
HAL Id: hal-01742456
https://centralesupelec.hal.science/hal-01742456v1

Submitted on 19 Jan 2022 (v1), last revised 22 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Bottleneck and Representation Learning
Pablo Piantanida, Leonardo Rey Vega

To cite this version:
Pablo Piantanida, Leonardo Rey Vega. Information Bottleneck and Representation Learning.
Cambridge University Press. Information-Theoretic Methods in Data Science, pp.330-358, 2021,
�10.1017/9781108616799.012�. �hal-01742456v1�

https://centralesupelec.hal.science/hal-01742456v1
https://hal.archives-ouvertes.fr


Information-Theoretic
Methods in Data Science
Chapter:
Information Bottleneck and
Representation Learning

Pablo Piantanida and Leonardo Rey Vega

Draft version of August 31th, 2018

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No 792464”.



Contents

Notation page iv

1 Information Bottleneck and Representation Learning 1
1.1 Introduction and Overview 1
1.2 Representation and Statistical Learning 4

1.2.1 Basic Definitions 4
1.2.2 Learning Data Representations 6
1.2.3 Optimizing on Restricted Classes of Randomized Encoders 8

1.3 Information-Theoretic Principles and Information Bottleneck 10
1.3.1 Lossy Source Coding 10
1.3.2 Misclassification Probability and Cross-Entropy Loss 12
1.3.3 Noisy Lossy Source Coding and the Information Bottleneck 14
1.3.4 The Information Bottleneck Method 16

1.4 The Interplay Between Information and Generalization 19
1.4.1 Bounds on the Generalization Gap 20
1.4.2 Information Complexity of Representations 21
1.4.3 Sketch of the Proofs 25

1.5 Summary and Outlook 28
References 30



1 Information Bottleneck and
Representation Learning

A grand challenge in representation learning is the development of computational
algorithms that learn the different explanatory factors of variation behind high-
dimensional data. Representation models (usually referred to as encoders) are
often determined for optimizing performance on training data when the real
objective is to generalize well to other (unseen) data. The first part of this chapter
is devoted to provide an overview of and introduction to fundamental concepts
in statistical learning theory and the Information Bottleneck principle. It serves
as a mathematical basis for the technical results given in the second part, in
which an upper bound to the generalization gap corresponding to the cross-
entropy risk is given. When this penalty term times a suitable multiplier and
the cross entropy empirical risk are minimized jointly, the problem is equivalent
to optimizing the Information Bottleneck objective with respect to the empirical
data distribution. This result provides an interesting connection between mutual
information and generalization, and helps to explain why noise injection during
the training phase can improve the generalization ability of encoder models and
enforce invariances in the resulting representations.

1.1 Introduction and Overview

Information theory aims to characterize the fundamental limits for data com-
pression, communication, and storage. Although the coding techniques used to
prove these fundamental limits are impractical, these provide valuable insight,
highlighting key properties of good codes and leading to designs approaching
the theoretical optimum (e.g., turbo codes, ZIP and JPEG compression algo-
rithms). On the other hand, statistical models and machine learning are used
to acquire knowledge from data. Models identify relationships between variables
that allow making predictions and assessing their accuracy. A good choice of
data representation is paramount for performing large-scale data processing in a
computationally efficient and statistically meaningful manner [1], allowing to de-
crease storage, or to reduce inter-node communication if the data is distributed.

Shannon’s abstraction of information merits careful study [2]. While a layman
might think that the problem of communication is to convey meaning, Shannon
clarified that “the fundamental problem of communication is that of reproducing
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at one point a message selected at another point.” Shannon further argued that
the meaning of a message is subjective, i.e., dependent on the observer, and
irrelevant to the engineering problem of communication. However, what does
matter for the theory of communication is finding suitable representations for
given data. In source coding, for example, one generally aims at distilling the
relevant information from the data by removing unnecessary redundancies. This
can be cast in information-theoretic terms, as higher redundancy makes data
more predictable and lowers its information content.

In the context of learning [3, 4], we propose to distinguish these two rather
different aspects of data: information and knowledge. Information contained in
data is unpredictable and random, while additional structure and redundancy
in the data stream constitutes knowledge about the data generation process,
which a learner must acquire. Indeed, according to connectionist models [5],
the redundancy contained within messages enables the brain to build up its
cognitive maps and the statistical regularities in these messages are being used
for this purpose. Hence, this knowledge, provided by redundancy [6, 7] in the
data, must be what drives unsupervised learning. While information theory is a
unique success story, from its birth, it discarded knowledge as being irrelevant
to the engineering problem of communication. However, knowledge is recognized
as being a critical –almost central– component of representation learning. The
present monograph provides an information-theoretic treatment of this problem.

Knowledge representation. The data deluge of recent decades leads to
new expectations for scientific discoveries from massive data. While mankind is
drowning in data, a significant part of it is unstructured and it is difficult to
discover relevant information. A common denominator in these novel scenarios
is the challenge of representation learning: how to extract salient features or sta-
tistical relationships from data in order to build meaningful representations of
the relevant content. In many ways, deep neural networks has turned out to be
very good at discovering structures in high-dimensional data and has dramati-
cally improved the state of the art in several pattern recognition tasks [8]. The
global learning task is decomposed into a hierarchy of layers with nonlinear pro-
cessing, having great success not only due to their ability to fit different types of
datasets but also to generalize incredible well. The representational capabilities
of neural networks [9] have drawn significant interest from the machine learning
community. These networks seem to be able to learn multi-level abstractions
with capability to harness unlabeled data, multi-task learning, and multiple in-
puts, while learning from distributed and hierarchical data, to represent context
at multiple levels.

