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Abstract

The calculation of piecewise quadratic (PWQ) Lyapunov functions is addressed in view of stability analysis
of uncertain piecewise linear dynamics. As main contribution, the linear matrix inequality (LMI) approach
proposed in Johansson and Rantzer (1998) for the stability analysis of PWL and PWA dynamics is
extended to account for parametric uncertainty based on a improved relaxation technique. The results are
applied for the analysis of a Phase Locked Loop (PLL) benchmark and the ability to guarantee a stability
region in the parameter space well beyond the state of the art is demonstrated.
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1 Introduction

Piecewise linear (PWL) and piecewise affine (PWA)
systems are natural extensions from linear toward a
non-linear framework Sontag (1981) in control theory
and appear often in control applications when piece-
wise linear components, such as saturation, relays or
stick-slip friction are encountered Di Bernardo et al.
(2007). Linear predictive control with constraints is
also known to result in PWA closed-loop dynamics Be-
mporad et al. (2002), and in the wider literature, refer-
ences can be found to related models such as for exam-
ple PWA slab systems Rodrigues and Boyd (2005) or
PWA systems derived by function approximation us-
ing hinging hyperplanes Breiman (1993). Recent work
on hybrid systems has given further emphasis to PWA
systems as an important class of models able to de-
scribe switching in the system dynamics and have been
demonstrated to be equivalent with alternative model-

ing frameworks Heemels et al. (2001).
PWA systems have been studied intensively, and

pose challenging analysis problems Johansson (2003)
that are often computationally demanding due to the
inherent complexity of the state partition.

For PWA systems, the use of a same quadratic Lya-
punov candidate function for all local system dynam-
ics is often imposing a overconservative structural con-
straint and show not to be the appropriate tool for sta-
bility analysis. Starting from this observation, the use
of PWQ Lyapunov functions calculated using an LMI
approach was introduced by Johansson and Rantzer
Johansson and Rantzer (1998). Although their defini-
tion uses local descriptions of the dynamics, the LMI
formulations of the stability criteria were designed to
hold globally. The conservatism of the initial PWQ
approach was ameliorated in Rantzer and Johansson
(2000) by the introduction of relaxations to the LMI
formulation. These relaxations are such that the LMI
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formulation still ensures that the Lyapunov function
stability criteria hold within the region of validity for
each system dynamic, while relaxing the stability crite-
ria outside that region. The same relaxation principles
have been adapted to the discrete-time particularities
Feng (2002); Ferrari-Trecate et al. (2002) and to In-
put to State Stability (ISS)-type of constructions Lazar
(2006). In recent works, the conservatism of the PWQ
approach is further reduced by introducing improved
relaxations and allowing for sub-partitioning of the ini-
tial state space partition Hovd and Olaru (2013) or by
the use of cone copositive PWQ Lyapunov functions
Iervolino et al. (2015).

In a parallel line of development, LMI approaches
have also been developed for investigating stability of
uncertain linear systems, for both linear time-invariant
(LTI) systems (see, e.g. Oliveira et al. (2008); Oliveira
and Peres (2005) and references therein) and for linear
time-varying (LTV) systems Daafouz and Bernussou
(2001).

The aim of the present paper is to address the ro-
bust stability of piecewise linear (PWL) discrete time
systems, were the dynamics in each partition of the
state space are described by time-varying dynamics.
The proposed technique is putting together the LMI
conditions for PWA dynamics with those for uncertain
dynamics. We provide the proof of robust stability for
the proposed LMI conditions and apply the obtained
results for a challenging problem, the stability of a PLL
systems Akre et al. (2012). Finally we point to the
generalization of the theoretic results to PWA systems
with linear time-varying parameter dependence.

Notations: The positive orthant of a finite di-
mensional vector space Rn is denoting the subset
{x ∈ Rn‖xi ≥ 0,∀0 ≤ i ≤ n}. For a matrix A ∈ Rn×m,
the notation Aij denotes the element on line i, column
j. If the matrix is square (n = m) then diag(A) denotes
the diagonal matrix having Aii = diag(A)ii,∀1 ≤ i ≤ n
and diag(A)ij = 0,∀i 6= j.

