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Distributed Binary Detection with
Lossy Data Compression

Gil Katz, Student Member, IEEE, Pablo Piantanida, Senior Member, IEEE, and Mérouane Debbah, Fellow, IEEE

Abstract—Consider the problem where a statistician in a two-
node system receives rate-limited information from a transmitter
about marginal observations of a memoryless process generated
from two possible distributions. Using its own observations,
this receiver is required to first identify the legitimacy of its
sender by declaring the joint distribution of the process, and
then depending on such authentication it generates the adequate
reconstruction of the observations satisfying an average per-
letter distortion. The performance of this setup is investigated
through the corresponding rate-error-distortion region describing
the trade-off between: the communication rate, the error expo-
nent induced by the detection and the distortion incurred by
the source reconstruction. In the special case of testing against
independence, where the alternative hypothesis implies that the
sources are independent, the optimal rate-error-distortion region
is characterized. An application example to binary symmetric
sources is given subsequently and the explicit expression for
the rate-error-distortion region is provided as well. The case
of “general hypotheses” is also investigated. A new achievable
rate-error-distortion region is derived based on the use of non-
asymptotic binning, improving the quality of communicated
descriptions. Further improvement of performance in the general
case is shown to be possible when the requirement of source
reconstruction is relaxed, which stands in contrast to the case of
general hypotheses.

Index Terms—Data compression; error statistics; signal detec-
tion; asymptotic performance; central detector; discrete spatially
dependent observations; distributed detection; error exponent;
multiterminal detection; multiterminal source coding; side infor-
mation; lossy source coding; type-I error rate; type-II error rate.

I. INTRODUCTION

THE problem of Hypothesis Testing (HT) is very familiar
in statistics. Presented with a list of n independent

and identically distributed (i.i.d) realizations of some random
variable (RV) X , a statistician attempts to determine the
probability distribution that governs the RV, out of a known list
of possible distributions. One popular special case is Binary
HT, where only two possible hypotheses exist, usually referred
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to as H0 and H1. Readers interested in an overview of HT
problems can consult [3] and references therein.

The problem of Binary HT is formally defined by two
types of error probabilities which are commonly referred to
as Type I and II probabilities. Denote by αn the first type
error probability given by the probability that H1 is chosen
despite H0 being true, while the error probability of the second
type βn is defined to be the probability that H0 is chosen
while H1 is true. Although the trade-off between the two error
events can be investigated in many ways, one common path
is to investigate the exponential rate of decay of the error
probability of the second type, i.e., − lim

n→∞
1
n log β?n(ε), while

imposing a fixed constraint over the error probability of the
first type, i.e., αn ≤ ε (ε > 0). Stein’s Lemma [3], [4] provides
a closed-form expression for the optimal error exponent in this
case,

− lim
n→∞

1

n
log β?n(ε) = D(P0‖P1) , (1)

where P0 and P1 are the probability distributions implied
by hypotheses H0 and H1, respectively, and D(·‖·) is the
Kullback-Leibler divergence provided that the measure P0

is absolutely continuous resp. to P1, i.e., P0 � P1. It is
worth to emphasize that, the optimal exponential rate of
decay of the error probability of the second type does not
depend asymptotically on the specific constraint over the error
probability ε of the first type.

The situation is substantially more complicated in the case
of a distributed detection. If it were possible to transmit
all signals to some central location with negligible cost and
delay, then the previous theory is in principle applicable.
However, due to practical considerations such as energy cost,
reliability, survivability, communication bandwidth, compart-
mentalization, there is never total centralization of information
in practice [5]. In this paper, we focus on the problem
of distributed hypothesis testing where it is assumed that
realizations of different memoryless sources of finite alphabets
are observed at different physical locations and thus, nodes are
subject to satisfy different types of communication constraints.
This work attempts a modest step in the direction of a theory
for distributed testing based on lossy data compression which
seems to offer a formidable mathematical complexity (see [6]
and references therein).

A. Related Work

Ahlswede & Csiszar [7] and then Han [8] investigated the
two-node distributed binary HT problem, where only one-
sided communication is allowed, with rate R [bits/sample] (see
Fig. 1 for a representation of a similar system). Both works
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Figure 1. Communication model for joint distributed detection and source
reconstruction.

offer similar approaches to derive achievable rate-exponent
rates for this problem, while the results are derived based
on somewhat different tools. Although optimality is proven
in [7] for the special case of “testing against independence”,
an optimality result for the general case remains elusive.

While testing against independence is a particular case
that assumes P1,XY = PXPY and P0,XY = PXY , it is
important in many scenarios where checking the relevance
of information being transmitted is of interest. This scenario
resembles the known case of transmitting information where
side information may be absent [9], [10], but is rendered more
complex by the fact that even the receiver is unaware of the rel-
evance of the side information. An equivalent setting, namely
vector Gaussian source coding with decoder side information
under mutual information and distortion constraints, has been
investigated in [11], and benefits of successive refinement for
testing against independence are studied in [12]. The problem
of testing against independence is approached for the scenario
where reciprocal communication is allowed between the two
nodes in [13]. Benefits of a two-way communication system
were demonstrated through a coding scheme inspired by the
seminal work of Kaspi [14].

Considering the general HT scenario described in Fig. 1,
the problem faced in this paper shares common roots with the
seminal works in [7], [8]. Here, however, we are not inter-
ested only in distributed testing but also in achieving source
reconstruction. This also connects to the lossy source coding
problem by Heegard & Berger [15], where two decoders
have to reconstruct the same source based on different side
informations and the setup investigated in [11]. Along the line
of the technical tools used in the present work, authors in [16]
suggested the use of “binning” as a possible approach to
improve performance of distributed HT by reducing the coding
rate. We shall study this approach which, however, brings forth
different difficulties, stemming from the fact that the worth
of the side information at the decoder is unknown before a
decision is made about the state of the system. That is because
reliable decoding of the “bin index” is required in presence of
side information uncertainty (e.g. similarly to problems under
channel uncertainty [17]), which is also met and contended
with in our present framework. Binning was also shown to
be useful in [18], where a multi-node system composed of
several decentralized encoders that send limited-rate messages
to a decoder about their observations was investigated for the
case of testing against conditional independence.

In this work, we consider another dimension of the problem,
as represented in Fig. 1. An authentication system prevents

the unauthorized injection of messages into a public channel,
on which security is inadequate for the needs of its users
since it may be threatened with eavesdropping or injection or
both [19]. This threat of compromise of the receiver’s authen-
tication data is motivated by situations in multiuser networks
–such as automatic fault diagnosis– where the receiver is often
the system itself which cannot be treated by conventional
cryptography, and which require recourse to new techniques
(e.g. image authentication [20], [21] and Smart Grids [22],
[23]). Having divided the problem into that of authentication
and communication, decoding of a message at the receiver
(node B) requires first a reliable identification of the legiti-
macy of its sender (node A) and then a lossy reconstruction
of the underlying feature vector X = (X1, . . . , Xn), with an
average per-letter distortion depending on the decision made.
In a sense, this problem combines the general distributed HT
problem studied in [7] and [8] with the classical Heegard &
Berger [15].

B. Main Contributions

The paper is divided into three parts. In the first part, we
focus on the case of testing against independence where the al-
ternative hypothesis H1 is a disjoint “version” of H0 that leads
to Xn and Yn = (Y1, . . . , Yn) to be independent from each
other while sharing the same marginal distributions as under
H0. By relying on the techniques introduced in [8], we offer an
achievable (single-letter) expression for the tradeoff between
the coding rate, the error exponent and the average per-letter
distortion, referred to as rate-error-distortion region. In this
setting, we simply assume that reconstruction is only attempted
when H0 is decided, since no effective side-information is
available at the decoder when H1 is the true hypothesis.

Interestingly, it is shown that the optimal rate-error-
distortion region is attained by using layered coding, where
the first layer performs HT, and the second layer uses well-
known results for source coding with side information at the
decoder [24], while ignoring the information received by node
B at the HT stage. This result is quite surprising, as in general
there is no reason to believe that such a separation between the
two aspects of the problem should be optimal. We explicitly
evaluate the rate-error-distortion region for uniform Binary
Sources where a Binary Symmetric Channel (BSC) is assumed
between X and Y , and plot the resulting tradeoffs between the
three quantities of interest.

In the second part, we derive an achievable rate-error-
distortion region for the same system, under no specific
assumptions on the two hypotheses. To this end, we allow
the use of binning not only for source reconstruction but
also for the testing purpose. The resulting rate-error-distortion
achievable region is in fact a quadruplet, comprised of the
rate of communication, the error exponent for an error of
the second type, subject to a maximum probability of error
of the first type, and the average distortion corresponding to
each hypothesis. The techniques required for this analysis are
inspired by previous work on distributed HT [8] and recent
work [25] on the study of the error exponent for the problem
of lossy source coding with side information at the receiver.
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It should be mentioned here that although the use of binning
for HT was first suggested in [16] as a possible approach
to improve performance, the benefits of this were never
demonstrated. Along this line, Rahman and Wagner [18] show
that binning is optimal for HT when under H1 the involved
variables are assumed to be conditionally independent given
some additional variable, known at the decoder side. While this
work played a big part in inspiring a binning approach for HT,
it turns out that using Y as the side information available to
the receiver does not necessarily improve testing performance,
as the exact value of side information is unknown.

In the third part of this paper, we concentrate on dis-
tributed HT without reconstruction constraints. We show that
for the case of two general hypotheses, unlike the case of
testing against independence, our previous two-stage coding
approach leads to significant loss in performance. We do so
by suggesting a new approach for testing without requiring
the decoding of the involved descriptions. This turns out to
be superior to the previous one in terms of error exponent,
but prevents the decoder of providing a lossy reconstruction
of the source. As the performance of the previous approach
for general distributed hypotheses testing is lower-bounded by
the known result of [8], the new approach we introduce may
also lead to a significant gain in performance, when compared
to this non-binned option.

The rest of this paper is organized as follows. Section II
presents the optimal rate-error-distortion region for the case
of testing against independence. Optimality is also shown
for a specific example of a binary symmetric channel (BSC)
between X and Y , and numerical results are given. The rate-
error-distortion region for the general HT case is given in
Section III. In Section IV, we offer a different approach for
HT only. The performance of the two previously presented
approaches are compared through numerical results. Finally,
concluding remarks are given in Section V.

Notation and Conventions

We use upper-case letters to denote random variables (RVs)
and lower-case letters to denote realizations of RVs. Vec-
tors are denoted by boldface letters, with their length as a
superscript, emitted when it is clear from the context. Let
Xj
i denote the vector X, from position i to position j, i.e.,

Xj
i = (Xi, Xi+1, . . . , Xj−1, Xj). P(X ) denotes the set of all

possible probability distributions on X , while pX ∈ P(X ) is
a member of this set. Qxn denotes the empirical distribution,
referred to as the type, of the vector xn = (x1, . . . , xn).
Pn(X ) ⊂ P(X ) denotes the set of all possible atomic
probability distributions (or types) on the alphabet X . The
set of all vectors xn ∈ Xn with a specific type Q is
denoted by T (Q) = T[Q], while the set of all vectors that
are δ-typical (in the usual sense, as defined in Appendix A)
is denoted by T n[Q]δ . Using Csiszár’s notation [26], we let
H(PX) = E [− log pX(X)] denote the entropy of a RV
distributed according to p, and distinguish the binary entropy
function by H2(x) = −x log2 x−(1−x) log2(1−x). I(X;Y )
denotes the mutual information between X and Y while
assuming that pXpY |X governs the pair, and D(PX‖P ′X)

the KL divergence between the distributions p and p′. All
exponents and logarithms in this paper are base 2, unless
stated otherwise. We denote the scalar convolution function
by a ? b , a(1− b) + b(1− a). Finally, known definitions and
properties of typical sequences are given in Appendix A.

II. TESTING AGAINST INDEPENDENCE

A. Definitions

In this section, we give a more rigorous formulation of
the context depicted in Fig. 1 for the case of testing again
independence. Let X and Y be two finite sets. Nodes A and B
observe sequences of random variables (Xi)i∈N? and (Yi)i∈N?

respectively, which take values on X and Y , resp. For each
i ∈ N?, random samples (xi, yi) are distributed according to
one of two possible joint distributions:{

H0 : p0(x, y) = PXY (x, y) ,

H1 : p1(x, y) = PX̄Ȳ (x, y) = PX(x)PY (y) .
(2)

on X × Y . Assume that the pairs (Xi, Yi) are independent
across time i.

