)⊕W ⊆ Pλ, uk ∈ U, γ ≥ 0.

(9)

3: u∗(xk) = u∗k.
4: k ← k + 1. Return to step 1.

We now return to prove that the convex lifting `(x) defined
in (7) and the controller designed in Algorithm 1 satisfy the
strict decrease of `(x) along the trajectories outside Ω. This
is formally stated in the following proposition.

Proposition 4.1: Consider function `(x) defined in (7) and
the controller designed in Algorithm 1, then for any x ∈
Pλ\Ω, it satisfies:

`(Ax+Bu∗(x) + w) < `(x), ∀w ∈W. (10)
Proof: Consider a vertex v ∈ V(Pλ)\Ω. According to

the definition of Pλ in Definition 3.2, there exists a control
action, denoted by u(v) ∈ U, such that

Av +Bu(v) + w ∈ λPλ, ∀w ∈W.

Accordingly, for each w ∈W, there exists a point y(w) ∈ Pλ
such that Av + Bu(v) + w = λy(w). Claims 7) and 3) of
Lemma 3.4 yield

`(Av +Bu(v) + w) ≤ λ`(y(w)) ≤ λh = λ`(v). (11)

Otherwise, if v ∈ V(Pλ) ∩ Ω, there exists a control action,
also denoted by u(v) ∈ U, such that Av+Bu(v)+w ∈ Ω for
all w ∈W, since Ω is robust positively invariant. According
to claim 4) of Lemma 3.4 and Lemma 3.1, we obtain

`(Av +Bu(v) + w) ≤ δ = `(v). (12)

It can be observed that for any x ∈ Pλ\Ω, there exists
a region Xi of the polytopic partition {Xi}i∈IN of Pλ,
associated with `(x) such that x ∈ Xi. As a consequence, x
can be written in the form:

x =
∑

v∈V(Xi)

α(v)v, α(v) ≥ 0,
∑

v∈V(Xi)

α(v) = 1. (13)

As x ∈ Pλ\Ω, there exists at least one vertex v ∈ V(Xi)\Ω
such that α(v) > 0 and subsequently α(v)`(v) > 0, leading
to the following:

`(x) =
∑

v∈V(Xi)

α(v)`(v) (14a)

>
∑

v∈V(Xi)\Ω

α(v)λ`(v) +
∑

v∈V(Xi)∩Ω

α(v)`(v). (14b)

Note that inclusion (14a) is due to the fact that `(x) is affine
over Xi. On the other hand, inclusions (11) and (12) lead to∑

v∈V(Xi)\Ω

α(v)λ`(v) +
∑

v∈V(Xi)∩Ω

α(v)`(v)

≥
∑

v∈V(Xi)

α(v)`(Av +Bu(v) + w).
(15)

According to the convexity of `(x), shown in Lemma 3.3,
one obtains:∑

v∈V(Xi)

α(v)`(Av +Bu(v) + w)

≥ `(Ax+B
∑

v∈V(Xi)

α(v)u(v) + w).
(16)

It is observed that u(v) ∈ U for all v ∈ V(Xi), therefore
the convexity of U yields

∑
v∈V(Xi) α(v)u(v) ∈ U, and

subsequently the following inclusion:

`(Ax+B
∑

v∈V(Xi)

α(v)u(v) + w)

≥ `(Ax+Bu∗(x) + w).

(17)



Finally, incorporating the inclusions (14a)–(17), we conclude
that `(x) > `(Ax + Bu∗(x) + w), ∀w ∈ W, ∀x ∈ Pλ\Ω.
The proof is complete.

We now investigate the behavior of the closed-loop dy-
namics if x ∈ Ω.

Proposition 4.2: Consider function `(x) defined in (7) and
the controller designed in Algorithm 1, then any point x ∈ Ω
satisfies

`(Ax+Bu∗(x) + w) ≤ `(x) + `(w), ∀w ∈W. (18)
Proof: As x ∈ Ω, there exists a region Ωj in the

polytopic partition {Ωj}j∈IM of Ω, associated with τ(x),
such that x ∈ Ωj . Region Ωj has its vertices as vertices of
Ω and the origin. Therefore, x can be written as follows:

x =
∑

v∈V(Ωj)

α(v)v, α(v) ≥ 0,
∑

v∈V(Ωj)

α(v) = 1. (19)

Also, since Ω represents a robust positively invariant set, then
for any v ∈ V(Ω), there exists a control action u(v) ∈ U such
that Av + Bu(v) + w ∈ Ω for all w ∈ W. In other words,
inclusion (12) holds for any v ∈ V(Ω). Accordingly, claim
4) of Lemma 3.4 leads to:

`(x) =
∑

v∈V(Ωj)

α(v)`(v)

≥
∑

v∈V(Ωj)\{0}

α(v)`(Av +Bu(v) + w).
(20)

If one chooses u(0) = 0, then inclusion (20) yields

`(x) + `(w) ≥ `(x) + α(0)`(w)

≥
∑

v∈V(Ωj)

α(v)`(Av +Bu(v) + w) (21a)

≥ `(Ax+B
∑

v∈V(Ωj)

α(v)u(v) + w) (21b)

≥ `(Ax+Bu∗(x) + w). (21c)

Note that inclusion (21b) follows the convexity of `(x) over
Pλ, while inclusion (21c) is derived from the convexity of
U and

∑
v∈V(Ωj)

α(v)u(v) ∈ U.
The main result of the paper is formally stated in the
following theorem.