2 System dynamics and quadratic
forms

2.1 Piecewise linear dynamics

Consider a state space (or some compact convex sub-
set thereof) X of dimension n, partitioned into non-
overlapping regions Xi, i ∈ I such that

X = ∪i∈IXi. (1)

where the index set I is a bounded subset of N. The
system dynamics are governed by:

x(t+ 1) = fpwl(x(t))
= A(λi(t))x(t) for x(t) ∈ Xi

(2)

where t indicates discrete time. For each index i, the
vector of parameters λi ∈ Rni is described by a func-
tion of time:

λi : R→ Di ⊂ Rni (3)

where ni represents the local number of unknown pa-
rameters for each state space region Xi.

Both the structure of the functions A(.), λi(.) and
the topology of the sets Xi, Di offer a large number
of degrees of freedom for the description of dynamics
(2). In the present paper we are interested in linear
(possibly) time-varying matrix, A(λi(t)):

A(λi(t)) =

ni∑
k=1

λki (t)Ak
i (4)

where λki denotes the k-th element of the vector λi and
Xi ⊂ Rn are polyhedral regions satisfying int(Xi ∩
Xj = ∅).

Over each region Xi, the linear dependence of the
transition matrix on the vector of parameters (4) leads
to a polytopic difference inclusion. The system dynam-
ics are bounded by a combination of ni extreme realiza-
tions of the transition matrix and the scalars λki (t) rep-
resent the linear combination coefficients. If the value
of λki is fixed but unknown λki (t) = λki (0), then we are
dealing with a PWL with parametric uncertainty while
in the case when the value of λki (t) may change be-
tween timesteps, as indicated by the dependence in t,
we are dealing with a time-varying PWL system. Note
that this second case, the parameter variation can take
place even when the state trajectory remains in the
same partition Xi of the state space. Up to this point,
there is no particular structural condition on the topol-
ogy of the sets Di ⊂ Rni .

A particular case of linear interpolation is the convex
combination for which the co-domain Di in (3) is a
simplex in the positive orthant of ‘parameter space’:

Si =

{
λi ∈ Rni |λki ≥ 0;

ni∑
k=1

λki = 1

}
(5)

The convexity of this set represents a valuable property
which will be exploited in the stability analysis. The
key element in this endeavor will be the construction of
a Lyapunov function. In the present paper we concen-
trate on the stability analysis via the PWQ candidate
function: V : Rn × Rni → R+ defined as:

V (x, λi) = xTPi(λi)x for x ∈ Xi. (6)

with Pi : Rni → Rn×n and advocate the use, for each
partition i, of the specific form

Pi(λi) =

ni∑
k=1

λki P
k
i (7)
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Each particular matrix P k
i is defined as a Lyapunov

function valid for the extreme dynamics associated to
the extreme transition matrix Ak

i .
Before presenting the main result let us introduce a

well-posedness hypothesis and two supplementary no-
tations.

Hypothesis 1 The set X is invariant with respect to
(2) , i.e. ∀x(t) ∈ Xi we have fpwl(x(t)) ∈ X.

In relationship with the set of states with feasible
transitions let us denote:

Xk
ij = {x ∈ Xi|Ai

kxt ∈ Xj} (8)

and

Xij = co{∪kXk
ij} (9)

where co denotes the convex hull.

2.2 Quadratic forms over simplices

An instrumental result on the quadratic forms defined
over simplex type of domains is stated in the next
Lemma. It will be subsequently employed for relax-
ations in the stability analysis context in the next sec-
tion.

Lemma 1 Consider a quadratic function:

q(λ) : Rni → R

with q(λ) = λTQλ and Q = QT .
Let S denote the simplex in the positive orthant of

Rni as in (5) and V(S) its set of ni vertices.
If for any pair (λi, λj) ∈ V(S) × V(S) with λi 6= λj

there exists a scalar 0 < α < 1 such that:

q(αλi + (1− α)λj) ≥ α2Qii + (1− α)2Qjj (10)

then

q(λ) ≥ λT diag(Q)λ, ∀λ ∈ S (11)

Proof: First let us introduce the quadratic form

q̃(λ) = q(λ)− λT diag(Q)λ

and describe it explicitly as q̃(λ) = λT Q̃λ via a
symmetric matrix Q̃. We observe that the diago-
nal elements of both quadratic matrices describing
the quadratic form q̃(.) coincide and by consequence
diag(Q̃) = 0.

