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A Novel Transmission Scheme for the K-user

Broadcast Channel with Delayed CSIT

Chao He, Student Member, Sheng Yang, Member,

and Pablo Piantanida, Senior Member

Abstract

The state-dependent K-user memoryless Broadcast Channel (BC) with state feedback is investigated.

We propose a novel transmission scheme and derive its corresponding achievable rate region, which,

compared to some general schemes that deal with feedback, has the advantage of being relatively simple

and thus is easy to evaluate. In particular, it is shown that the capacity region of the symmetric erasure

BC with an arbitrary input alphabet size is achievable with the proposed scheme. For the fading Gaussian

BC, we derive a symmetric achievable rate as a function of the signal-to-noise ratio (SNR) and a small

set of parameters. Besides achieving the optimal degrees of freedom at high SNR, the proposed scheme

is shown, through numerical results, to outperform existing schemes from the literature in the finite

SNR regime.

Index Terms

Broadcast channel; Erasure channel; Fading Gaussian channel; State feedback.

I. INTRODUCTION

With the dramatic growth of the number of mobile devices, modern wireless communication

networks have become interference limited. As such, the interference mitigation problem has

attracted a surge of interest in recent years. In a downlink Broadcast Channel (BC), for instance,

it is well known that interference can be efficiently mitigated through precoding, provided that

timely Channel State Information (CSI) is available at the transmitter side (CSIT) (see, e.g., [1]

and the references therein). While timely CSIT may not be available in mobile communications,
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it has been revealed in [2]–[4] that delayed CSIT is still very useful and can strictly enlarge the

capacity region of a BC.

In particular, the capacity region of the erasure BC (also referred to as the EBC) with delayed

CSIT was fully determined for up to three users and partially characterized for the case with more

users [2], [3]. The main idea behind their proposed schemes in [2] and [3] is fundamentally the

same: the source first sends out the source message packets, then generates according to the state

feedback some adequate linear combinations of the packets that are erased at certain receivers

but overheard by some others. Such linear combinations are then multicast to a group of users

in later phases. Their schemes are carefully designed such that at the end of the transmission

a sufficient number of linearly independent combinations are available to each receiver for the

decoding of the original message packet. However, the schemes in [2], [3] are limited to packet

erasure channels for which the input alphabet size can only be 2q with q ∈ N being the number

of bits per packet. In addition, there is an extra constraint, 2q ≥ K, to guarantee the existence

of a desired number of linearly independent vectors in the corresponding vector space in finite

field. As such, the capacity region is still open for the general EBC with arbitrary alphabet sizes.

For the multi-antenna fading Gaussian BC (also referred to as the GBC) with delayed CSIT,

Maddah-Ali and Tse proposed a linear scheme that achieves the optimal Degree of Free-

dom (DoF) for the K-user Multiple-Input-Single-Output (MISO) case. The authors showed

that with delayed CSIT the sum-DoF can still scale almost linearly with the number of users.

Remarkably, there is a striking similarity between the Maddah-Ali-Tse (MAT) scheme and the

schemes from [2], [3]. Namely, based on the CSI feedback, the transmitter can create and

transmit useful linear combinations of the past received signals by the users. The intended group

of users receive such linear combinations and use them to decode the message together with the

previous observations. Note that the MAT scheme in [4] has a fixed structure designed based

on a dimension counting argument. Although such a structure guarantees the DoF optimality at

high Signal-to-Noise-Ratio (SNR), it may not be efficient at finite SNR due to its inflexibility.

As a matter of fact, there are only a small number of works on the performance gain with

delayed CSIT in the finite SNR regime. In [5], the authors developed two linear precoding

methods that attempt to balance the interference and the useful received signal. For K = 2 and

3, performance gain over MAT was revealed when a specific type of decoder is used. To adjust

the multicast cost in the MAT scheme, the authors of [6] proposed to transmit a quantized version

of the linear combinations. For the K-user Rayleigh fading case, they demonstrated that a gap
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between the corresponding inner bound and a genie-aided outer bound, in terms of the symmetric

rate, is upper bounded by 2 log2(K + 2) which scales sublinearly with K. More recently, the

work [7] studied a scenario where both the CSI statistics and the feedback of the channel

realizations are available at the transmitter. It was shown by numerical examples that statistics

of CSI can enlarge the rate region for temporally correlated Rayleigh fading GBC. The authors

of [8] investigated the outage performance for GBC with an adapted MAT scheme. It is worth

mentioning that these schemes are variants of the linear MAT scheme, i.e., they applied either

linear coding or linear coding with quantization with the same fixed frame structure of MAT.

Although the rate performance of the MAT-like schemes is rather convincing in the medium-to-

high SNR regime, their performance in the medium-to-low SNR regime is still questionable since

it can be strictly dominated by the simple time-division multiple access (TDMA) strategy [9].

Instead of imposing the linear structure, we can tackle the problem directly from the information-

theoretic perspective. To that end, we formulate the setup as a K-user state-dependent memo-

ryless BC with state feedback. This formulation includes both the EBC and the GBC as special

cases. In the two-user case, Shayevitz and Wigger studied such BC with generalized feedback and

derived a general achievable rate region using information-theoretic tools [10]. Later on, Kim et

al. demonstrated in [11] that in the two-user symmetric setting, the Shayevitz-Wigger (SW)

region, actually includes the MAT region. Similar recent works on the two-user case have been

reported in [12], [13]. In this work, we are interested in the general K-user case. The main

contributions are summarized as follows.

• We propose a novel scheme for the general K-user channel and derive the corresponding

achievable rate region. The novelty of this scheme lies in the proper combination of two main

ingredients: coded time-sharing and joint source-channel coding (JSC) with side information

at the decoder. We refer to our scheme in short as the JSC scheme. As compared to the

existing schemes, e.g., the Shayevitz-Wigger scheme (which is limited to two users) [10],

our scheme is conceptually simpler in the sense that neither block-Markov coding nor

Marton coding is required. Such simplicity, at the cost of a slight loss of generality, allows

us to derive the K-user rate region with a reasonable number of parameters. To the best

of our knowledge, the JSC scheme is the first information-theoretic scheme for the K-user

BC with state feedback for K ≥ 3.

• The general rate region is then evaluated for both the EBC and fading GBC. First, we show

that our scheme achieves the capacity of a symmetric EBC with an arbitrary input alphabet
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size, whereas the previous schemes in [2], [3] only apply to packet erasure channels. Second,

for the symmetric fading GBC, we derive the achievable symmetric rate as a function of

SNR and a set of K − 1 compression noise variances. At high SNR, we show analytically

that the proposed scheme achieves the optimal DoF under the same setting as in [4]. At finite

SNR, we perform numerical optimization over the set of K−1 variances. The results show

that in the two- and three-user cases, the JSC scheme outperforms the existing schemes at

all SNR.

The remainder of the paper is organized as follows. We introduce the system model formally

in Section II. Then we begin with the two-user case in Section III, before presenting the general

K-user scheme in a more abstract way in Section IV. The general region is applied to the

erasure BC and fading Gaussian BC in Section V. In Section VI, numerical results are provided

for the two-user and three-user fading Gaussian BC where we compare the JSC scheme to some

baseline schemes from the literature. The paper is concluded in Section VII. Although most of

the derivations are provided in the main text, some more technical details are deferred to the

appendices.

Notation: First, for random quantities, we use upper case letters, e.g., X , for scalars, upper

case letters with bold and non-italic fonts, e.g., VVV, for vectors, and upper case letter with bold and

sans serif fonts, e.g., MMM, for matrices. Deterministic quantities are denoted in a rather conventional

way with italic letters, e.g., a scalar x, a vector vvv, and a matrix MMM . Logarithms are in base 2.

Calligraphic letters are used for sets. In particular, we let K , {1, . . . , K} be the set of all

users. To denote subset of users, we use I and J for some subsets with implicit size constraints

|I| = i and |J | = j, respectively. The constraints are made explicit when necessary. U is also

used as subset of users but without size constraint. Hence, {VI}I ≡ {VI : I ⊆ K, |I| = i} and

{VU}U ≡ {VU : U ⊆ K}. The complement of I in J is denoted by J \ I. We use Ū to denote

the complement of the set U in K, i.e., Ū = K \ U .