Let d : X × X̂ → [0 ; dmax] be a finite distortion measure
i.e., such that 0 ≤ dmax < ∞. We also denote by d the
component-wise mean distortion on Xn × X̂n, i.e., for each
(xn, x̂n) ∈ Xn × X̂n, d(xn, x̂n) , 1

n

∑n
i=1 d(xi, x̂i). We

assume that node A can send information to node B over
an error-free link with rate R bits per source-symbol. Having
received the information from node A, node B is then required
to make a decision between the two possible hypotheses. After
having decided between the two hypotheses, node B attempts
to reconstruct the sequence X , with minimum distortion, for
some additive distortion measure, that may depend on the
actual probability distribution in place. While recovering the
sequence seen by node A under hypothesis H1 may still
be possible, it becomes less relevant, as in this case the
sequence seen by node B is completely independent and does
not constitute as side information. Furthermore, it is very
likely that in realistic cases where testing against independence
arises, deciding H1 implies that the information seen by node
A is irrelevant to node B. Thus, for the case of testing against
independence, we assume node B attempts to decode only if
it has decided H0. In the general hypotheses case, decoding
is attempted under any of the two hypotheses.

Definition 1 (Code). An (n,R)-code for testing against inde-
pendence in this setup is defined by

• An encoding function at node A denoted by fn : Xn →
{1, . . . , ‖fn‖} ;

• A decision region An ⊂ {1, . . . , ‖fn‖} × Yn, such that
if (fn(xn),yn) ∈ An the decoder declares H0 and
otherwise H1 ;

• A reconstruction function at node B denoted by gn :
{1, . . . , ‖fn‖} × Yn → X̂n .

Definition 2 (Rate-exponent-distortion region). A tuple
(R,E,D, ε) ∈ R4

+ is said to be achievable if, for any δ > 0
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and for n large enough, there exists an (n,R + δ)-code
(fn,An, gn) such that:

n−1 log ‖fn‖ ≤ R + δ ,

E0

[
d
(
Xn, gn(fn(Xn),Yn)

)]
≤ D + δ ,

− 1

n
log βn(An) ≥ E − δ ,

αn(An) ≤ ε ,

where βn(An) = Pr
(
An|XY ∼ p1(x, y)

)
and αn(An) =

Pr
(
Acn|XY ∼ p0(x, y)

)
, and E0 denotes that distortion is

measured under the condition that node B correctly decides
H0. The set of all such achievable tuples is denoted by R?
and is referred to as the rate-exponent-distortion region.

In [7] and later on in [8], the authors show that when testing
against independence, the optimal approach at node B is to
apply Stein’s Lemma over the common distribution of Yn

and the encoded descriptions fn(Xn). More specifically, by
optimizing over all decision regions An ⊂ {1, . . . , ‖fn‖} ×
Yn, the smallest probability of error of the second type βn
asymptotically behaves as: βn ≈ exp (−nE(R)) with n large
enough, for a fixed constraint on the error probability of the
first type αn ≤ ε, and the exponent E(R) satisfies [7, Lemma
1.a]:

E(R) = sup
n≥1

En(R) , (3)

where

En(R) = sup
fn

{
1

n
I (fn(Xn); Yn)

∣∣∣ log ‖fn‖ ≤ nR
}
. (4)

This asymptotic equivalence implies a strong converse prop-
erty that, much like in the single-node HT setup, the optimal
exponential decay of βn is not dependent upon the chosen
constraint 0 < ε < 1 on the error probability of the first type
αn (e.g. see [11] for a proof based on image sets).

B. Single-Letter Rate-Error-Distortion-Region

We now state the optimal rate-error-distortion region for
testing against independence, which provides a single-letter
expression for the rate-error-distortion region for testing
against independence, defined in that in Definition 2.

Proposition 1 (Rate-error-distortion region). A tuple
(R,E,D) ∈ R3

+ is achievable for the two-node detection and
reconstruction problem when testing against independence,
as defined in Definition 2, if and only if two random variables
U ∈ U and V ∈ V , as well as a reconstruction mapping
g : U × V × Y → X̂ , can be found, such that

I(U ;X) + I(V ;X|UY ) ≤ R , (5)
I(U ;Y ) ≥ E , (6)

E0

[
d
(
X, g(UV Y )

)]
≤ D , (7)

with (U, V ) being two random variables satisfying U −
−V −

−X−
−Y form a Markov chain with (X,Y ) ∼ p0(x, y), and
‖U‖ ≤ ‖X‖+ 2, ‖V‖ ≤ ‖X‖‖U‖+ 1.

Proof: The proof of Proposition 1 is given in Appendix B.

Remark 1. Observe that on one hand, the expression for the
rate can be evaluated as follows:

R ≥ I(U ;X) + I(V ;X|U)− I(V ;Y |U)

= I(U ;Y ) + [I(V ;X)− I(V ;Y )] ,
(8)

where the final equality stems from the Markov chain formed
by the RVs and on the other hand, from the fact that U −
−
V −
−X −
− Y form a Markov chain, it is easy to see that

E0

[
d
(
X, g′(V Y )

)]
≤ E0

[
d
(
X, g(UV Y )

)]
≤ D , (9)

for some mapping g′ and any g. Note that the rate can now
be seen as comprised of two different parts. The first part of
the resulting expression in (8) is dedicated to detection since
it only affects the error exponent, and is in fact identical to
the expression of the error exponent given in (6) in agreement
with previous results [7], [8]. The second part of the rate
is dedicated only to source reconstruction and therefore, the
rate-error-distortion region can be seen as being equivalent
to two uncoupled problems that share a common rate. In the
following sections, we will see that this is not the case when
general hypotheses are considered.

Remark 2. Note that while the assumption that distortion
is only measured in case the detection of hypothesis H0

is convenient, it is not necessary. As we assume that the
distortion measure is bound from above, the distortion under
the decision H0 (which may or may not be correct) may be
expressed as follows:

E0

[
d
(
X, g(UV Y )

)]
= E0

[
d
(
X, g(UV Y )

)
), “correct detection”

]
× Pr{“correct detection”}

+ E0

[
d
(
X, g(UV Y )

)
, “incorrect detection”

]
× Pr{“incorrect detection”}

≤ E0

[
d
(
X, g(UV Y )

)
|H0, “correct detection”

]
+ βndmax ,

(10)

where dmax is assumed to be that maximal value that the
distortion function d(·, ·) takes. As βndmax → 0 when n→∞
the relaxation of the assumption that the distortion is only
measured under correct detection does not change the optimal
rate-error-distortion region. Note that the assumption that
estimation is only done under the decision H0 was not relaxed,
only the fact that distortion is not measured under incorrect
detection.

C. Binary Symmetric Source

In some cases, the region defined by Proposition 1 can
be calculated analytically. We present such an example here.
Consider the following statistical model: Let X ∼ Bern

(
1
2

)
,

and {
H0 : Y = X + Z, Z ∼ Bern(p) ⊥ X
H1 : Y ∼ Bern

(
1
2

)
⊥ X ,

(11)

with Bern(p) being a Bernoulli RV with probability p for being
1, and ⊥ signifying that X and Z are independent of each
other in the case of hypothesis 0, and X and Y are independent
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Figure 2. Numerical results of the optimal average distortion as a function
of the desired error exponent of the second type, for different amounts of
available rate and for p = 0.25.

under the premises of hypothesis 1. Under both hypotheses,
the marginal distributions of both X and Y are equal. Thus,
a decision can be reached only through cooperation between
the nodes. In the next proposition, the rate-error-distortion
region for this problem is characterized by optimizing over
all involved random variables in Proposition 1.

Proposition 2 (Rate-Error-Distortion region for Binary Sym-
metric Sources). The rate-error-distortion region for BSS and
testing against independence is given by

R ≥ 1−H2 (α ∗ β ∗ p) + θ [H2 (α ∗ p)−H2 (α)] , (12a)
E ≤ 1−H2 (α ∗ β ∗ p) , (12b)
D ≥ θα− (1− θ) p , (12c)

for any 0 ≤ α, β ≤ 1
2 , 0 ≤ θ ≤ 1.

Proof: The proof is given in Appendix C.

D. Numerical Results

We now present numerical results for the Binary Symmetric
Source (BSS) case of testing against independence. Fig. 2
shows six curves, each representing the trade-off between
user authentification and source reconstruction, expressed by
the desired error exponent (second type) and the resulting
average distortion of the source estimation, for a fixed value of
available rate and for p = 0.25. Unsurprisingly, all curves are
non-decreasing, meaning that when the probability of error
is exponentially smaller, the amount of rate left for source
reconstruction is smaller, resulting in a more crude estimation.

Assuming that both sources Xn and Yn are available at
a single location, Stein’s Lemma yields an error exponent
Emax = I(X;Y ) = 1 − H2(p) ≈ 0.1887. Obviously, this
value constitutes an upper bound –uniform over the rate–
on the achievable exponent in the distributed setup presented
here. It can be seen that when R < Emax, the average
distortion reaches its maximal value Dmax = p = 0.25 for

some E < Emax. Any exponent bigger than the value for
which this happens is unachievable with this rate, since the
desired exponent would demand more rate than available.
When R > Emax, further enlarging the rate allows for better
distortion, for the same values of error exponent.

Note especially the curves for the rate values: R = 0.9 and
R = 1, which comply with R > H2(p). According to Slepian-
Wolf coding (see e.g. [4]), this rate is enough to transmit xn

to node B without distortion, when no detection is necessary.
Indeed, it can be seen that for any choice of error exponent that
ensures enough available rate for estimation, zero-distortion is
achievable. The curve for R = 1 is thus almost invisible, as
in this case enough rate is available for source reconstruction,
for any achievable choice of error exponent.

III. GENERAL HYPOTHESIS TESTING

We now focus on the general case, where both hypothe-
ses can be general distributions of two variables. Note that
now, unlike the case of testing against independence, the
performance of the system is measured by four quantities,
namely the rate, the error exponent and two distortions, as
source reconstruction is attempted under both hypotheses.
Nevertheless, distortion is still measured under the assumption
that the detection step was completed successfully. Unlike
the case of testing against independence, optimality results
for general distributed HT remain elusive. An achievable re-
gion [8] was inspired by the approach taken for testing against
independence. We propose here an achievable region for the
general hypothesis testing problem with source reconstruction
constraints that makes use of binning for both purposes. The
proposed region, while not necessarily optimal in general, aims
at improving on known results for the testing part while also
adding the reconstruction of the source.

A. Definitions
As before, we suppose that the statistician observes Yn

samples directly and can be informed about Xn samples
indirectly, via an encoding function fn : Xn → {1, . . . , ‖fn‖}
of rate n−1 log ‖fn‖ ≤ R. The code definition remains the
same as in Definition 1 with two reconstructions functions
gn,i : {1, . . . , ‖fn‖} × Yn → X̂ni . For each i ∈ N?, random
samples (xi, yi) are distributed according to one of two general
joint distributions:{

H0 : p0(x, y) = PXY (x, y) ,

H1 : p1(x, y) = PX̄Ȳ (x, y) ,
(13)

on X × Y . Moreover, these samples are independent across
time i = {1, . . . , n}, and we assume throughout this section
that PX(x) = PX̄(x) and PY (y) = PȲ (y), ∀(x, y) ∈ X × Y .

Definition 3 (Rate-exponent-distortion region). A tuple
(R,E,D0, D1, ε) ∈ R5

+ is said to be achievable if, for any
δ > 0, there exists an (n,R + δ)-code (fn,An, gn,0, gn,1)
such that:

n−1 log ‖fn‖ ≤ R+ δ ,

Ei
[
di
(
Xn, gn,i(fn(Xn),Yn)

)]
≤ Di + δ , i = 0, 1

− 1

n
log βn(An) ≥ E − δ ,

(14)
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where βn(An) = Pr
(
An|XY ∼ p1(x, y)

)
and αn(An) =

Pr
(
Acn|XY ∼ p0(x, y)

)
, and distortion is measured under the

condition that node B correctly detects the correct hypothesis.
The set of all such achievable tuples is denoted by R? and is
referred to as the rate-exponent-distortion region.

Remark 3. Note the slight abuse of notation in the dis-
tortion argument of Definition 3: The fact that we as-
sume the distortion is measured only in case the detec-
tion phase was completed correctly means that for each
distortion argument the “correct” RVs are assumed to be
used. Thus, E0

[
d0

(
Xn, gn,0(fn(Xn),Yn)

)]
≤ D0 + δ is

the correct expression for the distortion under H0, while
E1

[
d1

(
X̄n, gn,1(fn(X̄n), Ȳn)

)]
≤ D1 + δ is the correspond-

ing expression under hypothesis 1.