The actual goal of representation learning is neither accurate estimation of
model parameters [10] nor compact representation of the data itself [11, 12];
rather, we are mostly interested in the generalization capabilities, meaning its
ability to successfully apply rules extracted from previously seen data to char-
acterize unseen data. According to the statistical learning theory [13], models
with many parameters tend to overfit by representing the learned data too accu-
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rately, therefore diminishing their ability to generalize to unseen data. In order
to reduce this ‘generalization gap’, i.e., the difference between ‘training error’
and ‘test error’ (a measure of how well the learner has learned), several regu-
larization methods where proposed in the literature [13]. A recent breakthrough
in this area has been the development of Dropout [14] for training deep neural
networks. This consists in randomly dropping units during training to prevent
their co-adaptation, including some information-based regularization [15] that
yields a slightly more general form of the variational auto-encoder [16].

Why is that we succeed in learning high-dimensional representa-
tions? Recently there has been much interest in understanding the importance
of implicit regularization. Numerical experiments in [17] demonstrate that net-
work size may not be the main form of capacity control for deep neural networks
and hence, some other unknown form of capacity control plays a central role in
learning multi-layer feed-forward networks. From a theoretical perspective regu-
larization seems to be an indispensable component in order to improve the final
misclassification probability while convincing experiments support the idea that
the absence of all regularization does not necessarily induces poor generalization
gap. Possible explanations were approached via rate-distortion theory [18,19] by
exploring heuristic connections with the celebrate Information Bottleneck prin-
ciple [20]. Along the same line of work, [21,22] have proven bounds showing that
the square root of the mutual information between the training inputs and the
parameters inferred from the training algorithm provides a concise bound on the
generalization gap. These bounds crucially depend on the Markov operator that
maps the training set into the network parameters and whose characterization
could not be an easy task. Similarly, [23] explored how the use of an Information
Bottleneck objective on the network parameters (and not on the representations)
may help to avoid overfitting while enforcing invariant representations.

The interplay between information and complexity. The goal of data
representation may be cast as trying to find regularity in the data. Regularity
may be identified with “ability to compress” by viewing representation learning
as lossy data compression: it tells us that, for a given set of encoder models
and dataset, we should try to find the encoder or combination of encoders that
compresses the data most. In this sense, we may speak of the information com-
plexity of a structure, meaning the minimum amount of information (number of
bits) we need to store enough information about the structure that allows us its
reconstruction. The central result in this chapter states that good representation
models should squeeze out as much regularity as possible from the given data. In
other words, representations are expected to distill the meaningful information
present in the data, i.e., to separate structure as seeing the regularity from noise,
interpreted as the accidental information.

Structure of this chapter. This chapter can be read without any prior
knowledge of information theory and statistical learning theory. In the first part,
the basic learning framework for analysis is developed and an accessible overview
of basic concepts in statistical learning theory and the information bottleneck
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principle are presented. The second part introduces an upper bound to the gen-
eralization gap corresponding to the cross-entropy loss and show that when this
penalty term times a suitable multiplier and plus the cross entropy empirical risk
are minimized jointly, the problem is equivalent to optimizing the Information
Bottleneck objective with respect to the empirical data distribution. The notion
of information complexity is introduced and intuitions behind it are developed.

1.2 Representation and Statistical Learning

We introduce the framework by which leaning from examples is to be studied.
We develop precise notions of risk and the generalization gap, and discuss the
mathematical factors upon which these depend.

1.2.1 Basic Definitions

In this monograph we are concerned with the problem of pattern classification
which is about predicting the unknown class of an example or observation. An
example can be modelled as an information source X 2 X presented to the
learner about a target concept Y 2 Y (the concept class). In our model we
simply assume (X ,Y) are abstract discrete spaces equipped with a �-algebra. In
the problem of pattern classification, one searches for a function c : X �! Y

which represents one’s guess of Y given X. Although there is much to say about
statistical learning, this section does not cover extensively the field (an overview
can be found in [13]). Besides this, we limit ourselves to describing the key ideas
in a simple way, often sacrificing generality.

definition 1.1 (Misclassification probability) An |Y|-ary classifier is defined
by a (possibly stochastic) decision rule Q

Ŷ |X : X ! P(Y), where Ŷ 2 Y denotes
the random variable associated to the classifier output and X is the information
source. The probability of misclassification of a rule Q

Ŷ |X with respect to a data
distribution PXY is given by:

PE
�
Q

Ŷ |X
�
:= 1� EPXY

h
Q

Ŷ |X(Y |X)
i
. (1.1)

Minimizing over all possible classifiers Q
Ŷ |X gives the smallest average prob-

ability of misclassification. An optimum classifier c
?(·) chooses the hypothesis

ŷ 2 Y with largest posterior probability PY |X given the observation x, that
is the Maximum a Posteriori (MAP) decision. The MAP test that breaks ties
randomly with equal probability is given by1

Q
MAP
Ŷ |X (y|x) :=

8
<

:

1

|B(x)|
, if y 2 B(x)

0, otherwise
(1.2)

1
In general, the optimum classifier given in (1.2) is not unique. Any conditional pmf with

support in B(x) for each x 2 X will be equally good.
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where the set B(x) is defined as: B(x) :=
n
y 2 Y : PY |X(y|x) = max

y02Y
PY |X(y0|x)

o
.