This structural property implies that by construction
q̃(λi) = 0 for any vertex λi ∈ V(S) as long as for such a
vector λi only one element is 1 while the other elements
are zero.

Let us now concentrate on the points expressed as
linear combinations of two vertices of the simplex:

λij(α) = αλi + (1− α)λj ,
(λi, λj) ∈ V(S)× V(S)

with α a scalar denoting the interpolation coefficient.
The value of the quadratic function q̃(λ) is determined
by the off-diagonal elements of the symmetric matrix
Q̃ and more specifically

q̃(λij(α)) = 2Q̃ijα(1− α)

Following the inequality (10), there exist at least one
scalar 0 < α < 1 such that q̃(λij(α)) ≥ 0 which in-
dicates that Qij > 0. The existence of such posi-
tive function values for all pairs of vertices (λi, λj) ∈
V(S)×V(S) implies that all off-diagonal elements of Q̃
are positive.

Since for λ ∈ S all elements of the vector are non-
negative (as interior point of a simplex in the posi-
tive orthant – (5)), the quadratic function q̃(.) is non-
negative over the simplex S and finally:

q̃(λ) ≥ 0,∀λ ∈ S
q(λ) ≥ λT diag(Q)λ, ∀λ ∈ S (12)

thus proving the statement. �
Practically, the Lemma 1 states that if for each one-

dimensional edge connecting two vertices of the sim-
plex, one point can be found where the value of the
quadratic function is larger than the value correspond-
ing to a quadratic interpolation between the function
values at the corresponding vertices, then the func-
tion values at all non-extreme points in the simplex
is larger than the value obtained from quadratic inter-
polation between values at simplex vertices. This can
be extended to the positive quadratic forms as formally
stated in the next result.

Corollary 1 Consider a quadratic function defined
over a simplex in positive orthant of S ⊂ Rn

q(λ) : Rn → R

with q(λ) = λTQλ and Q = QT .
If for any pair (λi, λj) ∈ V(S) × V(S) with λi 6= λj

there exists a scalar 0 < α < 1 such that:

• q(λ) ≥ 0,∀λ ∈ V(S)

• ∃α ∈ (0, 1) such that

q(αλi + (1− α)λj) ≥ α2Qii + (1− α)2Qjj (13)

then
q(λ) ≥ 0,∀λ ∈ S (14)
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Proof: The proof is immediate by observing that the
positivity over the vertices of the simplex S leads to
the positivity of the diagonal terms, Qii,∀1 ≤ i ≤ n.
Then inequality (14) is then a direct implication of the
Lemma 1.

These elements will allow the use of a quadratic form
which is guaranteed to be positive over a simplex but
to allow negative values outside this region by means
of a concave type of structure.

3 PWQ Stability

3.1 Stability criteria for nominal PWL
time-invariant systems

The stability results for the nominal PWL time-
invariant (PWLTI) systems will be reviewed first.
Nominal is understood here in the sense that ni = 1,
for all i in the state space partition (4)-(5).

Proposition 1 The nominal system (2)-(4) is piece-
wise quadratically stable provided the Lyapunov func-
tion (6) verifies

V (x) > 0,∀x 6= 0
V (x)− V (fpwlti(x)) > 0,∀x 6= 0.