B. Achievable Rate-Error-Distortion Region

We now state our main result for the general joint dis-
tributed detection and reconstruction problem, which is a
new achievable rate-error-distortion region. This region is
inspired by the one offered for the special case of testing
against independence. In a similar manner to the approach
taken in Proposition 1, we derive an achievable region based
on the separation of two distinguishable steps, namely user
authentication and source reconstruction. The statistician first
decodes the description needed to perform testing, and then
reconstruct the samples sent by the encoder. However, the
decision step requires two phases, as summarized in the
corresponding constraints present in the error exponent of the
next proposition.

Proposition 3 (Achievable rate-error-distortion region). A
tuple (R,E,D0, D1) ∈ R4

+, is achievable for the distributed
joint detection and reconstruction problem with general hy-
potheses, if there exists a positive rate R′ satisfying:

R ≥ R′ + I
(
X;V0|UY

)
+ I
(
X;V1|Ū Ȳ

)
,

E ≤ inf
QX∈P(X )

sup
Q?
U|X(QX)∈P(U)

inf
QY ∈P(Y)

inf
QUXY ∈P(U×X×Y)

QU|X=Q?U|X

{
min

[
G(QUXY , QX , QY , R

′),

min
ŨX̃Ỹ ∈L(Q?UX ,Q

?
UY )
D
(
PŨX̃Ỹ ‖PŪX̄Ȳ

)]}
D0 ≥ E0

[
d0

(
X, X̂0(UY V0)

)]
,

D1 ≥ E1

[
d1

(
X̄, X̂1(Ū Ȳ V1)

)]
.

(15)

Here, U and Ū are auxiliary RVs such that QU |X(u|x) =
QŪ |X̄(u|x) ,∀(u, x) ∈ U×X , V0 and V1 are auxiliary random
variables verifying the Markov chains U−V0−X−Y and Ū−
V1−X̄−Ȳ (along with U and Ū respectively); L(Q?UX , Q

?
UY )

is the following set of random variables:

L(Q?UX , Q
?
UY ) =

{
PŨX̃Ỹ ∈ P(U × X × Y)

∣∣
PŨX̃(u, x) = Q?UX(u, x),

PŨỸ (u, y) = Q?UY (u, y), ∀(u, x, y)
}
,

(16)

where Q?UX , Q
?
UY are joint distributions implied by QX and

the chosen maximizer Q?U |X , and the function G appears in
(17), at the top pf the next page, with PUXYi defined to be
PUXY0

= PUXY = PXYQU |X in the case of hypothesis 0
and PUXY1

= PŪX̄Ȳ = PX̄ȲQŪ |X̄ for hypothesis 1.

Proof: The proof is relegated to Appendix D.
We emphasize that when a binning approach is taken,

the expression (15) for the error exponent E encapsulates
the innate tension between two error events: decoding the
description and testing based on it. Provided that a good
representation un of the observed samples xn at node A is
reliably decoded at node B, the statistician is able to perform
detection with a very large probability of success. However,
such a good representation would also induce a very large
size for the codebook, which for a given R would cause each
bin to be very large in order to satisfy the rate constraint,
making likely errors will appear during the decoding process
of the right sequence from the specific bin. On the other hand,
when a crude description is chosen, the codebook is smaller
and thus so is each bin –if binning is at all necessary. The
binning process is therefore not likely to significantly hurt
performance, whereas the retrieved representation is much less
valuable for the sake of performing the test because of the
crude nature of the description supplied by this representation
about samples xn.

In order to ensure the achievability of the error exponent
introduced in Proposition 3, we will take a “worst-case”
approach. The minimization and maximization operators in
the expression for E can thus be read as follows: For every
possible vector xn, the encoder is allowed to choose its strat-
egy of transmission (this is achieved by taking the supremum
over Q?U |X ). Having chosen the distribution to generate the
codebook, the proposed approach should apply for any type of
observed vector yn, as well as for any joint type (un,xn,yn),
as long as Q?U |X is respected. Much like the case of testing
against independence, achievability is proven by dividing the
problem into two distinct parts: hypothesis testing and source
reconstruction. First, a common message –designed to allow
detection– is communicated from node A to node B and is
then used regardless of the probability distribution in effect
which is still unknown at this stage. In order to do so, we
choose a decoder based on the empirical entropy, similar
to the Empirical Mutual Information (MMI) decoder used
in compound models (e.g. see [17] and references therein).
Two private messages are then transposed upon this common
message, each intended to be used (together with the common
message) under each of the possible hypotheses. It should be
emphasized that dividing the communication in two different
phases may well be a suboptimal choice. However, we will
see such a choice introduces significant gains in the error
exponent.

Remark 4. Much like in the case of testing against indepen-
dence (see Remark 2), the assumption that distortion is only
measured when correct detection has occurred is convenient
but not necessary for the achievability of the region proposed
in Proposition 3.
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G(QUXY , QX , QY , R
′) =

 min
i={0,1}

D
(
QUXY ||PUXYi

)
+
[
R′ − I

(
X;U

)
+ I
(
Y ;U

)]+
I
(
U ;X

)
> R′

+∞ else ,
(17)

IV. FOCUSING ON HYPOTHESIS TESTING ONLY

In this section, we focus on the detection part of the problem
only, while still assuming general hypotheses. Although we
will show that significant gains can be obtained by introducing
binning as suggested in Proposition 3, we next show that the
performance of detection can be further improved if source
reconstruction is not required by the statistician. We start with
the following proposition that uses a different approach for
testing without source reconstruction.

Proposition 4 (Improved error exponent for general hypothe-
ses). A pair (R,E) is an achievable rate and exponent pair
for general hypothesis testing, without source reconstruction,
provided that:

E ≤ sup
Q?
U|X∈P(U)

{
min

{
Ĝ(QUXY , R)

min
ŨX̃Ỹ ∈L(Q?UX , Q?UY )

D
(
PŨX̃Ỹ ‖PŪX̄Ȳ

)}}
,

(18)

where

Ĝ(QUXY , R) = R−
[
I
(
X;U

)
− I
(
U ;Y

)]
(19)

and the set L(Q?UX , Q
?
UY ) is defined by (16). It is worth

emphasizing that I
(
U ;Y

)
in (18) is a direct consequence of

the choice Q?U |X and the distribution implied by H0, PXY .

Proof: The proof of this proposition is relegated to
Appendix E.

The proof is very similar to that of Proposition 3. We
basically derive the probability of error for a specific triplet of
sequences (xn,yn,un), and then calculate the total probability
of error by summing over all possible types and corresponding
sequences included within each type. The main difference is
that now source reconstruction is not required. Thus, instead
of first selecting a sequence from within the bin and only
then performing the test, we let node B operate over the
entirety of the bin. The chosen strategy consists of going
over all sequences within the bin. For each sequence uni for
{1, . . . , 2nR}, we assume it is the correct one and perform
the test by checking the typicality of the pair (uni ,y

n) with
relation to the hypothesis H0. If a sequence is found in a
bin such that (uni ,y

n) ∈ Tn[UY ]δ , the decoder declares H0.
Otherwise, if no such sequence is found it declares H1.

As was the case in Proposition 3, Proposition 4 implies that
the resulting error exponent is the output of a trade-off between
the exponents of the probabilities of two error events. In this
case, the trade-off that controls βn ≈ exp(−nE) is between:
the probability of erroneous detection while using the right
sequence; and the probability of having a different sequence
in the bin that is jointly typical with yn and thus would
make the decoder declare H0. It turns out, that this trade-
off is much preferable to the one offered by Proposition 3, as
we can bound the set of sequences that might “confuse” the

decoder in a manner that is not dependent on the type of yn.
For instance, the minimizations over QX , QY and QUXY (as
seen in Proposition 3) are no longer necessary. This issue has
a positive effect on behaviour of the error exponent. Indeed,
this new approach takes advantage of the random nature of
the binning process. By randomly allocating sequences into
bins we allow for bigger codebooks, which provide better
descriptions to the original sequence. As long as the size of
the bins are not too large, this does not come at a major price
(in terms of the chance of “confusing" the decoder), and thus
improving significantly the result of [8] in some cases, as can
be seen in the example given subsequently. However, the fact
that the original sequence sent by the encoder is not retrieved
implies that this strategy is not adapted for the joint problem
of detection and source reconstruction.

Remark 5. Another advantage of this strategy over the one
given in Proposition 3 is that while knowledge over the
probability distribution implied by PX̄Ȳ is required in order to
analyze performance, such knowledge is not needed in order
to perform the test. This stems from the fact that here, the
system only tests if H0 is true or not rather than testing H0

against H1.

A. Binary Symmetric Source

Having proposed two new approaches for distributed testing
with general hypotheses, one that allows source reconstruction
(Proposition 3) and the other that does not (Proposition 4),
it is still not clear whether binning is strictly beneficial for
such problems. As was demonstrated in Section II, binning
for testing is not necessary to achieve optimality in the case
of testing against independence. One may further argue that
as binning introduces additional error events, it is not clear
whether or not it would be beneficial at all in the case of
general hypotheses.

In the following, we investigate the benefits of binning
through a Binary Symmetric Source (BSS). While it is an-
alytically clear that detection through the strategy offered by
Proposition 4 is superior to the one offered in Proposition 3, we
show that for some specific cases both approaches may result
in performance gain relative to non-binning approaches. For
the sake of simplicity, we consider the following lower bound
over the performance, throughout the following numerical
analysis [8]:

min
ŨX̃Ỹ ∈L(Q?UX ,QUY )

D(PŨX̃Ỹ ‖PŪX̄Ȳ ) ≥ D(PUY ‖PŪȲ ) .

(20)
Consider the following statistical model: Let X ∼ Bern

(
1
2

)
,

and{
H0 : Y = X + Z0, Z0 ∼ Bern(p) ⊥ X
H1 : Y = X + Z1, Z1 ∼ Bern(q) ⊥ X ,

(21)
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where 1 ≥ q > p ≥ 0. Note that while H1 does not imply
independence between X and Y , the marginal distribution of
Y is equal for both hypotheses, making a decision without
cooperation impossible. This model was studied first in Wyner-
Ziv [24] for source reconstruction. The optimal rate-distortion
region (asymptotic regime) was shown to beR(D) = inf

θ,δ
[θ (H2(p ? δ)−H2(δ))] ,

D = θδ + (1− θ)p ,
(22)

where p is the crossover probability between the source X and
the side information Y , and p?δ is the binary convolution of p
and δ. The parameters satisfy 0 ≤ θ ≤ 1 and 0 ≤ δ ≤ 0.5. The
achievability of this region was shown by using time-sharing
between two strategies - in the first the auxiliary RV U is
the result of passing X through a Binary Symmetry Channel
(BSC) with transition probability δ, while in the second U is
degenerate.

We now apply Proposition 3 to this setup, we choose to
consider only distributions in which QX is a BSS, and U is the
result of passing X through a BSC with crossover probability
δ. While this is not necessarily an optimal choice, it can be
justified as an optimal approach for the asymptotic regime,
at least. To evaluate the resulting error exponent, we need to
calculate two values. The first is given by:

inf
QY

inf
QUXY

QU|X=Q?U|X

G(QUXY , R) , (23)

as a function of Q?U |X (which, under our assumptions, boils
down to be a function of δ). This expression encapsulates
the error exponent of the event where the wrong sequence
is chosen from the bin. The second quantity to calculate is
given by:

min
ŨX̃Ỹ ∈L(Q?UX ,QUY )

D(PŨX̃Ỹ ‖PŪX̄Ȳ ) ≥ D(PUY ‖PŪȲ ) ,

(24)
also as a function of Q?U |X . This expression represents the
error exponent of the event where, while using the right
sequence, an error occurs during the detection process. Having
calculated these two functions, we can pick Q?U |X such that
the “minimum” between the two is “maximized”.

The results implied by Proposition 4 can be calculated in
a very similar fashion. Now, the trade-off is between the
same curve representing the error while using the correct
sequence as was mentioned in (24), and the curve implied
by Ĝ, representing the event of an error caused through the
testing of a different sequence.

B. Numerical Results

A visualization of the performance achieved by each of
the proposed methods for general hypotheses is plotted in
Fig. 3, for the above discussed statistical model. We choose to
consider only distributions in which QX is a BSS and Q?U |X
represents a BSC with transition probability δ, as explained
above. The “hypothesis testing” curve represents the error
exponent of the probability of the event where a mistake is
made in detection, when the correct sequence is used from

0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.2

δ

hypothesis testing error exponent
G (Proposition 3)

hypothesis testing without binning

Ĝ (Proposition 4)
“Stein” Upper Bound

Figure 3. Error exponents for both error events in the BSC case with p = 0.1,
q = 0.2, R = 0.4, under the strategies implied by Propositions 3 and 4.
The resulting error exponent for each δ is the minimum between the two.
Performance with a non-binned codebook is represented by a dashed line.

the bin. This curve is relevant for both methods of detection,
namely Proposition 3 and Proposition 4.