This classification rule is called Bayes decision rule. Bayes decision rule is optimal
in the sense that no other decision rule has a smaller probability of misclassifi-
cation. It is straightforward to obtain the following lemma:

lemma 1.2 (Bayes error) The misclassification error rate of the Bayes decision
rule is given by

PE
�
Q

MAP
Ŷ |X

�
= 1� EPX


max
y02Y

PY |X(y0|X)

�
. (1.3)

Finding the Bayes decision rule requires knowledge of the underlying distri-
bution PXY , but typically in applications these distributions are not known. In
fact, even a parametric form or an approximation to the true distribution is
unknown. In this case, the learner tries to overcome the lack of knowledge by
resorting to labeled examples. In addition, the probability of misclassification us-
ing the labeled examples has the particularity that it is mathematically hard to
solve for the optimal decision rule. As a consequence, it is common to work with
a surrogate (information measure) given by the average logarithmic loss or cross-
entropy loss. This loss is used when a probabilistic interpretation of the scores is
desired by measuring the dissimilarity between the true label distribution PY |X
and the predicted label distribution Q

Ŷ |X , and is defined below.

lemma 1.3 (Surrogate based on the average logarithmic loss) A natural sur-
rogate for the probability of misclassification PE(QŶ |X) corresponding to a clas-

sifier Q
Ŷ |X is given by the average logarithmic loss EPXY

h
� logQ

Ŷ |X(Y |X)
i

which satisfies:

PE(QŶ |X)  1� exp
⇣
�EPXY

h
� logQ

Ŷ |X(Y |X)
i⌘

. (1.4)

A lower-bound for the average logarithmic loss can be computed as:

EPXY

h
� logQ

Ŷ |X(Y |X)
i
� H(PY |X |PX). (1.5)

The average logarithmic loss can provide an effective and better behaved sur-
rogate for the particular problem of minimizing the probability of misclassifi-
cation [9]. Evidently, the optimal decision rule for the average logarithmic loss
is Q

Ŷ |X ⌘ PY |X . This does not match in general with the optimal decision
rule for the probability of misclassification Q

MAP
Ŷ |X in expression (1.2). Although

the average logarithmic loss may induce an irreducible gap with respect to the
probability of misclassification, it is clear that when the true PY |X concentrates
around a particular value y(x) for each x 2 X (which is necessary for a statisti-
cal model PY |X to induce low probability of misclassification) this gap could be
significantly reduced.



6 Information Bottleneck and Representation Learning

1.2.2 Learning Data Representations

We will concern ourselves with learning representation models (randomized en-
coders) and self-classifiers (randomized decoders) from labeled examples. In other
words, learning target probability distributions which are assumed to belong to
some class of distributions. The motivation behind this paradigm relies on a view
of the brain as an information processor that in solving certain problems (e.g.
object recognition) builds a series of internal representations starting with the
sensory (external) input from which it computes a function (e.g. detecting the
orientations of edges in an image or learning to recognize individual faces).

The problem of finding a good classifier can be divided into that of simultane-
ously finding a (possibly randomized) encoder QU |X : X ! P(U) that maps raw
data to a representation, possibly living in a higher-dimensional (feature) space
U and a soft-decoder Q

Ŷ |U : U ! P(Y) which maps the representation to a
probability distribution on the label space Y. Although these mappings induce
an equivalent classifier:

Q
Ŷ |X(y|x) =

X

u2U
QU |X(u|x)Q

Ŷ |U (y|u), (1.6)

the computation of the later expression requires marginalizing out u 2 U which is
in general computationally hard due to the exponential number of atoms involved
in the representations. A variational upper bound is commonly used to rewrite
this intractable problem into:

EPXY

h
� logQ

Ŷ |X(Y |X)
i
 EPXY EQU|X

h
� logQ

Ŷ |U (Y |U)
i
, (1.7)

which simply follows by applying Jensen inequality [24]. This bound induces the
well-known cross-entropy risk defined below:

definition 1.4 (Cross-entropy loss and risk) Given two randomized map-
pings QU |X : X ! P(U) and Q

Ŷ |U : U ! P(Y), we define the average (over
representations) cross-entropy loss as:

`
�
QU |X(·|x), Q

Ŷ |U (y|·)
�
:=
⌦
QU |X(·|x),� logQ

Ŷ |U (y|·)
↵

(1.8)

= �

X

u2U
QU |X(u|x) logQ

Ŷ |U (y|u). (1.9)

We measure the expected performance of (QU |X , Q
Ŷ |U ) via the risk function:

(QU |X , Q
Ŷ |U ) 7! L(QU |X , Q

Ŷ |U ) := EPXY

⇥
`
�
QU |X(·|X), Q

Ŷ |U (Y |·)
�⇤
. (1.10)

In addition to the points noted earlier, another crucial component of knowl-
edge representation is the use of deep representations. Formally speaking, we
consider K-th randomized encoders {QUk|Uk�1

}
K

k=1 with U0 ⌘ X instead of one
randomized encoder QU |X . Although this appears at first to be more general,
it can be casted using the one-randomized encoder formulation induced by the
marginal distribution that relates the input and the output layer of the network.
Therefore any result for the one-layer formulation immediately implies a result
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for the K-th layer formulation and for this reason we shall focus on the one-layer
case without loss of generality.

lemma 1.5 (Optimal decoders) The minimum cross-entropy loss risk satisfies:

inf
QŶ |U :U!P(Y)

L(Q
Ŷ |U , QU |X) = H(QY |U |QU ), (1.11)

where

QY |U (y|u) =

P
x2X

QU |X(u|x)PXY (x, y)

P
x2X

QU |X(u|x)PX(x)
. (1.12)

Proof The proof follows from the positivity of the relative entropy by noticing
that L(QU |X , Q

Ŷ |U ) = D

⇣
QY |U

��Q
Ŷ |U
��QU

⌘
+H(QY |U |QU ).

The associated risk to the optimal decoder is:

L(QU |X , QY |U ) := EPXY

"
�

X

u2U
QU |X(u|x) logQY |U (Y |U)

#
, (1.13)

which is only a function of the encoder model QU |X . However, the optimal de-
coder cannot be determined since PXY is unknown.

The learner’s goal is to select QU |X and Q
Ŷ |U by minimizing the risk (1.10).