(15)

For the nominal PWL LTI systems there is no paramet-
ric uncertainty, and we thus have Pi = Pi as a constant
matrix and A(λi(t)) = Ai(1) = Ai. Following Rantzer
and Johansson (2000) and Feng (2002) relaxations can
be introduced and stability guaranteed if Pi = PT

i and

Pi − Fi > 0, ∀i (16)

AT
i PjAi − Pi +Gij < 0, (17)

∀(i, j) s.t. Xij 6= ∅

The equations (16) and (17) represent relaxation of
the classical quadratic LMI conditions, obtained upon
additional constraints on the auxiliary matrices Fi and
Gij :

xTFix > 0, ∀x ∈ Xi (18)

xTGijx > 0, ∀x ∈ Xij . (19)

3.2 Stability criteria for PWL LTV systems

In the Linear Time Varying case, for each region Xi ⊂
Rn, the parameters evolve in a simplex λi ∈ Si. We
will denote by Vi the set of indexes of vertices for this
simplex, its cardinal being à priori known:

Vi = {k ∈ N|1 < k ≤ ni}

Imposing (16) to each vertex k ∈ Vi and (17) to each
pair of vertices (k,m) ∈ Vi × Vj one obtains

P k
i − F k

i > 0, ∀k, i (20)

(Ak
i )TPm

j (Ak
i ) − P k

i +Gk
ij < 0 (21)

∀(k,m) ∈ Vi × Vj ; (22)

∀(i, j) ∈ {i, j|Xij 6= ∅}

Define λk̄li to be the value of the parameter vector
on the midpoint on each one-dimensional edge of the
simplex Si:

λk̄li = 0.5(λki + λli)

For a simplex region, there are ni!
2(ni−2)! such points

where elements λki and λli of λi equal 0.5 and all other
elements are zero. Likewise, define the corresponding
dynamics Ak̄l

i = A(λk̄li ), and the corresponding value

P k̄l
i of the Lyapunov function (c.f. (7)). We then im-

pose the additional condition

0.5
[
(Ak

i )TPm
j (Ak

i ) + (Al
i)

TPm
j (Al

i)
]

−(Ak̄l
i )TPm

j (Ak̄l
i )−H k̄l

m > 0
∀k, l ∈ Vi;m ∈ Vj ;∀(i, j) ∈ {i, j|Xij 6= ∅}

(23)

where H k̄l
m defines some relaxation function that is pos-

itive on Xij .

Theorem 1 If the matrices P k
i , F k

i , Gk
ij, H k̄l

m can be
found that fulfill (20) - (23), the system described by
(2) is asymptotically stable.

Proof: Equation (20) ensures that each Lyapunov
function is positive over the partition for which it is
valid (and the weighted sum with positive parameters
in (7) is hence also positive over the same partition).
Equation (21) ensures that the Lyapunov function de-
creases for all extreme realizations of the parameters
λik defining the dynamics within partition Xi (i.e., for
all vertices of the parameter simplex), and for all val-
ues of λjk defining the Lyapunov function Pj . Note

that since (21) is linear in λjk, fulfilling the criterion
at all vertices of the parameter simplex also ensures
fulfilling the criterion at internal points. In contrast,
(21) is quadratic in λik, and we need additional crite-
ria to ensure that the Lyapunov function decreases for
intermediate values of λik.

Equation (23) ensures that the decrease in the Lya-
punov function according to (21) is greater at the mid-
points of each (one-dimensional) edge connecting two
vertices of the parameter simplex, than at the corre-
sponding vertices. The theorem then follows from the
Lemma above. �

In some cases, the parameter variation may affect
the dynamics only in some directions in the state space,
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i.e., the difference ∆Akl = Ai
k − Ai

l may not be a full
rank matrix. In such cases, there will be a subspace
Ω ⊂ Rn of the state space where the terms in (23) that
depend on Pm

j sum to zero. If the constraints on the

relaxation Hkl
m are such that the relaxation has to be

positive over parts of Ω, it will be impossible to fulfill
(23) while at the same time fulfilling the constraints on
the relaxation.

On the other hand, we observe that for states x ∈ Ω,
the requirement for decrease of the value of the Lya-
punov function is fulfilled by the conditions that en-
sure decrease of the Lyapunov function at the vertices
of the parameter simplex. One needs therefore impose
the condition (23) only in the directions in state space
where the dynamics is affected by the parameter un-
certainty. This leads to the modified condition

vTf
[
0.5
(
(Ai

k)TPm
j (Ai

k) + (Ai
l)

TPm
j (Ai

l)
)

−(Ai
kl)

TPm
j (Ai

kl)−Hkl
m

]
vf > 0, ∀k, l; ∀m (24)

where vf defines a basis for the subspace Ω⊥, and can
readily be obtained from a singular value decomposi-
tion of ∆Akl.