The interesting tension that exists between the two error
events, denoted by either G (Proposition 3) or Ĝ (Proposi-
tion 4) and an error exponent corresponding to testing, is
represented by the worst case between those curves. When δ is
very small, a sequence un can be found with high probability,
such that xn is very well described, and the codebook contains
many sequences un. Thus, given the right sequence un, the
error event during the test is not likely, and the error exponent
of the event where the test fails is high. However, since the
rate of communication is fixed, each bin has to contain many
sequences in case δ is small, increasing the error probability in
decoding the right sequence. When δ grows, the accuracy of
the description of xn by un is lower, making the probability of
error of the test, while using the correct sequence, higher. The
codebook, however, is smaller, making the task of choosing the
right sequence in the bin easier. Note that the error exponent
for choosing the sequence from within the bin has a threshold,
under which it is zero. This threshold in this case is roughly
δ ≈ 0.08, which is the value implied by [24] as the minimal
value for the binning approach, in the asymptotic regime.

Similarly, the trade-off between the two error events rep-
resented by Proposition 4 is apparent through the curve of
the error exponent related to the testing errors, along with the
“binning error exponent” denoted by the curve Ĝ. Now, the
additional error event –other than committing an error while
using the correct sequence which turns out to be the same
as before– is the event where a different sequence in the bin
“confuses” the decoder by being jointly typical with yn. While
this curve is lower bounded by the curve representing G for
all cases, it can be seen that in the present case this approach
is largely superior. As under both approaches we are allowed
to select the strategy Q?U |X (in this specific case δ) freely, the
optimal approach under each of the propositions would be to
choose the corresponding intersection point between the curve
representing G or Ĝ and the curve entitled “Hypothesis Testing
Error Exponent” in Fig. 3. These two points are marked in



9

Fig. 3 with black dots.
In addition, a lower bound can be found in Fig. 3. We

emphasize that this bound is not drawn as a function of δ
but rather depicts the best possible performance under the
assumptions detailed above, when binning is not performed,
as was done in [8]. Thus, δ is chosen to be the smallest
possible, such that the size of the codebook would not exceed
the available rate of communication. A trivial upper bound
is also drawn by providing xn to node B and then applying
Stein’s Lemma.

V. SUMMARY AND DISCUSSION

We studied the joint problem of distributed detection and
lossy compression with side information. This scenario arises
when an authentication system prevents the unauthorized in-
jection of messages into a public channel, assuring the receiver
of a message of the legitimacy of its sender. In this setup a
user (referred to as node A) is required to communicate a lossy
description of a memoryless source to a statistician (referred
to as node B) whose task is to verify that the encoding user
is the individual he claims to be and then according to its
identity to reconstruct the message based on the adequate
distortion measure, much like in [9], [10]. However, in the
setup considered here the receiver is unaware of the value of
its information as well, which leads to a two-step approach
where first a decision has to be made about the identity of
node A before source reconstruction can take place.

When testing against independence, this two-step approach
turns out to be optimal. In this case, detection can be per-
formed optimally as in [7], while source remonstration is
performed à la Wyner-Ziv [24], and the two-step approach
does not induce performance degradation. An application ex-
ample to a binary symmetric source was also shown for which
the optimal region was explicitly derived, emphasizing an
interesting tension between the error exponent corresponding
to the (second type) error probability and the average distortion
measure.

When testing with general hypotheses, a similar, albeit
more involved, approach produced a new achievable rate-error-
distortion region. Here, optimality may be hard to reach, as
optimality results stay elusive even in the case where the
receiver is aware of the value of the side information (see
[27] and references therein). Nevertheless, we showed that
the two-step approach, which was optimal in the case of
testing against independence, induces in the general case a
significant loss in performance. It was shown that when source
reconstruction is not required, valuable information for testing
can be compressed much further than in the opposite case,
improving significantly the performance of detection.

Although there are several other threats to authentication
systems which require recourse to more sophisticated models
and techniques than the ones investigated here, this work at-
tempts a modest step in the direction of a theory for distributed
testing based on lossy data compression which seems to offer
a formidable mathematical complexity.

APPENDIX A
TYPICAL SEQUENCES AND RELATED RESULTS

In this appendix we introduce standard notions in infor-
mation theory, suited for the mathematical developments and
proofs needed in this work. The results presented can be easily
derived from the standard formulations provided in [26], [28],
[29]. Let X and Y be finite alphabets and (xn,yn) ∈ Xn×Yn.
With P(X × Y) we denote the set of all joint probability
distributions on X × Y . We define the δ-typical sets, with
relation to the pmf pX ∈ P , as:

Definition 4 (Typical set). Consider p ∈ P(X ) and δ > 0.
We say that xn ∈ Xn is δ- typical if xn ∈ T n[X]δ with:

T n[X]δ =
{

xn ∈ Xn :
∣∣Qxn(a)− pX(a)

∣∣ ≤ δ ,
∀a ∈ X such that p(a) 6= 0

}
,

(25)

where Qxn(a) = n−1N(a|xn) is the type of xn and N(a|xn)
denotes de number of occurrences of a ∈ X in xn.

Definition 5 (Joint and conditional typical sets). In a similar
manner to Definition 4, given pXY ∈ P (X × Y) we can
construct the set of δ-jointly typical sequences as:

T n[XY ]δ =
{

(xn,yn) ∈ Xn × Yn :∣∣∣Qxnyn(a, b)− pXY (a, b)
∣∣∣ ≤ δ,

∀(a, b) ∈ X × Y such that pY |X(b|a)Qxn(a) 6= 0
}
.

(26)

We also define the conditional typical sequences. In precise
terms, given xn ∈ Xn we consider the set:

T n[Y |X]δ(x
n) =

{
yn ∈ Yn :∣∣∣Qxnyn(a, b)− pY |X(b|a)Qxn(a)

∣∣∣ ≤ δ,
∀(a, b) ∈ X × Y such that pY |X(b|a)Qxn(a) 6= 0

}
.

We present the following lemmas without proof.

Lemma 1 (Properties of typical sets [29]). The following
statements hold:

1) Consider (xn,yn) ∈ T n[XY ]ε. Then, xn ∈ T n[X]ε, yn ∈
T[Y ]ε, xn ∈ T nX|Y ε(y

n) and yn ∈ T n[Y |X]ε(x
n) .

2) Be (Xn,Yn) ∼
∏n
t=1 pXY (xt, yt). If xn ∈ T n[X]ε we

have
exp{−n(H(X) + δ(ε))}

≤ pXn(xn) ≤
exp{−n(H(X)− δ(ε))}

(27)

with δ(ε) → 0 when ε → 0. Similarly, if yn ∈
T n[Y |X]ε(x

n):

exp{−n(H(Y |X) + δ′(ε))}
≤ pYn|Xn(yn|xn) ≤

exp{−n(H(Y |X)− δ′(ε))}
(28)

with δ′(ε)→ 0 when ε→ 0 .

Proof: See [29, Chapter 2.5].
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Lemma 2 (Conditional typicality lemma [29]). Consider the

product measure
n∏
t=1

pXY (xt, yt), the following result hold

true

Pr
{
T n[X]ε

}
≥ 1−O

(
1

nε2

)
,

Pr
{
T n[Y |X]ε(x

n)|xn
}
≥ 1−O

(
1

nε2

)
,

for every xn ∈ Xn,

where (nε2)→∞ when ε→ 0 and n→∞.

Proof: See [29, Chapter 2.5].

Lemma 3 (Size of typical sets [26]). For any type Q ∈ Pn(X )

|Pn(X )|−1 exp
(
nH(Q)

)
≤ |T nQ | ≤ exp

(
nH(Q)

)
.

The size of the set of all empirical distributions (or types) of
X and of length n can be calculated to be

|Pn(X )| =
(
n+ |X | − 1

|X | − 1

)
≤ (n+ 1)|X | ,

yielding the following bound

(n+ 1)−|X| exp
(
nH(Q)

)
≤ |T nQ | ≤ exp

(
nH(Q)

)
.

Lemma 4. For every probability measure PX ∈ P(X ) and
stochastic mapping W : X 7→ P(Y), there exist sequences
(εn)n∈N+

, (ε′n)n∈N+
→ 0 as n→∞ satisfying:∣∣∣∣ 1n log |T[X]ε | −H(X)

∣∣∣∣ ≤ εn ,∣∣∣∣ 1n log |T[Y |X]ε(x)| −H(Y |X)

∣∣∣∣ ≤ εn , (29)

for each x ∈ T[X]ε where εn ≡ O(n−1 log n), and

PnX
(
T[X]ε

)
≥ 1− ε′n ,

Wn
(
T[Y |X]ε(x)|Xn = x

)
≥ 1− ε′n ,

(30)

for all x ∈ Xn where ε′n ≡ O
(

1
nε2

)
, provided that n is

sufficiently large.

Proof: Refer to reference [29, Lemma 2.13]

Lemma 5 (Set of sequences with small empirical entropy
[25]). For any pair of strings of length n, denoted by (xn,yn),
let

S(xn,yn) ={
(x̃n, ỹn) ∈ Xn × Yn

∣∣H(x̃n, ỹn) ≤ H(xn,yn)
}
,

with H(xn,yn) being the empirical entropy of the sequences,

H(xn,yn) = −
∑

a∈X ,b∈Y

Qxnyn(a, b) logQxnyn(a, b) .

Then

|S(xn,yn)| ≤ (n+ 1)|X ||Y| exp
[
nH(xn,yn)

]
.

Let

S(xn|yn) =
{

x̃n ∈ Xn |H(x̃n|yn) ≤ H(xn|yn)
}
,

then

|S(xn|yn))| ≤ (n+ 1)|X ||Y| exp
[
H(xn|yn)

]
.

Lemma 6 (Generalized Markov Lemma [30]). Let pUXY ∈
P (U × X × Y) be a probability measure that satisfies: U −

−X −
− Y . Consider (x,y) ∈ T n[XY ]ε′

and random vectors
Un generated according to:

Pr
{

Un = u
∣∣Un ∈ T n[U |X]ε′′

(x),x,y
}

=

1
{

un ∈ T n[U |X]ε′′
(x)
}

∣∣T n[U |X]ε′′
(x)
∣∣ .

(31)

For sufficiently small ε, ε′, ε′′ > 0,

Pr
{

Un /∈ T n[U |XY ]ε
(x,y)

∣∣∣Un ∈ T n[U |X]ε′′
(x),x,y

}
≡ O

(
c−n

) (32)

holds uniformly on (x,y) ∈ T n[XY ]ε′
where c > 1.

Lemma 7 (Joint Typicality Lemma [28]). Let (X,Y, Z) ∼
p(x, y, z) and ε′ < ε. Then there exist δ(ε) > 0 that tends to
0 as ε→ 0 such that the following statements hold:

1) If (x,yn) is a pair of arbitrary sequences and Zn ∼
n∏
i=1

pZ|X(zi|xi) then

Pr{(xn,yn,Zn) ∈ T n[XY Z]ε} ≤
exp{−n(I(Y ;Z|X)− δ(ε))} .

(33)

2) If (xn,yn) ∈ T n[XY ]ε′ and Zn ∼
n∏
i=1

pZ|X(zi|xi), then

for n sufficiently large

Pr{(xn,yn,Zn) ∈ T n[XY Z]ε} ≤
exp{−n(I(Y ;Z|X)− δ(ε))} .

(34)

APPENDIX B
PROOF OF PROPOSITION 1

In this appendix, we prove the achievability and converse
to Proposition 1.

Achievability proof

Codebook generation: Fix a conditional probability distribu-
tion QV U |XY = QV |UXQU |XPXY such that U−
−V −
−X−
−Y
form a Markov chain. Let QU (u) =

∑
x∈X PX(x)QU |X(u|x)

and QV |U (v|u) =
∑
x∈X QV |UX(v|u, x). Let the total avail-

able rate of communication R be divided into two, such
that the parts are dedicated to U and V , which represent
the different parts of the message. Denote the rate dedicated
to the transmission of U by R̂, while the rate dedicated
to the transmission of V is denoted by R′. Randomly and
independently generate exp(nR̂) sequences u through the i.i.d.
pmf QU (u), with replacement, such that u(s1) ∈ T[U ]δ , ∀s1,
with s1 ∈ [1 : exp(nR̂)]. For each codeword u(s1), randomly
and independently generate exp(nS2) sequences denoted by
vn(s1, s2) and indexed with s2 ∈ [1 : exp(nS2)] by using
the conditional pmf QV |U (·|u(s1)), with replacement, such
that v(s1, s2) ∈ T[V |U ]δ(u(s1)). Divide theses sequences
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into exp[nR′] bins, such that each bin contains roughly
exp[n(S2 −R′)] sequences.