II. SYSTEM MODEL

We consider a K-user state-dependent memoryless BC in which the source wishes to commu-

nicate, in n channel uses, K independent messages to the K receivers, respectively. The channel

can be described by the joint probability mass function (pmf),

p(yyy1, . . . , yyyK |xxx,sss)p(sss) =
n
∏

i=1

p(y1i, . . . , yKi|xi, si)p(si) (1)
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Figure 1: General system model of K-user BC with state feedback.

where xxx ∈ X n, yyyk ∈ Yn
k , and sss ∈ Sn are the sequences of the channel input, the channel output

at the k-th receiver, and the channel state, respectively. The channel state information (CSI)

is known instantaneously to all the receivers. At transmitter’s side, the channel state is known

strictly causally without error via a noiseless feedback link from the receivers. For simplicity,

we assume that the CSI is provided at the transmitter with one slot delay and the channel itself

is temporally i.i.d. The channel model is illustrated in Fig. 1.

Let the message for user k, Mk, be uniformly distributed in the message set Mk , [1 : 2nRk ],

for k ∈ K. We say that the rate tuple (R1, . . . , RK) is achievable if there exist

• a sequence of encoding functions {fi : M1 × · · · ×MK × Si−1 → X}ni=1, and

• K decoding functions {gk : Yn
k × Sn → Mk}Kk=1,

such that maxk P
(

gk(Y
n
k , S

n) 6= Mk

)

→ 0 when n → ∞. The symmetric rate Rsym is achievable

if the rate tuple (Rsym, . . . , Rsym) is achievable. In particular, we are interested in the following

two specific channels.

A. Fading Gaussian Broadcast Channel

The fading GBC with nt transmit antennas and nr,k receive antennas at user k, k ∈ K, is

defined by

YYYk = HHHkXXX+ZZZk, k ∈ K, (2)

where XXX ∈ Cnt×1 is the input vector, YYYk ∈ Cnr,k×1 is the output vector at receiver k, ZZZk ∼
CN (000, σ2IIInr,k

) is the additive white Gaussian noise (AWGN), and HHHk ∈ Cnr,k×nt is the channel

matrix to receiver k. The channel input is subject to the power constraint as 1
n

∑n

i=1 ‖xxxi‖2 ≤ P

for any input sequence xxx1, . . . ,xxxn. The SNR is defined as snr , P
ntσ2 . We assume that both
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the channel matrices and the AWGN are independent across users. We use HHHU to denote a

matrix from a vertical concatenation of the channel matrices of receivers in U , i.e., {HHHk}k∈U ,

same notation applies for YYYU and ZZZU . Hence, it follows that YYYU = HHHUXXX +ZZZU . The matrix HHHK

corresponds to the channel state S in the general formulation.

B. Erasure Broadcast Channel

The EBC is a state-dependent deterministic channel in which

Yk =











X, Sk = 1,

? , Sk = 0,
(3)

for k ∈ K. Here the input alphabet X is arbitrary and finite with size |X |; , “?” stands for erasure,

and the output alphabet is Y = X ∪ {?}. The distribution of the channel state is characterized

by the set of probabilities

φU ,Ū , P(SU = 000, SŪ = 111), U ⊆ {1, . . . , K} (4)

with
∑

U φU ,Ū = 1. Throughout the paper, we use SU = 000 (resp. SU = 111) to define the event

that Sk = 0 (resp. Sk = 1), ∀ k ∈ U . For simplicity, we use δF to denote P(SF = 000), and use

φF ,T to denote P(SF = 000, ST = 111) for any F and T that satisfy F ∩ T = φ and F ∪ T ⊆ K.

For notational brevity, δ{k} is written as δk. The K-tuple SK corresponds to the channel state S

in the general formulation.

III. THE TWO-USER CASE

Before presenting the main results for the general K-user channel, we provide a description

of the two-user case. The goal is to explain the main ingredients of the proposed scheme in an

accessible and less formal way, whereas a rigorous and detailed description will be provided for

the K-user case in the next section. Hereafter, we also refer to our scheme as the JSC scheme.

A. Scheme description

The JSC scheme consists in two phases with n1 and n2 being the length of phase 1 and 2,

respectively. The total transmission length is n = n1+n2. In the first phase, the original messages

M1 and M2, for receiver 1 and receiver 2, respectively, are encoded and transmitted. At the end

of phase 1, the transmitter obtains the state feedback and thus some side information about the
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received signals at both users during phase 1. In the second phase, the transmitter compresses the

side information that are useful to both users into Ŷ , and transmits the compression index M12

with a channel code. Each receiver decodes the compression index first, but with the observation

from both phases. With the compression index, the side information Ŷ is recovered and combined

with the observation from phase 1 by each receiver k ∈ {1, 2} to finally decode the message

Mk. The main information-theoretic tools that we use in this scheme are the following ones:

• Coded time-sharing for the transmission in phase 1;

• Joint source-channel coding in phase 2;

• Joint source-channel decoding with side information on the source.

Phase 1

At the beginning, we randomly generate a sequence of time-sharing variables qqq , (q1, . . . , qn1)

according to
∏n1

t=1 p(qt). For each user k ∈ {1, 2}, we generate a random codebook of 2nRk

independent codewords, vvvk(mk), mk ∈ [1 : 2nRk ], each according to
∏n1

t=1 p(vk,t). Both the

time-sharing sequence and the codebooks are revealed to the transmitter and all the receivers.

To send messages m1 and m2 to user 1 and 2, respectively, we use coded time-sharing in

phase 1. Specifically, at time t, the transmitter sends x
(1)
t = v1,t if q = 1 and x

(1)
t = v2,t if

q = 2. It is similar to a TDMA scheme controlled by the time-sharing variables {qt}. Here the

superscript ·(1) stands for phase 1.

At the end of phase 1, each receiver k observes yk,t that depends on xt and the channel state

st, for t = 1, . . . , n1. The transmitter obtains through feedback the sequence s1, . . . , sn1 . At this

point, the transmitter knows the following i.i.d. triples

(v1,1, v2,1, s1), . . . , (v1,n1, v2,n1, sn1), (5)

which can be regarded as a source sequence of length n1. Alternatively, it can be represented

by (vvv1, vvv2, sss
(1)).

Phase 2

The transmitter creates a source codebook and a channel codebook, both with the same

size 2n1R12 . Specifically, the source codebook contains 2n1R12 i.i.d. sequences ŷyy(m12), each gen-

erated according to
∏n1

t=1 p(ŷt | st, qt), whereas the channel codebook contains 2n1R12 sequences

vvv12(m12), each generated according to
∏n2

t=1 p(v12,t). Note that while the codebook size is the
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same, the codeword lengths are different for the source and channel codebooks. This is because

the source codebook is used to describe the source sequence (5) from phase 1 while the channel

codebook is used to send the index m12 in phase 2.

First, the transmitter finds a sequence ŷyy(m12) from the source codebook that is jointly typical

with the source sequence (5). This can be done successfully provided that

R12 ≥ I(Ŷ ;V1, V2 |S(1), Q). (6)

Then, the source sequence is associated with the channel codeword vvv12(m12) through the in-

dex m12. The transmission in phase 2 is simply specified by x
(2)
t = v12,t, t = 1, . . . , n2. The

above procedure can be seen as a joint source-channel coding.

Decoding

We focus on the decoding at receiver k without loss of generality. First, the receiver tries to

find out m12 with the observations from the two phases: yyy
(1)
k and yyy

(2)
k . Intuitively, yyy(1) is correlated

with the source (vvv1, vvv2, sss
(1)) and thus the source codeword ŷyy(m12), whereas yyy

(2)
k is correlated

with the channel codeword vvv12(m12). Hence, both observations can help find the same index

m12. Specifically, decoder k looks for m̂12 such that
(

vvv12(m̂12), yyy
(2)
k , sss(2)

)

are jointly typical and

that
(

ŷyy(m̂12), yyy
(1)
k , sss(1), qqq

)

are jointly typical. It turns out that one can recover m12 correctly as

long as the rate satisfies

n1R12 ≤ n1I(Ŷ ; Y
(1)
k |S(1), Q) + n2I(V12; Y

(2)
k |S(2)), (7)

where we see clearly the contribution of the observations from both phases. This is essentially

Tuncel’s scheme [14] of separate source-channel encoding but joint source-channel decoding.

Then the receiver uses ŷyy(m̂12) jointly with the observation from phase 1, yyy(1), to decode the

original message. Specifically, it looks for the unique m̂k such that (vvvk(m̂k), yyy
(1)
k , ŷyy(m̂12), qqq,sss

(1))

is jointly typical. The original message can be decoded correctly if the message rate satisfies

nRk ≤ n1I(Vk; Y
(1)
k , Ŷ |S(1), Q). (8)

From (6)-(8), we see that for any fixed distribution p(v1)p(v2)p(v12)p(ŷ | v1, v2, s(1), q) the rate

pair (R1, R2) is achievable if, for k ∈ {1, 2},

Rk ≤ α1I(Vk; Y
(1)
k , Ŷ |S(1), Q), (9)

I(Ŷ ;V1, V2 |S(1), Q) ≤ I(Ŷ ; Y
(1)
k |S(1), Q) +

α2

α1
I(V12; Y

(2)
k |S(2)), (10)
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where α1 ,
n1

n
and α2 ,

n2

n
with α1 + α2 = 1 can be optimized.