However, since PXY is unknown the learner cannot directly measure the risk
and it is common to measure the agreement of a pair of candidates with a finite
training dataset based on the empirical risk.

definition 1.6 (Empirical risk) Let P̂XY denote the empirical distribution
through the training dataset Sn := {(x1, y1), . . . , (xn, yn)}. The empirical risk is:

Lemp(QU |X , Q
Ŷ |U ) := E

P̂XY

h
`
�
QU |X(·|X), Q

Ŷ |U (Y |·)
�i

(1.14)

=
1

n

nX

i=1

`
�
QU |X(·|xi), QŶ |U (yi|·)

�
. (1.15)

lemma 1.7 (Optimality of empirical decoders) Given a randomized encoder
QU |X : X ! P(U), define the empirical decoder with respect to the empirical
distribution P̂XY as:

Q̂Y |U (y|u) :=

P
x2X

QU |X(u|x)P̂XY (x, y)

P
x2X

QU |X(u|x)P̂X(x)
. (1.16)

Then, the risk can be lower bounded uniformly over Q
Ŷ |U : U ! P(Y) as:

Lemp(QU |X , Q
Ŷ |U ) � Lemp(QU |X , Q̂Y |U ), (1.17)

where equality holds provided that Q
Ŷ |U ⌘ Q̂Y |U , i.e., the optimal decoder is

computed from the encoder and the empirical distribution as done in (1.16).
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Proof The inequality follows along the lines of Lemma (1.5) by noticing that
Lemp(QU |X , Q

Ŷ |U ) = D

⇣
Q̂Y |UkQŶ |U |Q̂U

⌘
+ Lemp(Q̂Y |U , QU |X). Finally, the

non-negativity of relative conditional entropy completes the proof.

Since the empirical risk is evaluated on finite samples, its evaluation may be
sensitive to sampling (noise) error and thus giving rise to the issue of gener-
alization. It can be argued, that a key component of learning is not just the
development of a representation model on the basis of finite training dataset,
but its use in order to generalize to unseen data. Clearly successful general-
ization necessitates the closeness (in some sense) of the selected representation
and decoder models. Therefore, successful representation learning would involve
successful generalization. This chapter deals with the information complexity of
successful generalization. The generalization gap defined below is a measure of
how an algorithm could perform on new data, i.e., data that is not available
during the training phase. In the light of Lemmas 1.5 and 1.7, we will restrict
our analysis to encoders only and assume that the optimal empirical decoder has
been selected, i.e., Q

Ŷ |U ⌘ Q̂Y |U in both the empirical (1.14) and the true (1.10)
risks. This is reasonable given the fact that the true PXY is not known and the
only decoder that can be implemented in practice is the empirical one.

definition 1.8 (Generalization gap) Given a stochastic mapping QU |X : X !

P(U), the generalization gap is defined as:

(QU |X ,Sn) 7! Egap(QU |X ,Sn) :=
���Lemp(QU |X , Q̂Y |U )� L(QU |X , Q̂Y |U )

��� ,
(1.18)

which represents the error incurred by the selected QU |X when the rule
Lemp(QU |X , Q̂Y |U ) is used instead of the true risk L(QU |X , Q̂Y |U ).

1.2.3 Optimizing on Restricted Classes of Randomized Encoders

We have already introduced the notions of representation and inference mod-
els and risk functions from which these candidates are chosen. Another related
question of interest is: how do we define the encoder class? A simple approach is
to model classes in a parametric fashion. We first introduce the Bayes risk and
then the restricted classes of randomized encoders and decoders.

definition 1.9 (Bayes risk) The minimum cross-entropy risk over all possible
candidates is called the Bayes risk and will be denoted by L

?. In this case,

L
? := inf

QU|X :X!P(U)
L
�
QU |X , Q̂Y |U

�
= H(PY |X |PX). (1.19)

definition 1.10 (Learning model) The encoder functions are defined by f✓ :
X

d
⇥ Z �! U

m

✓ , where X is the finite input alphabet with cardinality |X |

and d is a positive integer, ✓ 2 ⇥ ⇢ Rd⇥ denotes the unknown parameters to
be optimized, Z is a random variable taking values on a finite alphabet Z with
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probability PZ whose role is to randomize encoders and U✓ ⇢ [0, 1] is the alphabet
corresponding to the hidden representation which satisfies |U✓|  |X |

d
· |Z|. For

notational convenience, we let X ⌘ X
d and U ⌘ U

m

✓
and denote this class as:

F :=
�
QU |X(u|x) = EPZ

⇥
1[u = f✓(x, Z)]

⇤
: ✓ 2 ⇥

 
.

It is clear that for every ✓, ✓ 7! QU |X 2 F induces a randomized encoder.

In order to simplify subsequent analysis we will assume the following conditions
over the possible data pmf and over the family F of encoders:

definition 1.11 (Restricted model class) We assume that alphabets X , Y are
of arbitrary large size but finite. Furthermore, there exists ⌘ > 0 such that the un-
known data generating distribution PXY satisfies PX(xmin) := minx2X PX(x) �
⌘ and PY (ymin) := miny2Y PY (y) � ⌘.

definition 1.12 (Empirical risk minimization) The methodology of empirical
risk minimization is one of the most straight-forward, yet it is usually efficient
provided that the chosen model class F is restricted [25]. The learner chooses a
pair Q̂

?

U |X 2 F that minimizes the empirical risk:

Lemp
�
Q̂
?

U |X , Q̂
?