Encoding: Assuming that the source sequence xn is pro-
duced from X , look for the first codeword in U ’s codebook
such that (un(s1),xn) ∈ T n[UX]δ . Then, look for the first code-
word vn(s1, s2) s.t. (vn(s1, s2),xn) ∈ T n[V X|U ]δ(u(s1)). Let
b be the bin of vn(s1, s2). Send the message f(xn) = (s1, b)
to node B.

Decoding: Given u(s1), b and yn, the decoder first checks
if (un(s1),yn) ∈ T n[UY ]δ . If so, it declares H0 and otherwise
it declares H1. If the decoder decides H0, it then attempts
to decode the message (with average distortion D) based
on v(s1, s2). This codeword is first recovered by looking in
the bin b for the unique codeword such that vn(s1, s2) ∈
T n[V |UY ]δ(u(s1),yn). Then, a per-letter function g(·) is applied
over the entire available information (U, V and Y ) in order to
produce a reconstruction of the source.

Error events and constraints: We start with the HT part,
and the relation between the expression I(U ;X) and the
achievable error exponent. Denoting by B0 the event “an error
occurred during encoding” (of the HT part U ), we expand its
probability as Pr(B0) ≤ Pr(B1) + Pr(B2) with:

Pr(B1) , Pr{Xn /∈ T n[X]δ} ,
Pr(B2) , Pr{@s1 s.t. (u(s1),Xn) ∈ T n[UX]δ|

Xn ∈ Tn[X]δ} ,
(35)

being the probabilities that the source X produces a non-
typical sequence, and that (for a typical source sequence) the
codebook doesn’t contain an appropriate codeword, respec-
tively. From the Asymptotic Equipartition Property (AEP),
Pr(B1) ≤ η(1)

n −→
n→∞

0. As for Pr(B2):

Pr(B2) = (36a)

=
(

Pr{(Un,Xn) /∈ T n[UX]δ| (36b)

Un ∈ T n[U ]δ,X
n ∈ T n[X]δ}

)exp(nR̂)

=
(

1− Pr{(Un,Xn) ∈ T n[UX]δ| (36c)

Un ∈ T n[U ]δ,X
n ∈ T n[X]δ}

)exp(nR̂)

≤ exp[− exp(nR̂)Pr{(Un,Xn) ∈ T n[UX]δ|
Un ∈ T n[U ]δ,X

n ∈ Tn[X]δ}] (36d)

≤ exp[− exp(nR̂) exp(−n
(
I(U ;X) + η(2)

n )
)
] (36e)

= exp{− exp[−n
(
I(U ;X)− R̂+ η(2)

n

)
]} . (36f)

Here, inequality (36d) is due to the inequality (1 − a)n ≤
exp(an) [4]. Since η(2)

n −→
n→∞

0, Pr(B2)→ 0 if R̂ > I(U ;X).

Analysis of αn: Calculating the probability of error of the

first type, αn, boils down to the following:

αn = Pr(H1|XY ∼ PXY ) (37a)
≤ Pr(B0) (37b)
+ Pr{(Un,Yn) /∈ T n[UY ]δ|

Un ∈ T n[U ]δ, (U
n,Xn) ∈ T n[UX]δ, XY ∼ PXY }

(37c)

≤ Pr(B0) + η(3) . (37d)

Here, (37c) is due to the fact that when calculating the
probability of error of Type I, we may assume that the
true distribution controlling the RVs is the one implied by
hypothesis 0. (37d), with η(3) → 0, is due to the Generalized
Markov Lemma (see Lemma 6 in Appendix A). Thus, it may
be concluded that αn → 0 when n → ∞, and thus αn ≤ ε
for any constraint ε > 0 and n large enough.

Analysis of βn: Next, we look at the achievable error
exponent of Type II with the proposed encoding scheme. For
the sake of this analysis, we can assume that hypothesis H1 is
the correct one. We will follow steps similar to the ones used
in [13]:

βn = Pr(H0|XY ∼ PXPY ) = Pr(Bc1) Pr(Bc0|Bc1) , (38)

where the event B0 is defined by

B0 = {(U(s1),Y) /∈ T n[UY ]δ′} (39)

to be the event that the chosen sequence U(s1) is not jointly
typical with the observed sequence Y. The term Pr(Bc1) goes
to 1 when n is large thanks to Lemma 2. Note that this also
means that with large probability an index s1 is chosen out
of the codebook, thanks to the Covering Lemma [28] and the
fact that we enforce R̂ ≥ I(U ;X). Moreover, note that even
if a sequence s1 cannot be found in the codebook, this does
not constitute a problem for the analysis of βn, as in this case
the decoder declares H1.

The term Pr(Bc0|Bc1) can be developed through the Joint
Typicality Lemma (see Lemma 7) as follows:

Pr(Bc0|Bc1) ≤ exp{−n(I(U ;Y )− ε(δ′))} , (40)

for n large enough and with ε(δ′) → 0 as δ′ → 0. Thus
− lim 1

n log βn ≥ I(U ;Y ) − ε(δ′) when n is large enough,
which completes the achievability of the desired error expo-
nent.

Analysis of the Estimation Phase: Finally, we show that
given a (correct) decision H0, the RV V can be used to decode
Xn with the desired distortion: Denoting by B3 the event
“an error occurred during encoding or decoding” (of V ), we
expand its probability as follows Pr(B3) ≤ Pr(B4) + Pr(B5),
with Pr(B4) being the probability that no codeword v(s1, s2)
could be found in the codebook for the given sequence xn and
the chosen codeword u(s1), and Pr(B5) being the probability
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that a different codeword in the same bin b is compatible with
yn and u(s1).

Pr(B4)

, Pr{@s2 s.t. (vn(s1, s2),xn) ∈ T n[V X|U ]δ(u
n(s1))}

=
[
Pr{(Vn,Xn) /∈ T n[V X|U ]δ(u(s1))|

V n ∈ T n[V |U ]δ(u(s1)),Xn ∈ T n[X]δ(u(s1))}
]exp(nS2)

≤ exp
{
− exp(nS2) exp[−n

(
I(V ;X|U) + η(6)

n

)
]
}

= exp
{
− exp[−n

(
I(V ;X|U)− S2 + η(6)

n

)
]
}
.

(41)
Thus, Pr(B4) −→

n→∞
0 if S2 > I(V ;X|U). Finally,

Pr(B5) , Pr{∃s′2 ∈ b
s.t. vn(s1, s

′
2) ∈ T n[V |UY ]δ(u

n(s1),yn)} ,
(42)

with b being the bin sent to node B.

Pr(B5) ≤ exp[n (S2 −R′ + ε)]

× Pr{Vn ∈ T n[V |UY ]δ(u
n(s1),yn)|

V n ∈ T n[V |U ]δ(u
n(s1))}

≤ exp[n (S2 −R′ + ε)]

× exp[−n
(
I(V ;Y |U) + η(7)

n

)
]

= exp
[
−n
(
I(V ;Y |U)− (S2 −R′) + η(7)

n − ε
)]

.

(43)

Thus, Pr(B5) −→
n→∞

0 if S2−R′ < I(V ;Y |U), or equivalently

R′ > S2 − I(V ;Y |U) > I(V ;X|U)− I(V ;Y |U) (44a)
= I(V ;XY |U)− I(V ;Y |U) = I(V ;X|UY ) , (44b)

where equality (44b) stems from the Markov chain U −
−
V −
− X −
− Y . Thus, since the total rate R is composed
of R̂ and R′, we conclude that our scheme is achievable if
R > I(U ;X) + I(V ;X|UY ).1

We now know that our scheme allows the decoding of
vn with high probability when the rate is large enough. It
remains to be shown that V (together with U and Y , which
are also known at node B) is enough to recover X with average
distortion D. We choose a (possibly suboptimal) decoder, that
decodes xi only from (ui, vi) and yi:

d
(
xn, x̂n(un,vn,yn)

)
=

1

n

n∑
i=1

d
(
xi, x̂(ui, vi, yi)

)
(45a)

=
∑

∀(x,u,v,y)

d
(
x, x̂(u, v, y)

)
Qxnunvnyn(x, u, v, y) (45b)

≤E0

[
d(X, X̂(UV Y ))

]
(45c)

+
∑

∀(x,u,v,y)

|Qxnunvnyn(x, u, v, y)− p(x, u, v, y)| (45d)

≤E0

[
d(X, X̂(UV Y ))

]
+ dmax|X ||U||V||Y|δn , (45e)

1We explicitly ignored an additional error event, which is that yn is not
typical. The probability of this event goes to 0 much like Pr(B1), thanks to
the AEP.

where the summation in (45b) and (45d) is over all the
possible letters in the respective alphabets of the RVs
(x, u, v, y) ∈ X ×U ×V ×Y and inequality (45e) holds since
(xn,un,vn,yn) ∈ T n[XUV Y ]δ . Since δn −→

n→∞
0, the condition

D > E0

[
d
(
X, X̂(UV Y )

)]
is sufficient to achieve distortion

D + ε at node B. This concludes the proof of achievability.

Converse proof
For this part of the proof we use the multi-letter converse

result in [7], which states that when no estimation is required,

lim sup
n→∞

1

n
log ‖fn‖ ≤ R , (46)

lim inf
n→∞

1

n
I (fn(Xn); Yn) ≥ E . (47)

Clearly, this rate-error relationship cannot be beat when an
additional constraint (in this case, relating to the estimation
requirement) is put on the system.

Denote by W = f(Xn) the message sent from node A to
node B. The rate can be bounded as follows:

nR ≥ I(W ; Xn) (48a)
= I(W ; Xn,Yn) = I(W ; Yn) + I(W ; Xn|Yn) (48b)

=

n∑
i=1

I(W,Yi−1;Yi) +

n∑
i=1

I(W ;Xi|Yn,Xi−1) (48c)

=

n∑
i=1

I(W,Yi−1;Yi)

+

n∑
i=1

I(W ;Xi|Yi,Yn
i+1,Y

i−1,Xi−1) (48d)

=

n∑
i=1

[
I(W,Yi−1;Yi)

+I(W,Yn
i+1,Y

i−1,Xi−1;Xi|Yi)
]

(48e)

=

n∑
i=1

[
I(W,Yi−1;Yi) + I(W,Yi−1;Xi|Yi)

+I(Yn
i+1,X

i−1;Xi|Yi,Yi−1,W )
]

(48f)

=

n∑
i=1

[
I(W,Yi−1;Yi, Xi)

+I(Yn
i+1,X

i−1;Xi|Yi,Yi−1,W )
]

(48g)

=

n∑
i=1

[
I(W,Yi−1;Xi)

+I(Yn
i+1,X

i−1;Xi|Yi,Yi−1,W )
]
. (48h)

Here, (48b) and (48h)are due to the Markov chains W −Xn-
−Yn and W − Xi − Yi, respectively. (48e) stems from the
fact that both sources X and Y are assumed to be jointly i.i.d.
Defining Ui , (W,Yi−1) and Vi , (Ui,Y

n
i+1,X

i−1) the
Markov chain Ui− Vi−Xi− Yi is satisfied since the sources
X and Y are assumed to be jointly i.i.d, and the bound over
the rate becomes

R ≥ 1

n

n∑
i=1

[I(Ui;Xi) + I(Vi;Xi|Ui, Yi)]

= I(U ;X) + I(V ;X|UY ) ,

(49)
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with U and V defined through time-sharing as is subsequently
shown in (52).

The error exponent can now be expressed as follows:

I(W ; Yn) =

n∑
i=1

I(W,Yi−1;Yi)

=

n∑
i=1

I(Ui;Yi) = nI(U ;Y ) ,

(50)

with the same definition of Ui. Thus, the converse over the
error exponent is proved with equality.

Finally, the distortion at node B can be bounded as follows.
Define the function X̂i as the i-th coordinate of the estimate
in node B:

X̂i(Ui, Vi, Yi) , gi(W,Y
i−1, Yi,Y

n
i+1) . (51)

The component-wise mean distortion thus verifies

D + ε ≥ E0

[
d
(
Xn, g(W,Yn)

)]
=

1

n

n∑
i=1

E0

[
d
(
XQ, X̂Q(UQ, VQ, YQ)

)
|Q = i

]
= E0

[
d
(
XQ, X̂Q(UQ, VQ, YQ)

)]
= E0

[
d
(
X, X̂(U, V, Y )

)]
.

(52)

For the sake of this calculation, we use the fact that any Ui
and Vi, as they were defined for this converse, contain the
entire message W , as well as the past and future of Y . This
concludes the converse proof in Proposition 1.