Theorem 4.3: Given system (1) subject to constraint (2),
the controller designed in Algorithm 1 guarantees the recur-
sive feasibility and input-to-state stability.

Proof: The recursive feasibility is guaranteed by suit-
able γ according to Propositions 4.1 and 4.2. Also, Proposi-
tion 4.1 shows that {`(xk)}∞k=0 is strictly decreasing outside
Ω and bounded in [δ, h], therefore lim

k→∞
`(xk) = δ. Roughly

speaking, xk converges to Ω as time tends to infinity, leading
to the input-to-state stability in the sense of Lyapunov.

Remark 4.1: It is observed that inside Ω the closed-loop
dynamics still continue converging to the minimal robust
positively invariant set with the same controller.

Remark 4.2: Since `(x) represents a convex piecewise
affine function, then formulation (9) is a linear program.
Accordingly, this control Lyapunov function leads to a simple

control algorithm by only requiring the resolution of a linear
programming problem at each sampling instant. Note also
that explicit solution of (9) can be obtained and be imple-
mented by means of the convex lifting concept as presented
in [27]. However, the proposed method is rather convenient
for small-dimensional systems like most of existing set-
theoretic methods.

V. NUMERICAL EXAMPLE

To illustrate the proposed method, we consider the follow-
ing model of a vibration attenuation system [15]:

xk+1 =

[
0.5269 0.0166
−43.0741 0.5182

]
xk +

[
−0.0011
−0.098

]
uk + wk.

Also, the state, control variable and disturbance are subject
to the following constraints:

−
[

10
200

]
≤ xk ≤

[
10
200

]
, ‖uk‖∞ ≤ 100, ‖wk‖∞ ≤ 0.1.

We choose the following controller u =[
−21.3982 0.7397

]
x to compute a robust positively

invariant set Ω. Accordingly, the maximal output admissible
set Ω is computed and shown in Fig. 1, where the maximal
0.999−contractive set P0.999 satisfying Assumption 2 is
also presented. One can also choose the minimal robust
positively invariant set for Ω to ensure a smaller impact
of disturbances. On the other hand, a control Lyapunov
function, computed with δ = 1, ε = 10−5, is shown in
Fig. 2. It is shown therein that the controller designed
in Algorithm 1 makes `(x) strictly decreasing along the
trajectories outside Ω, leading to closed-loop stability in
the sense of Lyapunov. The convergence of closed-loop
dynamics to Ω is more clearly illustrated in Fig. 1. It is
worth emphasizing that Algorithm 1 is composed of 36
constraints in this example, while MPC method [25] with
a quadratic cost function requires 62 constraints for the
prediction horizon 10; an MPC problem with a 1/∞−norm
cost function requires even more constraints. Finally,
the numerical example of this paper is simulated in the
environment of MPT 3.0 [17].

VI. CONCLUSIONS

This paper presented a method to construct a convex,
piecewise affine control Lyapunov function for linear sys-
tems affected by bounded additive disturbances. This control
Lyapunov function was shown to ensure that the closed-
loop dynamics converge to a given robust positively invariant
set. Also, it was shown to lead to a simple control design
procedure as only requiring the resolution of a linear program
at each sampling instant. Finally, the control design was
illustrated via a numerical example.

VII. APPENDIX

A. Proof of Lemma 3.1

1) is a direct consequence of Theorems IV-3 and IV-4 in
[11]. For claim 2), it is observed that any point

[
xT z

]T ∈



Ω

P0.999

x1

x2

Fig. 1. Maximal output admissible set Ω, the maximal 0.999−contractive
set P0.999 and the closed-loop dynamics.

x1

x2

`(x)

Fig. 2. The constructed control Lyapunov function with δ = 1 and ε =
10−5 and its strict decrease along the dynamics outside Ω.

Π̂0 can be expressed as a convex combination of the points
in V̂0, defined in (3), i.e.,[

xT z
]T

= α(0)0 +
∑

v∈V(Ω)

α(v)
[
vT δ

]T
α(0), α(v) ≥ 0, α(0) +

∑
v∈V(Ω)

α(v) = 1.
(22)

According to inclusion (22), claim 2) is easily deduced by
the following argument:

0 ≤ z =
∑

v∈V(Ω)

α(v)δ ≤ δ. (23)

Also, the left equality in (23) holds only if α(v) = 0 for all
v ∈ V(Ω) and α(0) = 1, leading to claim 3). On the other
hand, as τ(x) is convex over Ω, then it attains its maximal
value δ at the vertices of Ω, leading to claim 4).