Y |U
�
 Lemp(QU |X , Q̂Y |U ), for all QU |X 2 F . (1.20)

Moreover, it is possible to minimize a surrogate of the true risk:

L(QU |X , Q̂Y |U )  Lemp(QU |X , Q̂Y |U ) + Egap(QU |X ,Sn), (1.21)

which depends on the empirical risk and the so-called generalization gap, respec-
tively. Expression (1.21) states that an adequate selection of the encoder should
be performed in order to minimize the empirical risk and the generalization gap
simultaneously. It is reasonable to expect that the assumption that the optimal
encoder achieving the minimal risk in (1.19) do not belong to our restricted class
of models F , so the learner may want to enlarge the model classes F as much
as possible. However, this could induce a larger value of the generalization gap,
which could lead to a tradeoff between these two fundamental quantities.

definition 1.13 (Approximation and estimation error) The suboptimality of
the model class F is measured in terms of the approximation error:

Eapp(F) := inf
QU|X2F

L(QU |X , Q̂Y |U )� L
?
. (1.22)

The induced risk of the selected pair of encoder is given by

Eest
�
F , Q̂

?

U |X , Q̂
?

Y |U
�
:= L

�
Q̂
?

U |X , Q̂
?

Y |U
�
� inf

QU|X2F
L(QU |X , Q̂Y |U ), (1.23)

where Q̂
?

U |X denotes the minimizer of expression (1.20).
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definition 1.14 (Excess risk) The excess risk of the algorithm (1.20) selecting
an optimal pair (Q̂?

Y |U , Q̂
?

U |X) can be decomposed as:

Eexc
�
F , Q̂

?

U |X , Q̂
?

Y |U
�
:= E

⇥
L
�
Q̂
?

U |X , Q̂
?

Y |U
�⇤

� L
?

= Eapp(F) + E
⇥
Eest
�
F , Q̂

?

U |X , Q̂
?

Y |U
�⇤
,

where the expectation is taken with respect to the random choice Sn of dataset
which induces the optimal pair (Q̂?

Y |U , Q̂
?

U |X).

The approximation error Eapp(F) measures how closely encoders in the model
class F can approximate the optimal solution L

?. On the other hand the estima-
tion error Eest(F , Q̂

?

U |X , Q̂
?

Y |U ) measures the effect of minimizing the empirical
risk instead of the true risk, caused by the finite size of the training data. The
estimation error is determined by the number of training samples and by the
complexity of the model class, i.e., large models have smaller approximation
error but lead to higher estimation errors, and it is also related to the general-
ization error [25]. However, for the sake of simplicity, in this chapter we restrict
our attention only to the generalization gap.

1.3 Information-Theoretic Principles and Information Bottleneck

1.3.1 Lossy Source Coding

The problem of source coding is jointly with the channel coding one, the two
more important and relevant problems in information theory [24, 26]. In the
source coding problem, we faced the fundamental question: how to represent in
the most compact way a given stochastic source such that we can be able to
reconstruct, with a given level of fidelity, the original source. Shannon was the
first to formalize and solve completely this problem [2, 27] in the asymptotic
regime2, establishing the optimal trade-off between the compactness of the rep-
resentations and the level of fidelity in the reconstruction. In the lossless source
coding problem, the level of required fidelity is maximal: it is desired to have
a short-length representation which can be used to reconstruct almost exactly
the original source. According to the more general lossy source coding setup,
we look for more compact representations of the original source by dropping
the requirement of almost-exact reconstruction. The level of fidelity required is
measured by using a predefined distortion measure which is a an essential part
of the problem. Interestingly enough, the problem of lossy source coding can be
solved completely for any well-defined distortion measure. Let us mathematically
formulate this problem:

2
The asymptotic regime considers that the number of realizations of the stochastic source

to be compressed tends to infinity. Although this could be questionable in practice, the

asymptotic problem reflects accurately the important trade-offs of the problem. In this

presentation, our focus will be the in the asymptotic problem originally solved by Shannon.
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definition 1.15 (Lossy source coding problem) Consider a discrete and finite
alphabet X and a stochastic source X, which generates identically and indepen-
dently distributed samples according to PX 2 P (X ). Consider an alternative
alphabet X̂ and a distortion function d : X ⇥ X̂ ! R�0. Consider also a realiza-
tion X

n of the source, an encoder function fn : Xn
! {1, . . .Mn} where Mn 2 N

and a decoder function gn : {1, . . . ,Mn} ! X̂
n. We say that Cn = (fn, gn) is an

n-code for X and d(·; ·).

definition 1.16 (Achievable rate and fidelity) A pair (R,D) is said to be
achievable if for every ✏ > 0, there exist n � 1 and an n-code Cn such that:

logMn

n
 R+ ✏, (1.24)

EP
n
X

⇥
d̄ (Xn; gn (fn(X

n)))
⇤
 D + ✏, (1.25)

where d̄(Xn; X̂n) ⌘ 1
n

P
n

i=1 d(xi; x̂i).

The set of all achievable pairs (R,D) contains the complete characterization
of all the possible trade-offs between the rate R (which quantifies the level of
compression of the source X measuring the necessary number of bits per symbol)
and the distortion D (which quantifies the average fidelity level per symbol in
the reconstruction using the distortion function d(·; ·) symbol by symbol). An
equivalent characterization of the set of achievable pairs (R,D) is given by the
rate-distortion function defined by:

R(D) = inf {R : (R,D) is achievable} . (1.26)

It is the great achievement of Shannon [27] to have obtained the following result:

theorem 1.17 (Rate-distortion function) The rate-distortion function for source
X with reconstruction alphabet X̂ and with distortion function d(·; ·) is given by:

RX,d(D) = inf
PX̂|X :X !P(X̂ )

EP
X̂X

[d(X;X̂)]D

I
�
PX ;P

X̂|X
�
. (1.27)

This function depends on solely on the distribution PX and the distortion
function d(·; ·) and contains the exact trade-off between compression and fidelity
that can be expected for the particular source and distortion function. It is
easy to establish that this function is positive, non-increasing in D and convex.
Moreover, there exists D > 0 such that RX,d(D) is finite and we denote the
minimum of such values of D by Dmin with Rmax := limD!Dmin+ RX,d(D).
Although RX,d(D) could be hard to compute in closed form for a particular
PX and d(·; ·), the problem in (1.27) is a convex optimization one, for which
there exist efficient numerical techniques. However, several important cases admit
closed form expressions as the Gaussian case with quadratic distortion3 [24].