Cardinality bounds

It remains to establish that the cardinality bounds specified
by the conditions in Proposition 1 do not affect the minimiza-
tion. Toward that end we invoke the support lemma [29, p.
310] in order to deduce that U must have ‖X‖ − 1 letters
in order to ensure preservation of p(x|u) plus three more
to preserve the constraints on D, I(U ;X) and I(U ;Y ), so
‖U‖ ≤ ‖X‖+ 2 suffices. Similarly, V must have ‖X‖‖U‖−1
letters in order to ensure preservation of p(x, u|v) plus two
more to preserve D, and I(X;V |UY ). Thus, it suffices to
have ‖V‖ ≤ ‖X‖‖U‖+ 1.

APPENDIX C
PROOF OF PROPOSITION 2

Achievability proof

In order to achieve the region proposed in Theorem 2,
choose V as the output of a Binary Symmetric Channel (BSC)
with cross-over probability α when the input is X . Choose U
as the output of another BSC, with cross-over probability β,
when the input is V :

V = X +W1, W1 ∼ Bern (α) ,

U = V +W2, W2 ∼ Bern (β) .
(53)

Calculating the expression for the error exponent, U and Y
can be thought of as connected through a BSC with cross-
over probability α ? β ? p, which yields:

I(U ;Y ) = H(U)−H(U |Y ) = 1−H2(α ? β ? p) . (54)

This complies with the expression proposed in Theorem 2.
The relation between the second term in the expression for the
rate and the amount of distortion expected can be calculated
through the following two steps, inspired by the approach
taken in [24], for the case of source estimation with side
information, jointly distributed according to a BSC (without
uncertainty in the probability distribution of the sources):

a) Setting X̂ = g(Y, V ) = V , we have E0

[
d(X, X̂)

]
=

α. Note that all expectations henceforth are taken over the
distribution imposed by H0, and under the assumption that
the decision H0 was correct. Y and V can be thought of as
being connected through a BSC with cross-over probability
α ? p. Thus (8) results in

Ra = I(U ;Y ) + [I(V ;X)− I(V ;Y )]

= 1−H2(α ? β ? p) + [H2(α ? p)−H2(α)] .
(55)

b) In this part, we let V be degenerate and X̂ = g(Y, V ) =

Y . We then have E0

[
d
(
X, X̂

)]
= p. Since in this case

I(V ;X)− I(V ;Y ) = 0, we have

Rb = I(U ;Y ) = 1−H2(α ? β ? p) . (56)

Now let 0 ≤ D ≤ p be given and say that θ, α are such
that D = θα + (1 − θ)p. Since R(D) is convex (for a given
error exponent E),

R(E,D) = R(θα+ (1− θ)p)
≤ θR(α) + (1− θ)R(p)

= θRa + (1− θ)Rb
≤ 1−H2(α ? β ? p) + θ [H2(α ? p)−H2(α)] .

(57)

Thus, any triplet (R,E,D) that complies with Theorem 2 is
achievable through this scheme, and the proof of achievability
is complete.

Converse proof

Theorem 1, along with the development in (8), implies that
the optimal region, for any specific example of hypothesis
testing against independence, is comprised of two RVs, such
that the Markov chain U −
− V −
− X −
− Y is respected.
Moreover, it implies that with these optimal auxiliary RVs,
the required rate is comprised of two independent parts – one
part dedicated to detection and the other to estimation. Thus,
the proof of the converse to Theorem 2 can be divided, much
like the proof of achievability, into two separate parts - one
defining the trade-off between the rate and the error exponent,
while the other defines the trade-off between the rate and the
distortion.

Starting with the relation between the rate and the error
exponent, Theorem 1 implies that

E ≤ I(U ;Y ) = H(Y )−H(Y |U) = 1−A , (58)

while
R ≥ 1−A+ θ [I(V ;X)− I(V ;Y )] , (59)

with A defined as A , H(Y |U). Ignoring the second term
in the expression for the rate, the trade-off between rate and
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error exponent is clear, and is given through A. Obviously,
A ≤ H(Y ) = 1. In addition,

A ≥ H2

(
H−1

2 (H(X|U)) ? p
)
, (60)

which stems from Ms. Gerber’s Lemma (see e.g. [28]). In
order to allow the exploration of the entire region defined by
the bounds over A, we define γ , H−1

2 (H(X|U)). Thus, the
trade-off between rate and error exponent becomes

E ≤ 1−H2(γ ? p) ,

R ≥ 1−H2(γ ? p) + θ [I(V ;X)− I(V ;Y )] .
(61)

In the second part of the proof, it needs to be demonstrated
that, once the decision H0 has been (correctly) made, the op-
timal estimation region, defined by the rate-distortion relation
minE[d(X,X̂)]≤D [I(V ;X)− I(Y ;X)], is in agreement with
Theorem 2. This proof has already been given in [24] and
is thus omitted from this work. Defining V as the output of a
BSC with cross-over probability α when X is in the input of
the channel, as was shown to be optimal in [24], and keeping
in mind the Markov chain implied by Theorem 1, it is clear
that γ = H−1 (H(X|U)) ≥ α. Thus, γ can be expressed as
γ = α ? β for some 0 ≤ β ≤ 1

2 , which completes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

We now prove the achievability of the region offered in
Proposition 3 for the joint detection and lossy compression
problem, with general hypotheses. We start by describing the
codebook, as well as encoding and decoding strategies, and
followed by an analysis of error events under the proposed
strategy.

Encoding and decoding strategy

Codebook Construction: For a given block-length n we
operate on a type-by-type basis. For each type QX ∈ Pn(X ),
fix a conditional type Q?U |X(QX) ∈ Pn(U). Randomly and
uniformly choose a set of codewords denoted by CnU (QX),
from the resulting marginal type class T nQ?U (QX) which is
induced by QX and Q?U |X(QX). The size of CnU (QX) is an
integer satisfying:

exp
[
nI
(
QX ;Q?U |X(QX)

)]
+(|U||X |+ 2) log(n+ 1)

≤ |CnU (QX)| ≤
exp

[
nI
(
QX ;Q?U |X(X)

)]
+(|U||X |+ 4) log(n+ 1) ,

(62)
where CnU (QX) is the codebook of the common message
for source type QX . Define fU : T nQX → C

n
U (QX), i.e., a

function fU (xn) that determines the codeword sent by the
encoder (node A) to the decoder (node B), as subsequently
explained. We define Un , fU (Xn). In addition, assign an
index: k(QX) : Pn(X )→ {1, . . . , (n+ 1)|X |} to each of the
possible types of vectors xn ∈ Xn.

In addition, let V0 and V1 be two RVs, designed to transmit
a private message to the decoder. After making a decision
about the common distribution controlling X and Y , the
decoder would use the appropriate private message in order

to reconstruct the original sequence x (with distortion). As
was the case when testing against independence as seen in
Appendix B, the common distribution QUV |X = QU |XQV |UX
is chosen such that the Markov chains U − V0 −X − Y and
Ū − V1 − X̄ − Ȳ are respected.

For each codeword un ∈ CnU , randomly generate exp [nS0]
sequences vn0 (s0), indexed with s0 = [1 : exp (nS0)],
and exp [nS1] sequences vn1 (s1), indexed with s1 = [1 :
exp (nS1)], from the conditional typical sets T n[V0|U ]δ(u

n)
and T n

[V1|Ū ]δ
(un), respectively. Divide them into exp (nR0)

(respectively exp (nR1)) bins, such that each bin contains
roughly exp [n(S0 −R0)] (respectively exp [n(S1 −R1)]) se-
quences. In the remainder of this proof we only treat source
reconstruction in case hypothesis H0 was chosen, as the
complementary case is completely symmetric.

Encoding: Given a sequence xn ∈ T nQX , search for a
sequence un ∈ CnU (Qxn), i.e., in the codebook that belongs
to the type Qxn , such that (un,xn) ∈ T n[UX]δ . As a second
step, look for a codeword vn0 (s0) such that (vn0 (s0),xn) ∈
T n[V0X|U ]δ(u

n) with the typicality measured according to the
distribution induced by hypothesis H0. Let B0(vn0 (xn,un))
denote the element (or “bin”) to which vn0 is mapped. Perform
the same steps for the case where H1 is the chosen hypothesis.

The encoder’s message then consists of four parts:

M1 = {1, 2, . . . ,M1 , exp (nR′)} ,
M2 =

{
1, 2, . . . ,M2 , (n+ 1)|X |

}
,

M3 = {1, 2, . . . ,M3 , exp (nR0)} ,
M4 = {1, 2, . . . ,M3 , exp (nR1)} ,
M =M1 ×M2 ×M3 ×M4 .

(63)

The encoder sends the type of xn which requires |M2|
values but with zero rate, and also F (fU (xn)), as well as
the respective bins for both private messages, B0(vn0 (xn,un))
and B1(vn1 (xn,un)), to be defined subsequently. There are
two cases to consider:

1 log |CnU (Qxn)| < nR′, in which case we can map each
member of CnU (Qxn) to an element of M1 in a one-to-
one manner.

2 log |CnU (Qxn)| ≥ nR′, in which case we assign each dis-
tinct member of CnU (Qxn) to M1 uniformly at random.

Let F (fU (xn)) denote the element to which fU (xn) is
mapped. The encoder can be expressed mathematically as

Ψ(x) =
(
F (fU (xn)), k(Qxn)

, B0(vn0 (xn,un)), B1(vn1 (xn,un))
)
,

(64)

for each xn ∈ T nQxn
.

Decoding: The decoder first attempts to discover the word
un, by using the information sent from the encoder and the
observation vector yn:

• If log |CnU (Qx)| < nR′ the codeword can be decoded
without error;

• Otherwise log |CnU (Qx)| ≥ nR′ the decoder receives a bin
index and uses side information yn to pick the best un in
the bin. Given the bin number, the type Qxn and the side
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information yn, the decoder uses a minimal empirical
entropy decoding2, that is:

φ(F (fU (xn)), Qxn ,y
n) = ûn , (65)

if H(ũn|yn) > H(ûn|yn) for ûn ∈ F (fU (xn)) and all
ũn ∈ F (fU (xn)) with ũn 6= ûn, where

H(ûn|yn) , −
∑

Qûnyn(a, b) logQûn|yn(a|b)

is the empirical entropy of the vector ûn given the vector
yn, and the sum is taken over all the letters in the
alphabets of U and Y .

As a second step, the decoder uses the private message –
either vn0 or vn1 – destined for the case of the current hypothesis
in order to estimate xn, with distortion D0 or D1, respec-
tively. Assume hypothesis H0 is in effect, it searches for a
single sequence v̂n0 ∈ B0(vn0 (xn,un)) such that v̂n0 (s0) ∈
T[V0|UY ]δ(u

nyn). If it finds no such sequence it declares an
error during the reconstruction. If it finds more than one, it
chooses one sequence at random.

Error probability of the testing step

We now show that, for the detection part, the exponential
rate of decay of the error of the second type, under a fixed
constraint over the error of the first type, is not smaller than the
value claimed by Proposition 3. The analysis of possible errors
at the encoder’s side stays identical to the one done in the
proof of Theorem 1 in Appendix B (note that we assume the
PX(x) = PX̄(x), without which the analysis of the encoder’s
side, with an emphasis on the codebook construction, might
become more involved). Note also that when a problem does
arise during encoding, our proposed scheme calls for an error
message which prompts node B to declare H1. Thus, the
influence of such errors is only on the error probability of Type
I, and not on the error exponent of Type II. We concentrate in
this analysis on possible errors at the decoder’s side. Define
two error events: First, let

B6 , {un 6= F (fU (xn))} (66)

be the event that the chosen sequence from the bin at the
decoder is different from the original sequence sent by the
encoder. Then, define B7 to be the event of erroneous detection
despite using the correct sequence. We denote the probabilities
of events B6 and B7 by P

(n)
r and P

(n)
d , respectively. Using

the union bound, the probability of error in detection can be
bounded by

P (n)
e ≤ P (n)

r + P
(n)
d . (67)

Evaluation of P (n)
r : We evaluate the probability that node B

chooses the wrong sequence from the bin under the suggested
encoding and decoding schemes. Our evaluation is reliant on
the method of types [26], and is specifically inspired by the
techniques used in [25, Appendix C]. We first evaluate P (n)

r

2Note that since our chosen test is over empirical entropies, it does not
matter at this stage which hypothesis is the true one, for the sake of choosing
the sequence from the bin. After having retrieved a single sequence from the
bin, the decoder can continue to perform HT by discarding the rest of the
sequences in the bin and only using the chosen sequence.

for a finite block-length n and then use a continuity argument
to show that in the limit of n→∞,

− 1

n
logP (n)

r ≤ G(QUXY , QX , QY , R
′) , (68)

where the function G is the one given in (17).
Since choosing the wrong sequence can only happen in case

binning is used, we are only interested in the following subset
of the set of all possible sequences:

An =
{

(un,xn,yn) ∈ Un ×Xn × Yn∣∣un ∈ TnQ?
U|X

(Qxn) , log |CnU (Qxn)| ≥ nR
}
.