3.3 Stability criteria for uncertain PWL
time-invariant systems

In this case, the cardinal of extreme realizations in the
convex combination (4)-(5) can be ni > 1 but a restric-
tion is placed on λki (t) = λki (0) which is constant but
unknown. Clearly, the conditions (20) - (23) guaran-
teeing the stability of the LPV case are sufficient for
the stability of uncertain LTI systems.

As a final remark, even if in the original definitions
of the dynamics (2)-(3)-(4), the sets Di are not convex,
they can be approximated by a union of such convex
sets (principally by simplices as in (5)).

4 Example

A PWL system related to a Phase Locked Loop system
Akre et al. (2012) will be considered for the numerical
illustration. The dynamics are defined by

x(t+ 1) = Aix(t) for x(t) ∈ Xi, i ∈ {1, 2}
X1 =

{
x ∈ R2|[ 1 0 ]x ≥ 0

}
X2 =

{
x ∈ R2|[ 1 0 ]x < 0

}
and the matrices

A1 =

[
2− [ 1 0 ]λ1 −1− [ 1 0 ]λ1

1 0

]
;

A2 =

[
2 −1− [ 1 1 ]λ2

1 0

]
.

This system may be stable or unstable depending on
the values of the parameters λ1 and λ2. The stabil-
ity of this system was studied in Akre et al. (2010),
and stability regions based both on algebraic criteria
and based on simulation were presented. The problem
with analyzing stability of PWL systems using simu-
lation, is that stability of trajectories may depend on
the initial state, and the domain of attraction for the
unstable dynamics may be very small. This probably
explains the ’rough’ shape of the stable region found
using simulation in Akre et al. (2010).

The parameter λ1 ∈ R2 will be considered to take
values in the simplex D1 = co{(0, 0), (2,−2), (4, 0)}1
and for this region the stability is to be analyzed. The
same domain of variation will be considered for the
vector of parameters λ2. Thus the stability analysis
has to be done for λ1, λ2 ∈ co{(0, 0), (2,−2), (4, 0)}.
This simplex is subdivided into smaller simplices for
stability analysis, since the system is known not to be
stable for all parameter values in the original simplex.
In the LMI-based stability analysis, sub-partitioning of
the original state space partition is used, as proposed
in Hovd and Olaru (2013). Each of the original state
space partitions are sub-divided into 4− 32 partitions,
as required to prove stability. If stability is not proven
when using 32 sub-partitions for each of the original
partitions in the state space, the simplex in the (k1, k2)
space under study is either further sub-divided, or it
is concluded that stability cannot be proven for that
simplex.

Exploring the (λ1, λ2) space, the stable area shown
in Fig. 1 is found.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

k
1

k 2

Figure 1: Stable area in (k1, k2) space found using pro-
posed LMI technique.

The stable area shown in the figure is significantly
larger than the one based on algebraic criteria in
Akre et al. (2010), but smaller than the region found

1Here co represents the convex hull, as defined after (9)
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using (unreliable) simulation. Considering the some-
what irregular shape of the stable area in Fig. 1, it
seems reasonable to expect that a somewhat larger re-
gion can be proven stable. However, that would require
automated procedures for exploring the (λ1, λ2) space.

It should be noted that the increase in the area for
which the system is proven stable is achieved despite
inherent conservatism in our approach, since we allow
for time-varying parameter uncertainty whereas in the
original description the parameters are uncertain but
constant. Furthermore, the condition (23), requiring
the decrease in the Lyapunov function along the edges
of the parameter simplex to exceed the decrease at the
vertices, is clearly conservative if the decrease of the
Lyapunov function is large at the vertices.

5 Conclusion

New LMI-based stability criteria for robust stability
of piecewise linear time-varying systems is proposed.
Extension to piecewise affine time-varying systems is
straight forward, using the lifting technique in Johans-
son and Rantzer (1998). The versatility of the results
are illustrated using an example from literature.
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