Remark 1 (Comparison to other information-theoretic schemes). Although in the two-user case

our result is closely connected to the works [10] and [12], unfortunately it is hard to make

a fair comparison in the Gaussian case. First, the fact that the achievable regions depend on

different sets of pmf’s prohibits the analytical comparison. Then, since we cannot find the exact

optimal solution for any of the regions (e.g. Gaussian input is not even proved to be optimal in

general), any numerical comparison must be based on a particular choice of distribution, which

cannot be conclusive. Indeed, the underlying transmission schemes are conceptually different.

Both schemes in [10] and [12] use Marton coding and block-Markov coding. While a separate

source channel coding was used to compress the side information in [10], the authors in [12]

adopted a joint source-channel coding approach. In our scheme, we do not use Marton coding nor

block-Markov coding, but, as in [12], we use a joint source-channel coding for the transmission

of side information. It is worth noting that our scheme is based on Tuncel’s scheme [14] and is

different from the one used in [12].

From the complexity perspective, our scheme is conceptually simpler since neither block-

Markov coding nor binning is required. Furthermore, due to the relative simplicity, we manage

to derive a rate region for the K-user case with a reasonable number of parameters, as will

be shown in the upcoming sections. Such an advantage allows us to easily obtain numerical

results for K ≥ 3, whereas the counterpart of the existing two-user schemes is still missing in

the literature due to their complexity for extension.

B. Application to the fading GBC

Let us consider a two-user MISO fading GBC with Y
(j)
k = HHH

(j)H
k XXX(j)+Z

(j)
k , for k ∈ {1, 2} and

j ∈ {1, 2}. Here HHH
(j)H
k is the channel HHH

(j)
k in the vector case. We consider the symmetric case

and let Q ∈ {1, 2} be uniform with probability 1
2

for each user. In phase 1, we have XXX(1) = VVV1

if Q = 1 and XXX(1) = VVV2 if Q = 2, with VVV1,VVV2 ∼ CN (0, P
2
III2) being independent. At the end of

phase 1, the transmitter sets the side information as follows

Ŷ =











HHH
(1)H
2 XXX(1) + Ẑ2 = HHH

(1)H
2 VVV1 + Ẑ2, if Q = 1,

HHH
(1)H
1 XXX(1) + Ẑ1 = HHH

(1)H
1 VVV2 + Ẑ1, if Q = 2.

(11)

Intuitively, Ŷ is the compression of the overheard signal at the unintended receiver, with Ẑ1, Ẑ2 ∼
CN (0, σ̂2) being the independent compression noises. The idea is not to retransmit everything
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about (VVV1,VVV2,HHH) as side information, since this would be too costly. Instead, sending compressed

version of a function of these information, namely, (HHH
(1)H
2 VVV1,HHH

(1)H
1 VVV2), would be helpful. The

compression noise can balance the precision of side information and the cost for the transmission,

as can be observed in (10). To get more insight on the choice of Ŷ , let us rewrite (10) as

I(Ŷ ;V1, V2 | Y (1)
k , S(1), Q) ≤ α2

α1

I(V12; Y
(2)
k |S(2)), (12)

using the Markovity Ŷ ↔ (V1, V2, S
(1), Q) ↔ Y

(1)
k and the chain rule. The left-hand side of

(12) is the average amount of side information remaining in Ŷ after observing Y
(1)
k , whereas the

right hand side is the achievable transmission rate to user k in phase 2. With the choice (11), on

the one hand, we make sure that during half of the time, I(Ŷ ;V1, V2 | Y (1)
k , S(1), Q = q) is small

since Y
(1)
k already almost contains the information in Ŷ . This makes sure that the constraint (12)

can be met. On the other hand, from (11) and (9), we notice that Ŷ provides to receiver k an

extra observation approximative to the other receiver’s signal. Such observation helps create a

virtual MIMO system for each user. From (9), it readily follows that the symmetric rate is

RJSC
sym =

α1

2
E

[

log det

(

III +
[

σ−2 0
0 σ̂−2

] P

2
HHHHHH

H

)]

, (13)

where α1 should be chosen to satisfy (12) with equality,2 that is,

1

2

2
∑

l=1

E

[

log

(

1 +
P

2σ̂2
HHHl

(

1 +
P

2σ2
HHHH

k HHHk

)−1

HHHH
l

)]

=
α2

α1
E

[

log

(

1 +
P

2σ2
‖HHHk‖2

)]

. (14)

Combining the above equation with α1 + α2 = 1, we obtain the solution

α1 =
E
[

log
(

1 + P
2σ2 ‖HHHk‖2

)]

E
[

log
(

1 + P
2σ2 ‖HHHk‖2

)]

+ 1
2

∑2
l=1 E

[

log
(

1 + P
2σ̂2HHHl

(

1 + P
2σ2HHHH

k HHHk

)−1
HHHH

l

)] . (15)

Comparison to the MAT scheme

The proposed scheme can be compared to the original two-user MAT scheme which also

works in two phases. There are three slots in total: two slots in phase 1 and one slot in phase 2.

First, VVV1 and VVV2 are sent in slot 1 and 2, respectively, in a TDMA fashion. At the end of

phase 1, the transmitter receives the CSI feedback and linearly combines the overheard signal

from phase 1 as L , HHHH
2 VVV1 +HHHH

1 VVV2. In phase 2, the symbol L is scaled, e.g., to 1√
2
L if the

average transmit power constraint is imposed and if the channel coefficients are normalized.

2If the inequality (12) is strict, then one can always increase α1 to achieves equality. This is without loss of optimality since

increasing α1 only increases the symmetric rate.
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Then, the scaled signal is transmitted in one slot using one antenna. At the end, user 1 receives

the noisy versions HHHH
1 VVV1 + Z11, HHH

H
1 VVV2 + Z12, and

H′
11√
2
(HHHH

2 VVV1 +HHHH
1 VVV2) + Z13 in three slots,

where H ′
11 is the channel from the first antenna to user 1 at slot 3. From the three observations,

receiver 1 gets the following virtual MIMO output

Y ′
11 = HHHH

1 VVV1 + Z11 (16)

Y ′
12 =

1√
2
H ′

11HHH
H
2 VVV1 −

1√
2
H ′

11Z12 + Z13, (17)

Due to the symmetry, receiver 2 has the similar form on VVV2. Finally, we conclude that the

symmetric MAT rate is

RMAT
sym =

1

3
E

[

log det

(

III +
[

σ−2 0
0 σ̃−2

H

] P

2
HHHHHH

H

)]

, (18)

where σ̃2
H , σ2(1 + 2

|H′
11|2

). Comparing (13) and (18), we notice the similarity of the rate

expressions. Indeed, from (15), we see that if we set σ̂2 = σ2, then α1
P→∞−−−→ 2

3
which implies

that both the MAT and the JSC schemes have the same prelog factor and thus the same DoF.

However, the noise covariance inside the determinant is different in (13) and (18) since σ̃2
H is

almost triple of σ̂2 if we approximate |H ′
11|2 by 1. Although the above comparison is not precise,

it provides an idea that the power gain of the JSC scheme over the MAT scheme at high SNR

is mainly due to the fact that the linear operations in MAT cause cumulation of noises from

different phases. Intuitively, it is analogous to the advantage of compress-forward like schemes

over amplify-forward like schemes in relay channels. At finite SNR, the proposed JSC scheme

also provides the flexibility of choosing an appropriate compression noise variance σ̂2 as a

function of P . Obviously, this flexibility requires that α1 in (15) can be changed accordingly.

In other words, with the JSC scheme one can adjust the length of the phases to achieve better

performance, which is essential at finite SNR. Such flexibility is not possible with the MAT

scheme since the length of each phase is fixed. Therefore, although the MAT scheme is DoF

optimal, it may suffer from rate loss at finite SNR. More comments on the differences between

the JSC scheme and the MAT-like schemes shall be made in Section VI.

IV. THE GENERAL CASE WITH K USERS

In this section, we describe the general JSC scheme for the K-user BC with state feedback.