B. Proof of Lemma 3.4

Any point x ∈ Pλ can be written as a convex combination
of the vertices of Pλ, i.e., x =

∑
v∈V(Pλ) α(v)v, α(v) ≥ 0,∑

v∈V(Pλ) α(v) = 1. Accordingly, we obtain:∑
v∈V(Pλ)\Ω

α(v)h+
∑

v∈V(Pλ)∩Ω

α(v)δ

≥
∑

v∈V(Pλ)\Ω

α(v)ε+
∑

v∈V(Pλ)

α(v)τ̂(v) (24a)

≥
∑

v∈V(Pλ)\Ω

α(v)ε+ τ̂(x). (24b)

Note that inclusion (24a) is obtained due to the definition
in (7) and Lemma 3.2, while inclusion (24b) is due to
the convexity of τ̂(x). As a consequence, if one chooses
x ∈ V(Ω) such that there exists at least one v ∈ V(Pλ)\Ω
satisfying α(v) > 0, then we conclude that h ≥ ε + δ > δ,
leading to claim 1).

For claim 2), let us consider any point
[
xT z

]T ∈ Π̂, then
it can be written in the following form:[

x
z

]
= β(0)0 +

∑
v∈V(Ω)

α1(v)

[
v
δ

]
+

∑
v∈V(Pλ)

α2(v)

[
v
h

]
β(0) +

∑
v∈V(Ω)

α1(v) +
∑

v∈V(Pλ)

α2(v) = 1,

β(0), α1(v), α2(v) ≥ 0. (25)

According to expression (25) and claim 1), we obtain:

0 ≤ z =
∑

v∈V(Ω)

α1(v)δ +
∑

v∈V(Pλ)

α2(v)h ≤ h, (26)

leading to claim 2).
Since `(x) is a convex function over Pλ, it attains its

maximal value h, according to claim 2), at vertices of Pλ.
However, any x ∈ V(Pλ) ∩ Ω satisfies `(x) ≤ δ < h, as
α2(v) = 0 for all v ∈ V(Pλ) also fulfill expression (25) for
x ∈ Ω. In other words, `(x) = h for x ∈ V(Pλ)\Ω, as stated
in claim 3).

To prove claim 4), we note that

h ≥ ε+ δ ≥ ε+ τ̂(v) for v ∈ V(Pλ) ∩ Ω (27a)
h ≥ ε+ τ̂(v) for v ∈ V(Pλ)\Ω (27b)

where (27a) follows the proof of claim 1) and Lemma 3.2,
while (27b) follows by its definition in (7). Accordingly,
making use of expression (25) yields:

z =
∑

v∈V(Ω)

α1(v)δ +
∑

v∈V(Pλ)

α2(v)h (28a)

≥
∑

v∈V(Ω)

α1(v)τ̂(v) +
∑

v∈V(Pλ)

α2(v)(ε+ τ̂(v)) (28b)

≥
∑

v∈V(Pλ)

α2(v)ε+ τ̂(x) ≥ τ̂(x). (28c)

It is worth noting that inclusion (28b) follows as a conse-
quence of (27a) and (27b), also inclusion (28c) is obtained
by the convexity of τ̂(x). We underline that inclusion (28c)



becomes equality only if α2(v) = 0 for all v ∈ V(Pλ),
leading to x ∈ Ω. Roughly speaking, `(x) = τ̂(x) = τ(x)
only if x ∈ Ω, as stated in claim 4).

Claim 5) follows directly from inclusion (26), the left-
hand side inequality becomes equality only if α1(v) = 0 for
all v ∈ V(Ω), α2(v) = 0 for all v ∈ V(Pλ) and β(0) = 1.
Otherwise, `(x) > 0 for any x ∈ Pλ\{0}.

To prove claim 6), we note that for any x ∈ Pλ\Ω,
there exists a region Xj of the polytopic partition {Xi}i∈IN
such that x ∈ Xj and x =

∑
v∈V(Xj) α(v)v, α(v) ≥

0,
∑
v∈V(Xj) α(v) = 1. As x ∈ Pλ\Ω and 0 ∈ int(Ω), the

vertices of Xj do not include the origin, leading to `(v) ≥ δ
for all v ∈ V(Xj) because V(Xj) ⊆ V(Pλ) ∪ V(Ω). Also,
x /∈ Ω, there exists at least a vertex v ∈ V(Xj)\Ω such that
α(v) > 0 and consequently `(v) = h > δ. As a consequence,
it yields: `(x) =

∑
v∈V(Xj) α(v)`(v) >

∑
v∈V(Xj) α(v)δ =

δ, leading to claim 6).
Finally, claim 7) easily follows by the convexity of `(x),

as proven in Lemma 3.3, i.e., `(βx) ≤ β`(x)+(1−β)`(0) =
β`(x). The proof is complete.
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