(69)

We first evaluate the probability of choosing the wrong se-
quence within the set An by using the following lemma.

Lemma 8. Let (un,xn,yn) ∈ An and let B8 be the event
that un 6= φ(ψ(xn),yn). Provided that log |CnU (Qxn)| ≥ nR,
then

Pr (B8|Un = un,Xn = xn,Yn = yn)

≤ exp
[
− n (R− J(Qunxnyn)− δn)

]
,

(70)

with

J
(
Qunxnyn

)
, I
(
Qxn ;Q?U |X(Qxn)

)
− I
(
Qun|yn ;Qyn

) (71)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 . (72)

The probability in (70) is taken over the choice of the codebook
in use.

Before proving Lemma 8, we recall the following result
from [25, Lemma 12].

Lemma 9. For all strings (u,x) such that u ∈ TnQ?U ,

Pr(u ∈ CnU (Qxn))

≤ (n+ 1)‖U‖(1+‖X‖)+4

× exp
[
n
(
I(Qxn ;Q?U |X(Qxn))−H(Qun)

)]
.

(73)

Proof (Lemma 8): Let S(un|yn) be the set that includes
all sequences ũn, such that ũn has the same type as u and
H(ũn|yn) ≤ H(un|yn). Then

Pr (B8|Un = un,Xn = xn,Yn = yn)

≤
∑

Pr
(
ũn ∈ CnU (Qxn), {F (ũn) = F (un)}| (74a)

Un = un,Xn = x,Yn = y
)

≤
∑

Pr
(
ũn ∈ CnU (Qxn)|Xn = xn,Yn = yn

)
× Pr

(
{F (ũn) = F (un)}

)
(74b)

≤
∑

(n+ 1)|U|(1+|X |)+4

× exp
[
n
(
I(Qxn ;Q?U |X(Qxn))−H(Qun)

)] 1

M1
(74c)
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≤ (n+ 1)|U||Y| exp
[
nH(Qun|yn |Qyn)

] 1

M1

× (n+ 1)|U|(1+|X |)+4 (75a)

× exp
[
n
(
I(Qxn ;Q?U |X(Qxn))−H(Qun)

)]
= (n+ 1)|U|(1+|X |+|Y|)+4

× exp
[
−n
(
R−H(Qun|yn |Qyn) +H(Qun)

−I(Qxn ;Q?U |X(Qxn))
)]

(75b)

= (n+ 1)|U|(1+|X |+|Y|)+4

× exp
[
−n
(
R+ I(Qun|yn ;Qyn))

−I(Qxn ;Q?U |X(Qxn))
)]

(75c)

, (n+ 1)|U|(1+|X |+|Y|)+4

× exp
[
− n (R− J(Qunxnyn))

]
(75d)

≤ exp
[
− n (R− J(Qunxnyn)− δn)

]
, (75e)

with δn as defined above, and the sums are all taken over
the set ũn ∈ S(un|yn), ũn 6= un. Here, the probability
Pr (ũn ∈ CnU (Qxn)) is over the choice of the codebook. In-
equality (74b) stems from the codebook construction, which
divides sequences into bins randomly and independently. In-
equality (74c) is due to Lemma 9, which applies here with
slight notation changes (see at the end of this proof), and to
the upper bound over the size of CnU (Qxn), given in (62).
Inequality (75a) is due to Lemma 5. Finally, equality (75b) is
due to the definition of M1 and (75e) stems from the fact that
Pr (B8|Un = un,Xn = xn,Yn = yn) ≤ 1 and the definition
of δn.

We now bound the probability of error in choosing the right
sequence in the bin P (n)

r , for a finite block-length n:

P (n)
r = Pr ({un 6= F (fU (xn))}) (76a)

≤
∑

Pr (B8|Un = u,Xn = x,Yn = y)

× Pr (U = u,X = x,Y = y) (76b)

≤
∑

exp
[
−n (R− J(Qunxnyn)− δn)

]
× PnXY (xn,yn)

1

|T nQ?
U|X

(Qxn)|
. (76c)

Here, claim (76c) is derived from Lemma 8. Note the slight
abuse of notation here, where PnXY (xn,yn) in (76c) refers to
the real distribution controlling the RVs, and can thus actually
be, according to the true hypothesis, wither PnXY (xn,yn) or
Pn
X̄Ȳ

(xn,yn). The probability of choosing a specific sequence
un given both source sequences xn and yn stems from
averaging over the code. We can now change the expression
to sum first on types and then on sequences within each
type class. In order to transform our summation over a set
of sequences An into a summation over a set of types (and
only then over the sequences within each type) we define the

following set of types:

D(QX , QY )

=
{
QUXY ∈ Pn(U × X × Y) : QU |X = Q?U |X(QX),

log |CnU (QX)| ≥ nR
}
.

(77)

The probability of error in selecting the sequence can thus be
bound by (78), at the top of the next page.

In the case of distributed HT, the probability of the source
sequences (xn,yn) is unknown, since the sequences can be
created by one of two possible distributions. We thus bound
the probability of the observed sources by

PnXY (xn,yn) ≤ max{PXY (xn,yn), PX̄Ȳ (xn,yn)}
= max
i={0,1}

{
exp

[
−n (D(QXY ‖PXYi) +H(QXY ))

]}
= exp

[
−n
(

min
i={0,1}

D(QXY ‖PXYi) +H(QXY )

)]
,

(79)
where, in accordance to the notation of Proposition 3, we use
the subscript i in order to differentiate between PXY and PX̄Ȳ .
Using the following facts detailed in Lemma 3,

|T nQUXY | ≤ exp
[
n(H(QUXY ))

]
≤ exp

(
n log |U||X ||Y|

)
, (80a)

|T nQU|X
| ≥ (n+ 1)−|U||X | exp

[
n
(
H(QU |X |QX)

)]
, (80b)

we obtain from (78) that

≤
∑

QX∈Pn(X )

∑
QY ∈Pn(Y)

∑
QUXY ∈D(QX ,QY )

exp
[
−n (Γ +R− J(QUXY )− δn)

]
,

(81)

with Γ satisfying:

Γ = min
i={0,1}

D(QXY ‖PXYi) +H(QXY )

+H(QU |X |QX)−H(QUXY )

= min
i={0,1}

D(QXY ‖PXYi) +H(QU |X |QX)

−H(QU |XY |QXY )

= min
i={0,1}

∑
x∈X
y∈Y

QXY (x, y) log
QXY (x, y)

PXYi(x, y)

−
∑
u∈U
x∈X

QUX(u, x) log
QUX(u, x)

QX(x)

+
∑
u∈U
x∈X
y∈Y

QUXY (u, x, y) log
QUXY (u, x, y)

QXY (x, y)

= min
i={0,1}

D(QUXY ‖PXYiQU |X) .

(82)

The probability of error in bin decoding can thus be concluded
to satisfy

P (n)
r ≤

∑
QX∈Pn(X )

∑
QY ∈Pn(Y)

∑
QUXY ∈D(QX ,QY )

exp

[
−n
(

min
i={0,1}

D(QUXY ‖PXYiQU |X)

+R− J(QUXY )− δn)] .

(83)
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P (n)
r ≤

∑
QX ,QY

 ∑
QUXY ∈D(QX ,QY )

∑
(un,xn,yn)∈T nQUXY

PnXY (xn,yn)

|T nQ?
U|X

(Qxn)|
exp

[
−n
(
R− J(Qunxnyn)− δn

)] . (78)

We may now upper bound the summations by maximizing
over the types and optimizing over the choice of the of the
test channel Q?U |X . We optimize to then obtain:

P (n)
r ≤ |Pn(X )|max

QX
min
Q?
U|X

|Pn(Y)|max
QY
|Pn(U × X × Y)|

max
QUXY

QU|X=Q?U|X

exp
{
−nGn [QUXY , QX , QY , R]

}
.

(84)
Thus,

1

n
logP (n)

r ≤ − min
QX∈Pn(X )

max
Q?
U|X(QX)

min
QY ∈Pn(Y)

min
QUXY

QU|X=Q?U|X

Gn [QUXY , QX , QY , R]

× log (|Pn(X )||Pn(Y)||Pn(U × X × Y)|)

with the function Gn [QUXY , QX , QY , R] defined in (85) at
the top of the next page. The cardinalities can be absorbed
inside the exponent and become insignificant as n→∞. From
continuity arguments under discrete alphabets, it is made clear
that [25, Lemma 14]:

P (n)
r ≤ inf

QX∈P(X )
sup

Q?
U|X(QX)∈P(U)

inf
QY ∈P(Y)

inf
QUXY ∈P(U×X×Y)

QU|X=Q?U|X

G [QUXY , QX , QY , R] ,
(86)

where all the optimization steps are now being taken over
probability distributions, and G is as defined in Proposition 3.

Evaluation of P
(n)
d : We now study the Type II error

probability of detection, under the assumption that the right
sequence has been correctly extracted from the bin. The
probability that, given the right sequence un, node B makes
a wrong decision was investigated in detail in [8], using the
method of types [26], as well as properties of types and typical
sequences, detailed in Appendix A of this paper. That result,
however, is dependent on a specific codebook, conceived to
allow detection with high probability. As we use a random
codebook in our scheme, it is essential to adapt the method
of [8]. We give here a general description of this adaptation.

We propose here a slight modification to [8]. Intuitively,
since we investigate the exponential decay of βn while only
enforcing a fixed upper bound on αn, we show that the
penalty of replacing the codebook construction in [8] with
random coding can be fully absorbed into αn, leaving the
error exponent result of βn unmodified. Nevertheless, αn can
still be shown to approach 0 as n grows, which indicates that
any constraint αn ≤ ε can be fulfilled, for n large enough and

ε > 0. For the given codebook, define

L(Q?UX , Q
?
UY ) =

{
PŨX̃Ỹ ∈ P(U × X × Y) :

PŨX̃(u, x) = Q?UX(u, x),

PŨỸ (u, y) = Q?UY (u, y),∀ (u, x, y)
}
,

(87)
to be the set of all triplets of auxiliary RVs such that the
marginal distribution of each pair (U,X) and (U, Y ) is main-
tained. Similarly to [8], it is not difficult to show that, for the
codebook described above,

θL(R) , min
ŨX̃Ỹ ∈L(Q?UX ,Q

?
UY )
D(PŨX̃Ỹ ‖PŪX̄Ȳ ) (88)

provides a lower bound to the error probability of the second
type, after the correct sequence has been recovered from the
bin, and under a fixed error probability of the first type.

From the construction of the codebook (specifically the
size of the set CnU (Qxn)), it can be seen that the number
of sequences in the codebook per type of X complies with
M = exp

[
n(I(Qxn ;Q?U |X(Qxn)) + η)

]
. Given a sequence

xn, search for a sequence ui in the codebook that belongs to
the type of xn, such that (uni ,x

n) ∈ T n[UX]δ and send its index
(or bin number, depending on the type of xn) to the receiver.
As we only consider here the error event where the wrong
hypothesis is chosen despite the correct sequence is used, we
ignore errors in choosing the correct sequence from the bin, in
case binning has occurred, for the sake of this analysis. If there
is more than one such sequence choose randomly. If there is
no such sequence in the codebook, send an error message.
At the decoder (node B), if (uni ,y

n) ∈ T n[UY ]δ (notice that
typicality here is checked only under hypothesis H0) declare
H0. In any other case (including the case an error message
was received) declare H1. This choice allows us to “push” the
penalty of not using the code proposed in [8, Lemma 4] into
αn (which, when n → ∞ can still be bounded by any fixed
ε > 0), thus leaving the evaluation of βn unchanged, as shown
subsequently.

Evaluation of αn: An error of the first type occurs if for
n i.i.d. samples (xn,yn) ∼ PXY (x, y) (hypothesis H0 holds)
the decoder declares H1. According to the proposed coding
schemes, two possible events can induce the decoder to such
an error. The first is given by

(i) B9 , {@ i such that (uni ,x
n) ∈ T n[UX]δ} . (89)

Assuming without loss of generality that the sequence un1 was
chosen and sent from node A, the second relevant error event
is:

(ii) B10 , {H0 is true and (un1 ,y
n) /∈ T n[UY ]δ} . (90)

From the union bound, it is obvious that:

αn ≤ Pr(B9) + Pr(B10 ∩ Bc9) . (91)
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Gn [QUXY , QX , QY , R] =


min

i={0,1}
D(QUXY ‖PXYiQU |X)

+
[
R− I(QX ;Q?U |X) + I(QY ;Q?U |Y )

] I(QX ;Q?U |X) > R

+∞ else .