The rate region is given in the following main result of this paper.
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Theorem 1. A rate tuple (R1, . . . , RK) is achievable in the K-user BC with causal state feedback

if

Rk ≤ α1I(Vk; Y
(1)
k , {Ŷ1�U}U∋k |S(1), Q(1)), (19)

0 ≤ min
i,j,k,J :
i<j,k∈J

{

αjI(Vi�J ; Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j))− αiI({VI}I⊂J ; Ŷi�J | Y (i)

k , S(i), Q(i))
}

.

(20)

for some K-tuple (α1, . . . , αK) ∈ RK
+ with

∑

k αk = 1, and some pmf 3

(

K
∏

j=1

p(x(j) | {vJ }J , q(j))
)

K
∏

k=1

p(vk)

K
∏

j=2

∏

J

j−1
∏

i=1

p(vi�J )p(ŷi�J | {vI}I⊂J , s
(i), q(i)), (21)

If we let K = 2 and Q(2) be deterministic, and identify (V1→12, Ŷ1→12) with (V12, Ŷ ), then

we recover the results (9) and (12) in the two-user case. In order to have a general scheme for

the K-user case, however, we need a much heavier notation as shown in the above theorem. As

it will become clearer later, the complexity originates from the need to introduce K phases in

each one of which different types of information are created and sent. In particular, as compared

to the two-user case, there are in general a coded time-sharing random variable (RV) Q(j) in

each phase j ∈ K. The subscript “i → J ” can be understood as related to the side information

created in phase i and intended for the users in group J of j users. We recall that in the two-user

case, there is only one type of side information that is intended for both users (|J | = 2).

In the rest of the section, we present the general JSC scheme in detail and prove the achiev-

ability of the rate region given by Theorem 1. We divide the n-slot transmission into K phases,

each phase j ∈ K having length nj such that n = n1 + · · · + nK . We define the normalized

length of phase j as αj ,
nj

n
with

∑K

j=1 αj = 1.

The K-user scheme works in a similar manner as the two-user scheme. In each phase j ∈ K,

• the input, output, and state are denoted by X(j), Y (j), and S(j), respectively;

• if j = 1, the original messages {Mk ∈ Mk , [1 : 2nRk ] : k ∈ K} are sent, otherwise a set

of side information messages {Mi�J ∈ Mi�J , [1 : 2niRi�J ] : |J | = j, i < j} are sent;

• each message Mi�J is related to the source RV Ŷi�J created in a previous phase i, and is

carried by Vi�J for transmission;

• the transmission is controlled by a coded time-sharing RV Q(j).

3We define vU , {vk�U : k < |U|} and VU , {Vk�U : k < |U|} for brevity. We also recall that I and J are subsets of

size i and j, respectively.
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Codebook Generation: Fix the pmf as described in (21).

1) Before the beginning of phase j ∈ K, randomly generate the time-sharing sequence

according to
∏nj

t=1 p(q
(j)
t ).

2) At the beginning of phase 1, for each user k ∈ K, randomly generate 2nRk independent

sequences vvvk(mk), mk ∈ [1 : 2nRk ], each according to
∏n1

t=1 p(vk,t).

3) At the end of phase i ∈ {1, . . . , K − 1}, for each j > i and each J with |J | = j,

randomly generate 2niRi�J independent sequences ŷyyi�J (mi�J ) and 2niRi�J independent

sequences vvvi�J (mi�J ), mi�J ∈ [1 : 2niRi�J ], each according to
∏ni

t=1 p(ŷi�J ,t | s(i)t , q
(i)
t )

and
∏nj

t=1 p(vi�J ,t), respectively.

Encoding:

1) In phase 1, to send the original messages (M1, . . . ,MK), a sequence xxx(1) is first generated

based on (vvv1(M1), · · · , vvvK(MK), qqq
(1)) according to

∏n1

t=1 p(x
(1) | v1,t, . . . , vK,t, q

(1)
t ) and

then transmitted.

2) At the end of phase i, i = 1, . . . , K − 1, and for each j > i and each J with |J | = j,

given the state feedback of all the previous phases, the source searches for an index Mi�J

such that (ŷyyi�J (Mi�J ), {vvvl�I}l<i,I⊂J , sss
(i), qqq(i)) ∈ T ni

ǫni
(Ŷi�J , {VI}I⊂J , S, Q)4. According

to the covering lemma [16], this is feasible with probability going to 1 when ni → ∞, if

niRi�J ≥ niI(Ŷi�J ; {VI}I⊂J |S(i), Q(i)) + niǫni
. (22)

Decoding: We focus on the decoding procedure of a particular receiver k ∈ K without loss

of generality. At the end of phase K, a backward decoding is performed. Specifically, for phase

j = K,K − 1, . . . , 1, the set of messages, {MJ }J∋k, intended for user k is decode as follows.

1) For phase j, j = K,K − 1, . . . , 2, by construction the “future” message set {M̂j�U :

U ∋ k, |U| > j} has been decoded previously. The goal is to decode the “current” messages

M̂i�J for each J ∋ k and each i < j. To that end, the decoder looks for a unique index

4It is worth clarifying that the weak typicality compatible with both discrete and continuous RVs is used. As in [15], weak

typicality is defined as T n
ǫ (xn) , {xn : |− 1

n
log p(xn)−H(X)| ≤ ǫ} for discrete RVs and T n

ǫ (xn) , {xn : |− 1
n
log p(xn)−

h(X)| ≤ ǫ} for continuous RVs, where with a bit abuse of notation we denote pmf and probability density function with the

same notation p(xn) for discrete and continuous cases, respectively.
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M̂i�J such that the following joint typicalities are satisfied simultaneously

(

vvvi�J (M̂i�J ), yyy
(j)
k , {ŷyyj�U(M̂j�U)}U⊃J , sss

(j), qqq(j)
)

∈ T nj

ǫnj
(Vi�J , Yk, {Ŷj�U}U⊃J , S

(j), Q(j))

(

ŷyyi�J (M̂i�J ), yyy
(i)
k , sss(i), qqq(i)

)

∈ T ni

ǫni
(Ŷi�J , Yk, S

(i), Q(i)). (23)

The probability that such an index cannot be found or is not correct (M̂i�J 6= Mi�J )

vanishes when ni → ∞ provided that

niRi�J ≤ njI(Vi�J ; Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j)) + niI(Ŷi�J ; Y

(i)
k |S(i), Q(i))− njǫnj

− niǫni
.

(24)

The error event analysis that leads to the above rate follows the exact same steps as the

one in [14, Sec. IV, p.1476], and is omitted here due to the space limitation.

2) Finally, for phase 1, the decoder searches for a unique M̂k such that

(

vvvk(M̂k), yyy
(1)
k , {ŷyy1�U(M̂1�U )}U∋k, sss

(1), qqq(1)
)

∈ T n1
ǫn1

(Vk, Yk, {Ŷ1�U}U∋k, S
(1), Q(1))

According to the packing lemma, the probability that such an index cannot be found or is

not correct (M̂k 6= Mk) vanishes when n1 → ∞ provided that

nRk ≤ n1I(Vk; Y
(1)
k , {Ŷ1�U}U∋k |S(1), Q(1))− n1ǫn1 . (25)

To summarize, (R1, . . . , RK) is achievable if for each k, (25) is satisfied subject to the existence

of {Ri�J : i < j, |J | = j} that verify (22) and (24). Thus let n1, . . . , nK go to infinity by

keeping the same ratio α1, . . . , αn, we obtain the rate (20) if, for each (k, i, j,J ) with i < j

and |J | = j,

I(Ŷi�J ; {VI}I⊂J |S(i), Q(i)) ≤ αj

αi

I(Vi�J ; Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j)) + I(Ŷi�J ; Y

(i)
k |S(i), Q(i)).

Using the Markovity Ŷi�J ↔ ({VI}I⊂J , S
(i), Q(i)) ↔ Y

(i)
k and the chain rule, we have

I(Ŷi�J ; {VI}I⊂J |S(i), Q(i))− I(Ŷi�J ; Y
(i)
k |S(i), Q(i)) = I(Ŷi�J ; {VI}I⊂J | Y (i)

k , S
(i), Q(i)) (26)

which leads to the constraint (20). This completes of proof of Theorem 1.