3
Although the Gaussian case does not correspond to a finite cardinality set X , the result in

(1.27) can be easily extended to such case using quantization arguments.
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Other important function related with the rate-distortion function is the distor-
tion-rate function. This function can be defined independently from the rate-
distortion function and directly from information-theoretic principles. Intuitively,
this function is the infimum value of the distortion D as function of the rate R

for all (R,D) achievable pairs. We will define it directly from the rate-distortion
function:

R
�1
X,d

(I) := inf
�
D 2 R�0 : RX,d(D)  I

 
. (1.28)

It is not hard to show the following4:

lemma 1.18 Consider the distortion-rate function defined according to (1.28).
This function is positive, non-increasing in I and convex.

Proof Follow easily from definition (1.28).

Besides their obvious importance in the problem of source coding, the defi-
nitions of the rate-distortion and distortion-rate functions will be useful for the
problem of learning as presented in the previous section. They will permit on es-
tablish connections between the misclassification probability, the cross-entropy
and the mutual information between the input X and the output of the en-
coder QU |X . These connections will be conceptually important for the rest of
the chapter, at least from a qualitative point of view.

1.3.2 Misclassification Probability and Cross-Entropy Loss

It is easy to show that the proposed learning framework can be set up as a lossy-
source coding problem. This formulation, however, it is not an operational one
as was the case for the information-theoretic one presented in Definitions 1.15
and 1.16. The reason for this comes form the fact that for our learning framework
we do not have the same type of scaling with n as in the source coding problem
in information theory. While in the typical source coding problem, encoders and
decoders act upon the entire sequence of observed samples x

n = (x1, . . . , xn),
in the learning framework, the encoder QU |X acts on sample-by-sample basis.
Nevertheless, the definition of the rate-distortion (w.r.t. distortion-rate) function
is relevant for the learning framework as well, provided that we avoid any oper-
ational interpretation and concentrate on their strictly mathematical meaning.

Consider alphabets U , X and Y, corresponding to the descriptions generated
by the encoder QU |X and to the examples and their corresponding labels. From

4
It is worth to mention that by using R�1

X,d(I) we are abusing notation. This is because in

general is not true that RX,d(D) is injective for every D � 0. However, when

I 2 [Rmin, Rmax) with Rmin := RX,d(Dmax) and Dmax := min
x̂2X̂

EPX
[d(X; x̂)], under some

very mild conditions on PX and d(·; ·), R�1
X,d(I) is the true inverse of RX,d(D), which is

guaranteed to be injective in the interval D 2 (Dmin, Dmax].
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(1.1) and (1.6), we can write the misclassification probability as:

PE
�
QU |X , Q

Ŷ |U
�
= 1� EPXY

"
X

u2U
QU |X(u|X)Q

Ŷ |U (Y |u)

#

= 1� EPY

"
X

u2U
Q

Ŷ |U (Y |u)EPX|Y

⇥
QU |X(u|X)

⇤
#

= 1� EPY

"
X

u2U
Q

Ŷ |U (Y |u)QU |Y (u|Y )

#

= EPUY

h
1�Q

Ŷ |U (Y |U)
i
. (1.29)

From the above derivation, we can set a distortion measure: d(u; y) := 1 �

Q
Ŷ |U (y|u). In this way, the probability of misclassification can be written as an

average over the outcomes of Y (taking as the source) and U (taking as the
reconstruction) of the distortion measure: 1�Q

Ŷ |U (y|u). In this manner, we can
consider the following rate-distortion function:

RY,QŶ |U
(D) := inf

PU|Y :Y !P(U)
EPUY

[1�QŶ |U (Y |U)]D

I
�
PY ;PU |Y

�
, (1.30)

which provides a connection between the misclassification probability and mutual
information I

�
PY ;PU |Y

�
.

From this formulation we are able to obtain the following lemma, which pro-
vides an upper and a lower bound on the probability of misclassification via the
distortion-rate function and the cross-entropy loss.

lemma 1.19 (Probability of misclassification and cross-entropy loss) The prob-
ability of misclassification PE(QŶ |U , QU |X) induced by a randomized encoder
QU |X : X ! P(U) and decoder Q

Ŷ |U : U ! P(Y) is bounded by

R
�1
Y,QŶ |U

�
I(PX ;QU |X)

�
 R

�1
Y,QŶ |U

�
I(PY ;QU |Y )

�
(1.31)

 PE(QŶ |U , QU |X) (1.32)

 1� exp
⇣
�L(Q

Ŷ |U , QU |X)
⌘
, (1.33)

where QU |Y (u|y) =
P

x2X QU |X(u|x)PX|Y (x|y) for (u, y) 2 U ⇥ Y.

Proof The upper bound simply follows by using Jensen-Inequality [24] while
the lower bound is a consequence of the definition of the rate-distortion and
distortion-rate functions. The probability of misclassification corresponding to
the classifier can be expressed by the expected distortion EPXY QU|X [d(Y, U)] =
PE(QŶ |U , QU |X) based on the fidelity function d(y, u) := 1�Q

Ŷ |U (y|u) as showed
in (1.29). Because of the Markov chain Y �⌦�X�⌦�U , we can use the data processing
inequality [24] and the definition of the rate-distortion function, obtaining the
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following bound for the classification error:

I(PX ;QU |X) � I(PY ;QU |Y ) (1.34)
� inf

PÛ|Y :Y!P(U)

EP
ÛY

[d(Y,Û)]EPXY QU|X [d(Y,U)]

I
�
PY ;PÛ |Y

�
(1.35)

= RY,QŶ |U

�
PE(QŶ |U , QU |X)

�
. (1.36)

For EPXY QU|X [d(Y, U)], we can use the definition of R�1
Y,QŶ |U

(·), and thus obtain
from (1.34) the fundamental bound

R
�1
Y,QŶ |U

(I(PX ;QU |X))  R
�1
Y,QŶ |U

(I(PY ;QU |Y ))  PE(QŶ |U , QU |X).