(85)

Through the AEP it is easy to conclude that both of these
probabilities approach zero when n → ∞. Thus, for n large
enough one can conclude that αn ≤ ε for any fixed ε > 0.

Evaluation of βn: The error of the second type can be
defined by a single event:

B11 , {H1 is true and (un1 ,y
n) ∈ T n[UY ]δ} . (92)

The analysis of βn is identical to what was done in [8]. One
important difference, however, is that by defining

Ci ,
{

xn ∈ Xn : (uni ,x
n) ∈ T n[UX]δ

}
, (93)

the sets Ci are not necessarily disjoint. This, however, does
not change the calculations by following same steps as in [8].

Source reconstruction

As a final step, we demonstrate the achievability of the
estimation part in Proposition 3, for the case where hypothesis
H0 is chosen (the case of hypothesis H1 is symmetric).

Remark 6. Note that the achievable scheme used here in
order to prove Proposition 3 ensures that αn → 0 when
n→∞, despite this not being a requirement. This is crucial
in order for the following analysis, done for hypothesis H0,
to be applicable equivalently also for hypothesis H1.

Denoting by B12 the event “an error occurred during encod-
ing or decoding, under the correct decision H0”, we expand
its probability as follows: Pr(B12) ≤ P ′ + P ′′, with P ′ being
the probability that no codeword vn0 (s0) could be found in the
codebook for the given sequence xn and the chosen sequence
un, and P ′′ being the probability that a different codeword in
the same bin is compatible with yn and un.

Using standard arguments, both error probabilities can be
bounded as follows:

P ′ , Pr{@ s0 = [1 : exp (nS0)]

s.t. (Vn
0 (s0),Xn) ∈ T n[V0X|U ]δ(u

n)}
≤ Pr{(V n0 , Xn) /∈ T n[V0X|U ]δ(u

n)|
V n ∈ T n[V0|U ]δ(u

n), Xn ∈ T n[X|U ]δ(u
n)}exp (nS0)

≤ exp {− exp [nS0]

× exp
[
− n(I(X;V0|U) + η(1)

n )
]}

= exp
{
− exp

[
− n

(
I(X;V0|U)− S0 + η(1)

n

)]}
.

(94)

Thus, P ′ → 0 provided that S0 > I(X;V0|U). Next,

P ′′ , Pr {∃ŝ0 ∈ [1 : exp (nS0)]

s.t. Vn
0 (ŝ0) ∈ T n[V0|UY ]δ(u

nyn),

B0

(
vn0 (s0)

)
= B0

(
vn0 (ŝ0)

)} (95)

≤ exp [n(S0 −R0 + ε)]

× Pr{(Vn
0 ,Y

n) ∈ T[V0Y |U ]δ(u
n)|Vn

0 ∈ T[V0|U ]δ(u
n),

Yn ∈ T[Y |U ]δ(u
n)}

≤ exp [n(S0 −R0 + ε)] exp
[
−n
(
Y ;V0|U) + η(2)

n

)]
= exp

{
−n
[
I(Y ;V0|U)− (S0 −R0) + η(2)

n − ε
]}

.

(96)

Here, B0(vn0 (s0)) denotes the bin vn0 (s0) belongs to, as de-
fined as part of the encoding strategy. R0 is the rate dedicated
to the estimation part, for the case that H0 was chosen as the
correct hypothesis. Defining R1 equivalently for hypothesis
H1, the total available rate can be said to be divided, under
the proposed achievable scheme, to three parts, such that
R = R′+R0 +R1. Thus, P ′′ → 0 if S0−R0 < I(X;V0|U),
or equivalently

R0 > S0 − I(Y ;V0|U)

> I(X;V0U)− I(Y ;V0|U)

= I(XY ;V0|U)− I(Y ;V0|U)

= I(X;V0|UY ) .

(97)

Thus, the probability of error related to source reconstruction
goes to zero provided that S0 > I(X;V0|U) and R0 >
I(X;V0|UY ). Combining this result with the symmetric case
of H1 and the result for the detection step, the required total
rate of communication reads

R > R′ + I(X;V0|UY ) + I(X̄;V1|Ū Ȳ ) . (98)

We now know that our scheme allows the decoding of either
v0 and v1, depending on the case, with high probability, when
n → ∞. It remains to be shown that using the sequence vn0 ,
it is possible to recover xn with distortion D0. We choose a
(possibly suboptimal) decoder, that reconstructs xn only from
(un,yn,vn0 ):

d(xn, x̂n(un,yn,vn0 )) =
1

n

n∑
i=1

d
(
xi, x̂i(u

n, yn, vn0 )
)

=
1

n

∑
d
(
x, x̂(u, y, v0)

)
N(x, u, y, v0|xnunynvn0 )

≤ E0

[
d
(
X, X̂(UY V0)

)]
+
∑∣∣∣∣ 1nN(x, u, y, v0|xnunynvn0 )− p(x, u, y, v0)

∣∣∣∣
≤ E0

[
d
(
X, X̂(UY V0)

)]
+ dmax|X ||Y||U||V0|δn ,

(99)

where the summation is over all the possible letters in the
respective alphabets of the RVs, and the final inequality holds
since (xn,yn,un,vn0 ) ∈ T n[XY UV0]δ . Since δn → 0 when
n → ∞, any distortion D0 can be achieved, as long as
D0 > E0

[
d
(
X, X̂(UY V0)

)]
.
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APPENDIX E
PROOF OF PROPOSITION 4

We now prove the achievability of the error exponent offered
in Proposition 4, for the case where source reconstruction is
not required. As the proof is in many ways similar to the proof
of Proposition 3, given in Appendix D, we concentrate mainly
on the main differences.

Codebook generation and encoding strategy: Both the
codebook generation and the encoding strategy in this case are
very similar to what was done in the proof of Proposition 3,
in the part dedicated to detection. The only difference is that
now we choose to only work with δ-typical sequences, for
some arbitrary δ. When node A sees a non-typical sequence
x, it sends an error message. In the opposite case, encoding is
done as before. Note that while we only work with δ-typical
sequences, there are still different codebooks for each type
within the set of δ-typical sequences.

Decoding strategy: In case an error message is received, the
decoder declares H1. This strategy implies that any probability
of the error event caused by the encoder not seeing a δ-typical
sequence is allocated to αn, rather than βn. The probability of
this event, however, goes to zero when n→∞ thanks to the
AEP, implying that αn ≤ ε for any ε > 0, for n ≥ n0(ε, δ),
thus satisfying the constraint over αn.

When the encoder does not send an error message, the
decoder operates on the entire bin in order to make a decision.
Going over the sequences in the bin one by one, the decoder
checks for each uni if (uni ,y

n) ∈ Tn[UY ]δ . If a sequence in
the bin is found, which is jointly typical with yn, the decoder
declares H0. If no such sequence is found, the decoder declares
H1. Note that under this strategy, the decoder does not attempt
to find the original sequence sent by the encoder. Specifically,
when the decoder declares H1 it is completely oblivious to
the original codeword.

Probability of error: The analysis of the probability of
error in detection under this new strategy is very similar to
the analysis given in Appendix D. We separately bound the
corresponding error probabilities on the two possible error
events.

Analysis of αn: When analyzing αn(An) = Pr
(
Acn|XY ∼

p0(x, y)
)
, we assume throughout that the probability measure

in effect is p0. Two scenarios can lead to an event where the
decoder erroneously declares H1:

B13 ,
{
@ i ∈ CnU (Qxn)

∣∣ (xn,uni ) ∈ T n[UX]δ

}
,

B14 ,
{
@ i ∈ F (f(xn))

∣∣ (uni ,yn) ∈ T n[UY ]δ

}
.

(100)

In the first event, an error message is sent, as there is no fitting
codeword within the codebook for the observed sequence xn.
Whereas for the second event, there is no sequence in the
bin that prompts the decoder to decide H0, despite it being
the true hypothesis. The probability of event B13 goes to zero
with n, thanks to the AEP and the size of the codebook. As for
event B14, assume without loss of generality, that the encoder
intended to send the first word in the bin un1 , i.e., un1 = f(xn).

The probability that the decoder declares H1 can be upper-
bounded by

Pr(B14) = Pr
{
@ i ∈ F (f(Xn))

∣∣ (Un
i ,Y

n) ∈ T n[UY ]δ

}
≤ Pr{(Un

1 ,Y
n) /∈ T n[UY ]δ} ,

(101)
where typicality is measured over the probability measure
p0 = PXY . As was already discussed above, this probability
tends to 0 with the number of available realizations n. This
result is attributed to the AEP, by which x and y are jointly
typical with high probability, and to the generalized Markov
Lemma (Lemma 6). Thus, any fixed constraint over the
probability of error of the first type α ≤ ε (ε > 0), may
be satisfied when n is large enough.

Analysis of βn: As we now turn to analyzing the probability
of error of the second type, we assume throughout this part that
the real hypothesis is H1. As was the case in Appendix D, the
resulting error exponent is the result of a trade-off between
two error events. While the analysis of the event where the
correct sequence prompts a wrong decision (i.e. in this case
is (f(xn),yn) ∈ T n[UY ]δ) stays the same, the second error
event is now different. We thus concentrate in this appendix
on calculating the probability of the event that some sequence
in the bin un 6= f(xn) prompts the decoder to declare H0.
We start by presenting the following lemma:

Lemma 10. Let An be the set of triplets, such that a binned
codebook is necessary:

An =
{

(un,xn,yn) ∈ TnQ?
U|X
×Xn × Yn

∣∣
log |CnU (Qxn)| ≥ nR

}
.

(102)

Let (un,xn,yn) ∈ An and denote by B15 the event indicating
that (un,yn) ∈ T n[UY ]δ , for some un 6= f(xn) in the bin. Then,

Pr (B15|Un = un,Xn = xn,Yn = yn)

≤ exp
[
−n
(
R− Ĵ(Qunxnyn)− δn

)]
,

(103)

with

Ĵ(Qunxnyn) ,I
(
Qxn ;Q?U |X

)
−H(Qun)

+H
(
QU |Y |PY

) (104)

and

δn ,
1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 + εn (105)

with εn → 0 when n→∞. Moreover, the probability in (103)
is taken over the choice of the codebook in use.

Proof: The proof of Lemma 10 is very similar to the
one given for Lemma 8. The difference is that now the set
of sequences that “confuses” the decoder is simply Ŝ(yn) =
T n[U |Y ]δ(y

n). Bounding the set of conditionally typical se-
quences by [28]:∣∣∣T n[U |Y ]δ(y

n)
∣∣∣

≤ (n+ 1)|U||Y| exp
[
n(H(QU |Y |PY ) + εn)

]
,

(106)

for each yn ∈ T n[Y ]δ , completes the proof.
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Remark 7. Note that unlike J(Qunxnyn), the quantity
Ĵ(Qunxnyn) is not dependent on the observed yn. The quan-
tity H(QU |Y |PY ) can be analytically calculated when the
type of xn and the chosen strategy QU |X is known, without
knowing neither the specific sent sequence un nor the observed
sequence yn.

Using Lemma 10 and summing over all involved types and
sequences within each type as was done in Appendix D, the
probability of the event where an unintended sequence in the
bin causes an error can be bounded by

lim
n→∞

− 1

n
log Pr(B15) ≥

min
QX∈Pn(X )

max
Q?
U|X(QX)∈Pn(U)

min
QY ∈Pn(Y)

min
QUXY ∈Pn(U×X×Y){

D(QUXY ‖PŪX̄Ȳ ) +R− Ĵ(QUXY )
}

= min
QX

max
Q?
U|X(QX)

min
QY

min
QUXY{

D(QUXY ‖PŪX̄Ȳ ) +R

− I(QX ;Q?U |X) + I(Q?U |Y ;PY )
}
.

As in this case we only work with δ-typical x-sequences, we
may choose δ to be any value, as long as it is strictly positive.
Thus, we may force QX to be arbitrarily close to PX by taking
δ → 0+. The error exponent in question thus becomes

lim
n→∞

− 1

n
log Pr(B15)

≥ max
Q?
U|X∈P(U)

{
R− I(PX ;Q?U |X) + I(PY ;Q?U |Y )

+ min
QY ∈P(Y)

min
QUXY ∈P(U×X×Y)

D(QUXY ‖PŪX̄Ȳ )
}

+ ε̂

= max
Q?
U|X∈P(U)

{
R− I(PX ;Q?U |X) + I(PY ;Q?U |Y )

}
+ ε̂ ,

with ε̂ → 0 as δ → 0. This, along with an analysis of
the complementary error event similar to the one given for
Proposition 3, completes the proof of Proposition 4.
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