V. APPLICATIONS TO THE GBC AND EBC

In this section, we apply the general result in Theorem 1 to the fading Gaussian BC and

the erasure BC. The key is to fix the distribution (21) of the RVs involved in the rate region

appropriately for each channel.
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In particular, the coded time-sharing random variable Q(j), j ∈ K, is used to indicate which

of the messages Mi�J is to be sent.5 Thus, it is natural to define Q(j) as (Q
(j)
1 , Q

(j)
2 ), where

Q
(j)
1 ∈ Q(j)

1 and Q
(j)
2 ∈ Q(j)

2 with

Q(j)
1 ,











{0}, j = 1,

{1, . . . , j − 1} , j > 1,
and Q(j)

2 , {J : |J | = j} . (27)

We also let the channel input X be a deterministic function of V and Q. Specifically, when

Q(j) = (i,J ), the message Mi�J is carried by Vi�J . Hence, we set

X(j) = V
Q

(j)
1 �Q

(j)
2
. (28)

A. Fading Gaussian BC

For the fading GBC, we focus on the symmetric channel and the corresponding symmetric

rate for simplicity. To that end, we make the following choices on the RVs:

• Time-sharing RVs. We let Q
(j)
1 be deterministic, namely, Q

(j)
1 = j − 1, and let Q

(j)
2 be

uniformly distributed over Q(j)
2 , namely

P
(

Q
(j)
2 = J

)

=

(

K

j

)−1

, ∀J ∈ Q(j)
2 . (29)

Intuitively, the above choice means that in phase j, we only transmit side information created

in the previous phase j − 1. This is similar to the general MAT scheme [4]. We can write

Q(j) = (j − 1, Q
(j)
2 ). The uniformity is simply due to the symmetry of the setting.

• Gaussian distributed V ’s. The RVs V ’s with different subscripts are independent and iden-

tically distributed (i.i.d.) according to CN (000, P
nt
IIInt

). It means that all the transmit antennas

are used in each phase with isotropic signaling, which can be justified by the lack of

instantaneous CSIT.

• Side information Ŷ as compression of the overheard signal. In phase i, when Q(i) = (i−1, I)
for some I, we set

ŶYYi�J =











HHHJ\IXXX
(i) + ẐZZJ\I , if J ⊃ I and |J | = i+ 1,

0, otherwise

(30)

where ẐZZJ \I ∼ CN (000, βiσ
2III) is the compression noise with βi > 0 being a parameter to be

fixed later. The intuition behind (30) is the following. When Q(i) = (i−1, I), the information

5Slightly abusing the subscript notation, we sometimes write (·)k as (·)0→{k}, e.g., the original message Mk is also M0�{k}
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intended for the users in the set I is being sent and is overheard by some user k 6∈ I. Let

J = {k} ∪ I be the new group. Then, the overheard signal HHHJ\IXXX
(i) is indeed interested

by the users in group I since it provides an extra observation6. Furthermore, thanks to the

joint source-channel coding, HHHJ\IXXX
(i) as a side information does not cost receiver k much

to decode since it already has some noisy version of the information.

Applying the above RVs to the general region in Theorem 1, we obtain the following corollary.

Some intermediate steps are rather technical and deferred to Appendix A.

Corollary 1. For the K-user symmetric nt × nr fading GBC, the symmetric rate:

RGBC
sym = max

(β1,...,βK−1)∈RK−1
+

(

K +

K
∑

j=2

(

K

j

) j
∏

t=2

∑

l≤t bl,t

at

)−1

a1, (31)

is achievable, where, for t = 1, . . . , K,

at , E
[

log det
(

III + snrHHH
H
T ΛΛΛtHHHT

)]

, (32)

bl,t , E

[

log det

(

III +
snr

βt−1
HHHl(III + snrHHH

H
1 HHH1)

−1
HHH

H
l

)]

, (33)

with T , {1} ∪ {t+ 1, . . . , K} and ΛΛΛt , diag
{

IIInr
, β−1

t III(K−t)nr

}

.

Although the maximization in (31) is not convex in general, it can be done numerically. We

shall comment more on this aspect in the next section with some examples.

Now let us take a look at the high SNR regime. We consider the MISO case with nt = K.

We shall show from the above rate (31) that the optimal symmetric DoF can be achieved. To

that end, we let the compression noise variance be βi = 1, i = 1, . . . , K − 1. From (32) and

(33), one can verify that, at high SNR,

at = |T | log snr +O(1) = (K − t + 1) log snr +O(1), (34)

bl,t =











O(1), l = 1,

log snr +O(1), l 6= 1.
(35)

6When nr,1 + · · ·+ nr,K ≤ nt, such observation is linearly independent of what each user in I already has.
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Since the DoF is defined as DoFsym , limsnr→∞
Rsym

log snr
, it follows from (31) that

DoFsym =

(

K +

K
∑

j=2

(

K

j

) j
∏

t=2

t− 1

K − t+ 1

)−1

K (36)

=

(

K +

K
∑

j=2

(

K

j

)(

K − 1

j − 1

)−1
)−1

K (37)

=

( K
∑

j=1

1

j

)−1

, (38)

which coincides with the optimal symmetric DoF derived in [4] for the same channel. Note that

the DoF achievability holds for all {βi > 0}i that do not scale with the SNR, while at finite

SNR the exact values of the β’s actually matter for the rate performance.

B. Erasure BC

Next let us consider the erasure BC. We make the following choices on the RVs:

• Time-sharing RVs. Let us recall that Q(j) = (Q
(j)
1 , Q

(j)
2 ). Here we let Q

(j)
1 and Q

(j)
2 be

independent for each j ∈ K, i.e.,

p(q(j)) = p(q
(j)
1 )p(q

(j)
2 ), ∀ q(j) ∈ Q(j). (39)

However, we do not specify the distribution of (Q
(j)
1 , Q

(j)
2 ).

• Uniformly distributed V ’s. The RVs V ’s with different subscripts are i.i.d. over the input

alphabet X according to a uniform distribution. Specifically, the distribution of Vi�J , for

each i < j and |J | = j, is

p(vi�J ) =
1

|X | , ∀ vi�J ∈ X . (40)

This choice guarantees the maximum entropy of the V ’s, with H(Vi�J ) = log |X |.
• Side information Ŷ as the overheard signal. In phase i, when Q(i) = (l, I) for some l < i

and |I| = i, we set

ŶYYi�J =











X(i), if J ⊃ I, SI 6= 111, SJ\I = 111, and SJ̄ = 000,

0, otherwise.

(41)

The intuition behind (41) is the following. When Q(i) = (i−1, I), the information intended

for the users in the set I is being sent. If this information is not received by some of the

users in I (i.e. SI 6= 111), and meanwhile received by some unintended users defined by U
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with U ∩I = ∅, then we define a new group J = U ∪I. We have the conditions SJ\I = 111

and SJ̄ = 000. Thanks to the joint source-channel coding, such signal does not cost receivers

in J \ I anything to decode since they already have the information.

Applying the above RVs to the general region in Theorem 1, we obtain the following corollary.

As in the Gaussian case, the technical intermediate steps are deferred to Appendix B.

Corollary 2. The rate tuple (R1, . . . , RK) ∈ R
K
+ is achievable in the EBC with state feedback if

Rk ≤ α1P(Q
(1)
2 = k)(1− δK) log |X |, (42)

0 ≤ min
j,k,J :
k∈J

{

αjP(Q
(j)
2 = J )(1− δK\J∪{k})−

j−1
∑

i=1

αi

∑

I⊂J ,I∋k
P(Q

(i)
2 = I)φK\J∪{k},J\I

}

, (43)

for some K-tuple (α1, . . . , αK) ∈ RK
+ with

∑

k αk = 1, and some distribution of {Q(j)
2 }j∈K.

For the symmetric EBC, the above region coincides with the capacity region, as will be shown

in Corollary 3.

Definition 1. An EBC is said to be symmetric if the erasure probability δU only depends on the

cardinality of the set U , that is, δU = δU ′ if |U| = |U ′|.

Corollary 3. The JSC scheme achieves the following capacity region of the symmetric EBC.

CEBC
sym =

⋂

πππ











(Rπ(1), . . . , Rπ(K)) ∈ RK
+ :

∑K
k=1

Rπ(k)

1− δ{π(1),··· ,π(k)}
≤ log |X |











, (44)

where the intersection is over all permutations πππ , (π(1), · · · , π(K)) of (1, . . . , K).

Proof. The converse can be found in [2], [3] with the standard outer bound techniques by creating

an artificial degraded BC. A detailed proof on the achievability is provided in Appendix C. �

Remark 2. The capacity region for the general EBC with state feedback is still unknown. In

[2], [3], the authors designed a special scheme that can achieve the capacity region for the

general EBC with three users. In their capacity-achieving scheme, the transmitted signal can

depend simultaneously on messages from different phases, e.g., M1 and M2�{2,3}. Such a result

suggests that coded time-sharing may not be enough to achieve the capacity with JSC scheme

in general. We believe that it is possible to set the RVs in our region in a similar way as the

scheme in [2], [3] to achieve the three-user capacity region. However, it is out of the scope of
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the current paper and is not considered here. Nevertheless, the capacity region beyond three

users remains unknown.