The lower bound in the above expression states that any limitation in terms
of mutual information between raw data and its representation will bound from
below the probability of misclassification while the upper bound shows that
cross-entropy loss introduced in (1.10) can be used as a surrogate to optimize
the probability of misclassification, as it was also pointed out in Lemma 1.3. As a
matter of fact, it appears that the probability of misclassification is controlled by
two fundamental information quantities: mutual information I(PX ;QU |X) and
the cross-entropy loss L(Q

Ŷ |U , QU |X).

1.3.3 Noisy Lossy Source Coding and the Information Bottleneck

A more subtle variant of the lossy source coding problem is the noisy lossy source
coding problem, first introduced in [28]. The main difference with respect to the
original Shannon’s problem relies on that the source Y is not observed directly at
the encoder. Instead, a noisy version of Y denoted by X is observed and appropri-
ately compressed. More precisely, we have a memoryless source with single-letter
distribution PY observed through a noisy channel with single-input transition
probability PX|Y . From the compressed version of X it is desired to reconstruct,
with a predetermined level of fidelity, the realization of the unobserved source
Y . The fidelity is measured, similarly to the usual lossy source coding problem,
with distortion function d : Y ⇥ U ! R�0, where U is the alphabet in which we
generate the reconstructions. Operational information-theoretic definitions for
this problem are analogous to Definitions 1.15 and 1.16, and for this reason are
omitted. The rate-distortion in this case is given by:

RXY,d(D) = inf
PU|X :X !P(U)

EPUY
[d(Y ;U)]D

I
�
PX ;PU |X

�
. (1.37)

Consider the case of logarithmic distortion d(y;u) = � logPY |U (y|u), where

PY |U (y|u) =

P
x2X PU |X(u|x)PXY (x, y)P

x2X PU |X(u|x)PX(x)
. (1.38)
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The noisy lossy source coding with this choice of distortion function give rise to
the celebrated information bottleneck [20]. In precise terms:

RXY,d(D) = inf
PU|X :X !P(U)
H(PY |U |PU )D

I
�
PX ;PU |X

�
. (1.39)

Noticing that H(PY |U |PU ) = �I
�
PY ;PU |Y

�
+H(PY ) and defining µ := H(PY )�

D, we can write (1.39) as:

R̄XY (µ) = inf
PU|X :X !P(U)
I(PY ;PU|Y )�µ

I
�
PX ;PU |X

�
. (1.40)

Equation (1.40) summarizes the trade-off that exists between the level of com-
pression of the observable source X, using representation U , and the level of
information about the hidden source Y preserved by this representation. This
function is called rate-relevance function, where µ is the minimum level of rele-
vance we expect from representation U when the rate used for the compression
of X is R̄XY (µ). Notice that in the information bottleneck case the distortion
d(y;u) depends on the optimal conditional distribution P

⇤
U |X through (1.38).

This makes the problem of characterizing R̄XY (µ) more difficult than (1.37)
in which the distortion function is fixed. In fact, although R̄XY (µ) is positive,
non-decreasing and convex, the problem in (1.40) is not convex, which leads to
the need of more sophisticated tools for its solution. Moreover, from the corre-
sponding operational definition for the lossy source coding problem (analogous
to Definitions 1.15 and 1.16) it is clear that the distortion function for sequences
Y

n and U
n is applied symbol-by-symbol d̄(Y n;Un) = �

1
n

P
i=1 logPY |U (Yi|Ui),

implying a memoryless condition between hidden source realization Y
n and de-

scription U
n = fn(Xn). It is possible to show [29], [30] that if we apply a full

logarithmic distortion d̄(Y n;Un) = �
1
n
logPY n|Un(Y n

|U
n), not necessarily ad-

ditive as in the previous case, the rate-relevance function in (1.40) remains un-
changed, where relevance is measured by the non-additive multi-letter mutual
information:

d̄(Y n;Un) ⌘
1

n
I
�
PY n ;Pfn(Xn)|Y n

�
. (1.41)

As a simple example in which the rate-relevance function in (1.40) can be cal-
culated in closed form, we can consider the case in which X and Y are jointly
Gaussian with zero-mean, variances �2

X
and �

2
Y

and Pearson correlation coeffi-
cient given by ⇢XY . Using standard information-theoretic arguments [30], it can
be shown that the optimal distribution PU |X is also Gaussian with mean X and
variance given by:

�
2
U |X = �

2
X

2�2µ
� (1� ⇢

2
XY

)

1� 2�2µ
. (1.42)
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Figure 1.1 R̄XY (µ) for ⇢XY = 0.9.

With this choice for PU |X we easily obtain that I
�
PY ;PU |Y

�
= µ and that:

R̄XY (µ) =
1

2
log

✓
⇢
2
XY

2�2µ � (1� ⇢
2
XY

)

◆
, 0  µ 

1

2
log

✓
1

1� ⇢
2
XY

◆
. (1.43)

It is interesting to observe that R̄XY (µ) depends only on the structure of
the sources X and Y through the correlation coefficient ⇢XY and not on their
variances. It should also be noted that the level of relevance µ is constrained
to lie in a bounded interval. This is not surprising because of the Markov chain
U �⌦�X �⌦� Y , the maximum value for the relevance level is I

�
PX ;PY |X

�
, which

is easily shown to be equal to 1
2 log

⇣
1

1�⇢2XY

⌘
. The maximum level of relevance

can only be achievable as long as the rate R ! 1, that is when the source X is
minimally compressed. The trade-off between rate and relevance for this simple
example can be appreciated in Fig. 1.1 for ⇢XY = 0.9.