VI. NUMERICAL EXAMPLES

In this section, we consider the Gaussian MISO channel with i.i.d. Rayleigh fading for K = 2

and 3 users. We let nt = K and evaluate the symmetric rate (31) of the JSC scheme. The

maximization (31) over {β1, . . . , βK−1} is done numerically. Since K is small in our examples,

we simply sample each βi uniformly within a given region of βi with a small step size and

then find out the maximum value of (31).7 For larger values of K, however, more sophisticated

numerical methods may be needed.

Our scheme is compared to the following baseline schemes:

1) The TDMA scheme. It is optimal for the no CSIT case, and achieves the following

symmetric rate

RTDMA
sym ,

1

K
I(X ; Y1 |S) (45)

=
1

K
E
[

log(1 + snr‖HHH1‖2)
]

. (46)

2) The original MAT scheme from [4]. Here we consider the MAT scheme as described in

[4], except for adding a proper linear scaling factor to meet the transmit power constraint.

3) The generalized MAT (GMAT) scheme from [5]. With GMAT, a precoder is designed

to balance the alignment of interference and the enhancement of each signal. The GMAT

scheme includes the MAT scheme as a special case by letting the precoder be the respective

channel matrix HHH to reconstruct the overheard observations.

4) The quantized MAT (QMAT) scheme from [6]. Instead of sending the analogy linear

combinations as the MAT scheme does, the QMAT transmits a quantized version of each

linear combination. In phase j, it turns out that (j−1)(j+2) is the minimum quantization

noise variance such that the message for group J can be recovered at each user through

a (K − j + 1)× 1 MISO channel. The achievable symmetric rate is

RQMAT
sym =

1

K
DoFsym E

[

log det
(

III + snrHHHKHHH
H
KÑNN

−1)
]

, (47)

where ÑNN , diag
(

{1+(j−1)(j+2)}j=1:K

)

and DoFsym is given by (38). The fundamental

differences between our JSC scheme and the QMAT are: 1) we use joint source-channel

7Although the numerical maximum value with such a method may not be optimal, but it still represents an achievable rate.
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coding while QMAT uses separate coding, 2) our source codebook is generated by Ŷ

that indicates what the users need while QMAT explicitly generates linear combinations

and the quantization of each combinations, and 3) the JSC scheme uses all the transmit

antennas all the time while the QMAT uses only a subset of K − j + 1 transmit antennas

in each phase j ∈ K.

5) The genie-aided upper bound. For k ∈ K, a genie provides the output Yk to users l ∈
{k+1, · · · , K}. The new channel can only have a larger capacity region than the original

one, and it is a physically degraded BC whose capacity region cannot be enlarged with

feedback. The single-letter characterization of the capacity region of such degraded BC is,

for some pmf p(x | uK−1)
∏K−1

k=2 p(uk | uk−1)p(u1), is

Rk ≤ I(Uk; Y
k
1 |Uk−1, S), ∀k ∈ K, (48)

where we define UK = X and U0 = 0 for convenience [16]. Thus, the symmetric capacity

of the original channel must satisfy (48), which yields the following upper bound on the

weighted sum

K
∑

k=1

Csym

k
≤ I(U1; Y1 |S) + · · ·+ 1

K
I(UK ; Y

K
1 |UK−1, S) (49)

≤ h(Y1 |S) +
K−1
∑

k=1

(

h(Y k+1
1 |Uk, S)

k + 1
− h(Y k

1 |Uk, S)

k

)

− 1

K
h(Y K

1 |X,S) (50)

≤ h(Y1 |S)−
1

K
h(Y K

1 |X,S) (51)

= I(X ; Y1 |S) = KRTDMA
sym , (52)

where the second inequality is from the Markovity h(Y k
1 |Uk, Uk−1, S) = h(Y k

1 |Uk, S) by

the construction of the pmf; the third inequality follows from the symmetry of the channel

output in a symmetric fading channel [17], i.e., when |J | ≥ |I|, h(YJ |U,S)
|J | ≤ h(YI |U,S)

|I| ;

and the last equality holds since h(Y K
1 |X,S) = h(ZK

1 |S) = K h(Y1 |X,S). Hence, we

have the following upper bound on the symmetric capacity

Csym ≤ DoFsymR
TDMA
sym . (53)

The two-user and three-user cases are evaluated separately in Fig. 2 and Fig. 3, respectively.

In both Fig. 2b and Fig. 3b, the curve denotes a variant of our proposed scheme where the

quantization noises βj’s are not optimized. Instead, we apply the same equivalent compression
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Figure 2: The proposed scheme versus the baseline schemes: two-user BC.

noise variance used in the QMAT scheme, that is, βj−1 = 1 + (j − 1)(j + 2). We have the

following comments on the results.

• From the plots, we see that the curves of the GMAT scheme proposed in [5] and the MAT

curves almost overlap in all SNR regime for K = 2, 3. It shows that the performance

improvement brought by carefully designing the linear combinations (referred to as pre-

coder) is marginal in the i.i.d. isotropic fading case. Another generalization direction within

the MAT framework is the quantization of linear combinations. Although the MAT and

QMAT are not compared directly in the same plot, we can still observe that the QMAT

does outperform the MAT scheme especially when K = 3 in medium-to-high SNR regime.

However, appreciable gain appears only at high SNR.

• In the low-to-medium SNR regime, the MAT/GMAT/QMAT schemes are outperformed by

the TDMA. This result is somewhat surprising since, unlike the other schemes, TDMA

does not exploit the state feedback. Indeed, the MAT-like schemes use the state feedback to

perform interference alignment which is known to be optimal at high SNR but is usually less

good when the SNR is not high. In such regime, the channel is not interference limited and

sending linear equations may be too costly for the marginal interference mitigation effect.

In the high SNR regime, the MAT-like schemes dominates the TDMA scheme eventually

thanks to a larger DoF gain, which is reflected by the slopes of the curves. The optimal
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Figure 3: The proposed scheme versus the baseline schemes: three-user BC.

DoF of the MAT-like schemes is also confirmed by the fact that the corresponding curves

are almost parallel to the upper bound curve.

• In all SNR regimes, the proposed JSC scheme outperforms all four baseline schemes (TDMA,

MAT, GMAT, QMAT) and has a non-negligible power gain over the MAT-like schemes.

This gain becomes more appealing in the medium-to-low SNR regime in which the MAT-

like schemes are not even better than the simple TDMA scheme. Our scheme can still take

advantage of the state feedback to achieve a better performance. This is mainly thanks to the

flexibility over the duration of each phase (time-slot) and the compression parameters as a

function of the SNR, which is not possible with the MAT/GMAT schemes. The comparison

to the QMAT scheme is even more interesting, since both the JSC scheme and QMAT are

based on compression. We see that the performance gain over QMAT is almost 3 dB for

K = 2 and is up to 6 dB for K = 3. To analyze the causes of such a significant gain,

we fix the βj−1 = 1 + (j − 1)(j + 2) which corresponds to the same setting in the QMAT.

As can be seen from the plots in Fig. 2b and Fig. 3b, the JSC scheme still dominates the

QMAT with a slight performance degradation from the case with optimized β’s. Such an

observation suggests that the main performance gain of our scheme over the QMAT comes

from the joint source-channel coding.



23

VII. CONCLUSION

In this paper, we proposed a novel scheme for the general state-dependent K-user broadcast

channel with state feedback. The proposed scheme is based on joint source-channel coding and

coded time-sharing. Thanks to the systematic and scalable structure of this scheme, we managed

to derive the corresponding achievable region in terms of a reasonable number of parameters.

Such region was then evaluated for two special cases, namely, the erasure BC and fading Gaussian

BC. In particular, we showed that our results covered the previously known capacity region for

the erasure BC. In addition, for the fading Gaussian BC, we demonstrated through numerical

evaulation a non-negligible power gain of our scheme over the existing ones in the literature.

We argued that such a substantial performance gain comes from the use of joint source-channel

coding which is still highly theoretical. Practical implementation of such schemes would be an

interesting direction to explore in the future.

APPENDIX A

PROOF OF COROLLARY 1

To study the symmetric rate, we let R1 = · · · = RK = Rsym. Due to the symmetry of

the channel, it is without loss of generality to consider receiver 1. In particular, we apply the

RVs choice given in Section V-A, and compute the quantities in (19) and (20). We define

J̃ , {1} ∪ {j + 1, · · · , K}, WWWj ,

[

ZZZT
1 , ẐZZ

T

Uj+1\J , · · · , ẐZZ
T

UK\J

]T

. Then, we have

I(V1; Y
(1)
1 , {Ŷ1�U}U∋k |S(1), Q(1))

= P(Q(1) = (0, {1}))I(V1; Y
(1)
1 , Ŷ1�{1,2}, . . . , Ŷ1�{1,K} |S(1), Q(1) = (0, {1})) (54)

= K−1I(VVV1;HHHKVVV1 +WWW1 |HHHK) (55)

= K−1
E
[

log det
(

III + snrHHH
H
KΛΛΛ1HHHK

)]

= K−1a1. (56)
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Similarly, assuming i = j − 1 and |U| = |J |+ 1 = j + 1, we obtain

I(Vi�J ; Y
(j)
1 , {Ŷj�U}U⊃J |S(j), Q(j)) =

(

K

j

)−1

I(VVVi→J ;HHHJ̃VVVi→J +WWWj |HHHJ̃ )

=

(

K

j

)−1

E

[

log det
(

III + snrHHH
H

J̃ΛΛΛjHHHJ̃

)]

=

(

K

j

)−1

aj ,

I({VI}I⊂J ; Ŷi�J | Y (i)
1 , S(i), Q(i)) =

j
∑

l=1

(

K

i

)−1

I(VVVI ;HHHlVVVI + ẐZZJ\I |HHH1VVVI +ZZZ1,HHH1,HHHl)

=

j
∑

l=1

(

K

i

)−1

E

[

log det

(

III +
snr

βi

HHHl(III + snrHHH
H
1 HHH1)

−1
HHH

H
l

)]

=

j
∑

l=1

(

K

i

)−1

bl,j . (57)

Thus, we can rewrite the Gaussian rate region as below.

Rsym ≤ α1K
−1a1 (58)

0 ≤ αj

(

K

j

)−1

aj − αj−1

(

K

j − 1

)−1 j
∑

l=1

bl,j. (59)

For a given set of {βj} and for a given SNR, {aj} and {bl,j} are fixed. Hence, the maximum

achievable rate of Rsym can be reached when α1 is maximized. However, the selection of {αi}
is subject to the constraint

∑K
j=1 αj = 1. Applying (59) K − 1 times, for j = K,K − 1, . . . , 2,

we obtain

α1 ≤ c1α2 ≤ · · · ≤ cK−1αK , (60)

where ck’s are nonnegative and can be found from (59). We argue that from (60) it is without loss

of optimality to assume that (59) should hold with equality for all j. To see this, let {αj, j ∈ K}
be such that

∑K
j=1 αj = 1 and assume that some of the inequalities in (60) are strict. Then, we

can always reduce some of α2, . . . , αK and make sure that all the equalities hold, which would

in turn lower the value of summation of α, i.e.,
∑K

j=1 αj = c < 1. In this case, we can make

the scaling α∗
j =

αj

c
which increases α1 and also the objective function. With this reasoning,

we conclude that the optimal value of α1 should be such that (59) holds with equality for all j,

which leads to

α∗
1 =

(

1 +

K
∑

j=2

(

K

j

)

K

j
∏

t=2

∑

l≤t bl,t

at

)−1

. (61)

Plugging α∗
1 back to (58), we obtain the optimal symmetric rate (31) in the Gaussian case.



25

APPENDIX B

PROOF OF COROLLARY 2

In the following, we first apply the RVs selected in Section V-B and evaluate the quantities

in (19) and (20), that is, for user k ∈ K,

I(Vk; Y
(1)
k , {Ŷ1�U}U∋k |S(1), Q(1)) = P(Q

(1)
2 = k)(1− δK) log |X |, (62)

I(Vi�J ; Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j)) = P(Q(j) = (i,J ))(1− δJ̄ ∪{k}) log |X |, (63)

= P(Q
(j)
1 = i)P(Q

(j)
2 = J )(1− δJ̄ ∪{k}) log |X | (64)

I({VI}I⊂J ; Ŷi�J | Y (i)
k , S(i), Q(i)) =

∑

I⊂J
P(Q

(i)
2 = I)I(VI ; Ŷi�J | Y (i)

k , S(i), Q
(i)
1 , Q

(i)
2 = I)

=
∑

I⊂J ,I∋k
P(Q

(i)
2 = I, Ŷi�J 6= 0, Y

(i)
k =?)H(VI) (65)

=
∑

I⊂J ,I∋k
P(Q

(i)
2 = I)φJ̄ ∪{k},J\I log |X |, (66)

where (62) can be interpreted as: receiver k can recover the intended signal on Mk unless all

the receivers are in erasure; (63) and (66) are obtained with the same reasoning on the choice

of the side information Ŷi�J as defined in (41). From (19) and (62), we obtain (42).

Applying (20), we have, for all i, j, k,J with i < j and k ∈ I,

0 ≤ αjP(Q
(j)
1 = i)P(Q

(j)
2 = J )(1− δJ̄ ∪{k}) log |X | − αi

∑

I⊂J ,I∋k
P(Q

(i)
2 = I)φJ̄ ∪{k},J\I log |X |.

We assume that the probabilities and α’s are bounded away from zero or one so that the following

inequality holds (∀i, j, k, I with i < j and k ∈ J ).

αi

∑

I⊂J ,I∋k P(Q
(i)
2 = I)φJ̄ ∪{k},J\I

αjP(Q
(j)
2 = J )(1− δJ̄ ∪{k})

≤ P(Q
(j)
1 = i). (67)

There are j− 1 such inequalities for each given set of (j, k,J ). In addition, P(Q
(j)
1 = i) should

also fulfil 0 ≤ P(Q
(j)
1 = i) ≤ 1 and

∑j−1
i=1 P(Q

(j)
1 = i) = 1. Then, we can eliminate the set

{P(Q(j)
1 = i)}i=1...j−1 with the Fourier–Motzkin elimination (FME) to obtain K − 1 constraints

on the α’s. Let us take i = 1 as an example, as show below.

α1

∑

I⊂J ,I∋k P(Q
(i)
2 = I)φJ̄ ∪{k},J\I

αjP(Q
(j)
2 = J )(1− δJ̄ ∪{k})

≤P(Q
(j)
1 = 1), (68)

0 ≤P(Q
(j)
1 = 1), (69)

P(Q
(j)
1 = 1) ≤ 1−

j−1
∑

i=2

P(Q
(j)
1 = i). (70)
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We obtain

α1

∑

I⊂J ,I∋k P(Q
(i)
2 = I)φJ̄ ∪{k},J\I

αjP(Q
(j)
2 = J )(1− δJ̄ ∪{k})

≤ 1−
j−1
∑

i=2

P(Q
(j)
1 = i). (71)

Therefore, we can apply j − 1 times the same type FME and the rate constraints after these

FME are

0 ≤ αjP(Q
(j)
2 = J )(1− δJ̄ ∪{k})−

j−1
∑

i=1

αi

∑

I⊂J ,I∋k
P(Q

(i)
2 = I)φJ̄ ∪{k},J\I , (72)

for j = 2, . . . , K. This completes the proof.

APPENDIX C

PROOF OF PROPOSITION 3

We define µJ , αjP (Q
(j)
2 = J ) as the normalized length such that

∑

J :J⊆K µJ = 1. The

rate region in Corollary 2 can be rewritten as

Rk ≤ µ{k}(1− δK) log |X |, (73)

µJ ≥ max
k: k∈J

{

∑

I: k∈I⊂J

φJ̄ ∪{k},J\I
1− δJ̄ ∪{k}

µI

}

. (74)

First, we show that (74) should be satisfied with equality for all J ⊆ K. It follows the similar

steps as those in Appendix A. We assume that there exist {µJ }J⊆K such that
∑

J⊆K µJ = 1

holds, and that the inequality (74) is strict for some J ′
. In this case, one can always reduce the

value of µJ ′ to achieve equality in (74), which leads to a smaller sum
∑

µJ = c < 1. Then,

we can scale the whole set {µJ }J⊆K by c to make sure that
∑

µJ = 1 holds again. This will

increase the values of {µ{k}}k∈K by a factor 1
c
, and will increase simultaneously the rate in (73).

Therefore, it is without loss of optimality to assume that (74) is satisfied with equality.

Then, we focus on the symmetric EBC, for which the optimal normalized lengths are char-

acterized by the following lemma.

Lemma 2. Let us define k∗
J , mink∈J k and

µk,J ,
∑

I: k∈I⊂J

φJ̄ ∪{k},J\I
1− δJ̄ ∪{k}

µI . (75)

For a symmetric EBC, the optimal µJ , J ⊆ K, is

µJ = µk∗J ,J . (76)
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Proof. We prove the lemma by induction on j. Note that by definition µk∗I ,I = µk∗J ,I for I ⊂ J .

We define two sets J1 and J2 that verify |J1| = |J2| = j = |J | ≥ 2 and J1 \ {k∗
J1
} =

J2 \ {k∗
J2
}. If k∗

J1
≤ k∗

J2
, it can be proved with induction that µJ1 ≥ µJ2 . To initiate the

induction, we assume that the maximal µI is obtained with k∗
I and µI1 ≥ µI2 is correct with

the analogously defined I1, I2. Due to the channel’s symmetry, we assume without loss of

generality that µ{1} ≥ µ{2} ≥ · · · ≥ µ{K} and we use abusively the following notations in this

appendix δJ̄ ∪{k∗J } = δK−j+1 and φJ̄ ∪{k∗J },J\I = φK−j+1,j−i. Hence, (75) and (76) reduce to

µk∗J ,J = 1
1−δK−j+1

∑

k∗J∈I⊂J µk∗I ,IφK−j+1,j−i.

As Lemma 2 focuses on j ≥ 2 case, we start by verify the case with j = 2. We assume that

µJ1 = µ{t1,t3} and µJ2 = µ{t2,t3} where t1 ≤ t2 ≤ t3. Then, we notice that µJm
= µ{tm,t3} =

φK−1,1

1−δK−1
maxk∈{tm,t3} µ{k} =

φK−1,1

1−δK−1
µ{tm}, m = 1, 2 and µJ1 =

φK−1,1

1−δK−1
µ{t1} ≥ φK−1,1

1−δK−1
µ{t2} = µJ2 .

Let us assume that (76) and µJ1 ≥ µJ2 hold for any Jm ⊂ K with |Jm| = j = l− 1 (3 ≤ l ≤
K), k∗

J1
≤ k∗

J2
, and J1 \ {k∗

J1
} = J2 \ {k∗

J2
}, for m = 1, 2. We show that (76) and µL1 ≥ µL2

hold for any Jm ⊂ Lm ⊆ K with |Lm| = l, k∗
L1

≤ k∗
L2

, and L1 \ {k∗
L1
} = L2 \ {k∗

L2
}, for

m = 1, 2. Let us take µL1 as an example. The µL1 writes as

µL1 =
φK−l+1,l−j

1− δK−l+1
max
k∈L1

∑

k∈J1⊂L1

µJ1 (77)

=
φK−l+1,l−j

1− δK−l+1

max











∑

k∗L1
∈J1⊂L1

µJ1,

{

∑

k′∈J ′⊂L1

µJ ′

}

k′ 6=k∗L1











(78)

=
φK−l+1,l−j

1− δK−l+1
max

k′ 6=k∗
L1

,

k′∈L1







max







∑

k∗L1
∈J1⊂L1

µJ1,
∑

k′∈J ′⊂L1

µJ ′













(79)

=
φK−l+1,l−j

1− δK−l+1

∑

k∗L1
∈J1⊂L1

µJ1 . (80)

To prove (80), we consider four types of subsets of L1 depending on whether k∗
L1

and k′ are

included in the subset. In particular, a subset including both k∗
L1

and k′ appears in both terms

inside the inner maximization of (79) which yields k∗
J ′ = k∗

J1
= k∗

L1
, while a subset containing

neither k∗
L1

nor k′ does not appear inside the inner maximization of (79). Note that the other

subsets have either k∗
L1

or k′ such that k′ 6∈ J1 and k∗
L1

6∈ J ′. There always exists a mapping that

projects a subset J1 including k∗
L1

into another subset J ′ including k′ by substituting k∗
L1

for

k′, i.e., J ′ = J1 \ {k∗
L1
}∪{k′}. Thus,

∑

k′∈J ′⊂L1
µJ ′ ≤∑k∗L1

∈J1⊂L1
µJ1 holds for any k′ 6= k∗

L1
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given that k∗
L1

≤ k′ and the property µJ1 ≥ µJ2 is true for k∗
J1

≤ k∗
J2

. Therefore, (80) holds.

The proof completes by

∑

I⊂L1\{k∗L1
}
µI∪{k∗L1

} ≥
∑

I⊂L2\{k∗L2
}
µI∪{k∗L2

} ⇐⇒ µL1 ≥ µL2, (81)

where the inequality follows by identifying J1 = I ∪ {k∗
L1
}, J2 = I ∪ {k∗

L2
} and the property

µJ1 ≥ µJ2 is true when k∗
J1

= k∗
L1

≤ k∗
L2

= k∗
J2

and J1 \ {k∗
J1
} = I = J2 \ {k∗

J2
}. �

In the following, we show that the µ’s in Lemma 2 lead to the capacity region (3). From

Lemma 10 in [3], we know that, for any disjoint sets F , T ⊆ K,

φF ,T =
∑

U⊆T
(−1)|U|δF∪U =

∑

U⊆T
(−1)|U|+1(1− δF∪U). (82)

Then, we extend φJ̄ ∪{k},J\I analogously such that (76) writes as

µJ = (1− δJ̄ ∪{k∗J })
−1

∑

I: k∗J∈I⊂J
µI

∑

U : U⊆J\I
(−1)|U|+1(1− δJ̄ ∪{k∗J }∪U )

= (1− δJ̄ ∪{k∗J })
−1

∑

k∗J∈I⊂J
µI

(

− (1− δJ̄ ∪{k∗J }) +
∑

φ 6=U⊆J\I
(−1)|U|+1(1− δJ̄ ∪{k∗J }∪U)

)

=

∑

φ 6=U⊆J\{k∗J }
∑

k∗J∈I⊆J\U µI(−1)|U|+1(1− δJ̄ ∪{k∗J }∪U)

1− δJ̄ ∪{k∗J }
−

∑

k∗J∈I⊂J
µI , (83)

where we change the summation order over I and U to obtain (83). We simplify (83) by adding
∑

k∗J∈I⊂J µI to both sides of (83), as shown below.

∑

I: k∗J∈I⊆J
µI =

∑

U : φ 6=U⊆J\{k∗J }(−1)|U|+1(1− δJ̄ ∪{k∗J }∪U)
∑

I: k∗J∈I⊆J\U µI

1− δJ̄ ∪{k∗J }
. (84)

Next, we show that the µ’s satisfying the recursive relation, i.e., (84), also verify Lemma 3.

Lemma 3. For a given k and for any Wk such that k ∈ Wk ⊆ {k, k + 1, · · · , K}, we have

∑

I: k∈I⊆Wk

µI =
(1− δK)µ{k}
1− δK\Wk∪{k}

. (85)

Proof. The proof is done by induction on the cardinality of Wk. For arbitrary k and |Wk| =
1 (i.e., Wk = {k}), one can easily verify (85) is true. We now assume that (85) holds for all

Wk with |Wk| ≤ w and show that it also holds for all Wk with |Wk| = w+1. Note that J is a
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set whose minimal element is k∗
J and Wk is a set with its minimum being k. Since (84) is true

for any J , we can substitute k and Wk for k∗
J and J , respectively, in (84) and have

∑

k∈I⊆Wk

µI = (1− δK\Wk∪{k})
−1

∑

φ 6=U⊆Wk\{k}
(−1)|U|+1(1− δK\Wk∪{k}∪U)

∑

k∈I⊆Wk\U
µI

= (1− δK\Wk∪{k})
−1

∑

φ 6=U⊆Wk\{k}
(−1)|U|+1(1− δK\Wk∪{k}∪U)

(1− δK)µ{k}
(1− δK\Wk∪{k}∪U)

=
(1− δK)µ{k}
1− δK\Wk∪{k}

∑

φ 6=U⊆Wk\{k}
(−1)|U|+1

=
(1− δK)µ{k}

1− δK\Wk∪{k}∪U
, (86)

where second equality holds because of the assumption and (86) follows the binomial theorem.

�

We sum up the µJ ’s (
∑

J⊆K µJ = 1) to obtain 1 =
∑

J⊆K µJ =
∑K

k=1

∑

k∈I⊆{k,k+1,··· ,K} µI =
∑K

k=1

(1−δK)µ{k}

1−δK\{k,k+1,··· ,K}∪{k}
=
∑K

k=1

(1−δK)µ{k}

1−δ{1,2,··· ,k}
, where the third equality comes from Lemma 3.

Additionally, we rewrite (73) as Rk

(1−δK) log |X | ≤ µ{k}, and apply this inequality to the above sum,

which yields log |X | ≥ ∑K
k=1

Rk

1−δ{1,2,··· ,k}
. The above proof also holds if we swap the roles of

the users according to the permutation π. This completes the proof.
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