1.3.4 The Information Bottleneck Method

The noisy lossy source coding with logarithmic loss can be used as a general
principle for learning problems leading to the information bottleneck method.
This method was successfully used in several learning problems with considerably
success (see [31]- [32] and references therein). Consider the classification problem
introduced in Section 1.2.1 and encoder/decoder pairs (QU |X , Q

Ŷ |U ), as was
explained in Section 1.2.2. The information bottleneck method can be introduced
through the following optimization problem:

inf
QU|X ,QŶ |U

n
EPXY QU|X [� logQ

Ŷ |U (Y |U)] + � · I
�
PX ;QU |X

�o
. (1.44)
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Expression (1.44) can be interpreted as a cross-entropy loss with a regulariza-
tion term given by � · I

�
PX ;QU |X

�
, where � is positive number. The regular-

ization term can be interpreted as penalization on the complexity of the de-
scriptions generated from the examples X using the encoder QU |X . The smaller
the term I

�
PX ;QU |X

�
, the simpler the descriptions U will be. Moreover, as

the descriptions U are more simple, they share less information with X and
labels Y (because of the Markov chain U �⌦� X �⌦� Y ). As the information
content in U with respect to Y is naturally decreased, the value of the cross-
entropy EPXY QU|X [� logQ

Ŷ |U (Y |U)] increases. In this way, a trade-off between
the cross-entropy loss and the complexity of the descriptions extracted from X

is established. It can be though the regularization term given I
�
PX ;QU |X

�
pe-

nalizes very complex descriptions that could provide a low cross-entropy value
at the cost of poor generalization and overfitting.

From the result in Lemma 1.5 and the fact that the regularization term
I
�
PX ;QU |X

�
does not depend on the decoder Q

Ŷ |U , problem (1.44) can be writ-
ten as:

inf
QU|X :X!P(U)

�
EPXY QU|X [� logQY |U (Y |U)] + � · I

�
PX ;QU |X

� 
, (1.45)

where the decoder can be written as a function of the encoder as follows:

QY |U (y|u) =

P
x2X

QU |X(u|x)PXY (x, y)

P
x2X

QU |X(u|x)PX(x)
. (1.46)

Recognizing that EPXY QU|X [� logQY |U (Y |U)] = H(QY |U |QU ), where QU (u) =P
x2X QU |X(u|x)PX(x), we see that (1.45) is closely related to the information

bottleneck and with the rate-relevance function defined in (1.40). In fact, the
problem in (1.45) can be equivalently written as:

sup
QU|X :X!P(U)

�
I
�
PY ;QU |Y

�
� � · I

�
PX ;QU |X

� 
, (1.47)

with QU |Y (u|y) =
P

x2X QU |X(u|x)PX|Y (x|y). We can easily see that in (1.47)
we are considering the dual problem to (1.40), looking for the supremum of
relevance µ subject to a given rate R. The value of � (which can be thought as
a typical Lagrange multiplier [33]) can be thought as an hyperparameter which
control the trade-off between I

�
PY ;QU |Y

�
(relevance) and I

�
PX ;QU |X

�
(rate).

In more precise terms, consider the following set:

R :=
�
(µ,R) 2 R2

�0 : 9 QU |X : X ! P(U) s.t.
R � I

�
PX ;QU |X

�
,

µ  I
�
PY ;QU |Y

�
, U �⌦�X �⌦� Y

 
. (1.48)

It is easy to show that this region corresponds to the set of achievable values of
relevance and rate (µ,R) for the corresponding noisy lossy source coding problem
with logarithmic distortion as was defined in Section 1.3.3. This set is closed and
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convex and it is not difficult to show that [34]:

sup
QU|X :X !P(U)

I

�
PX ;QU|X

�
R

I
�
PY ;QU |Y

�
= sup {µ : (µ,R) 2 R}. (1.49)

Using convex optimization theory [33], we can easily conclude that (1.47) corre-
sponds to the obtention of the supporting hyperplane of region R with slope �.
As any convex and closed set is characterized by all its supporting hyperplanes,
varying � and solving (1.47) we are reconstructing the upper boundary of R

which coincides with (1.49). In other words, the hyperparameter � is directly
related with the value of R at which we are considering the maximum possi-
ble value of redundancy µ, or what it is the same, the value of � controls the
complexity of representations of X as was pointed out above.

It only remains to discuss the implementation of a procedure for solving (1.47).
Unfortunately, although the set R characterizing the solutions of (1.47) is con-
vex, it is not true that (1.47) is itself a convex optimization problem. However,
the structure of the problem allows for efficient numerical optimization proce-
dures that guarantee convergence to local optimum solutions. These numerical
procedures are basically Blahut–Arimoto (BA) type algorithms. These are often
used to refer to a class of algorithms for numerically computing the capacity of
a noisy channel and the rate-distortion function for given channel and source
distributions, respectively [35], [36]. For these reasons, these algorithms can be
applied with minor changes to the problem (1.47) as was done in [20].

Clearly, for the solution of (1.47) we need as input the distribution PXY . When
only training samples and labels Sn := {(x1, y1), . . . , (xn, yn)} are available, we
use the empirical distribution P̂XY instead of the true distribution PXY .

0 0.5 1 1.5 2 2.5 3 H(PX)
0

0.2

0.4

0.6

0.8

1

Figure 1.2 Excess risk (1.50) as a function of rate R being the mutual information
between the representation U and the corresponding input X.

In Fig. 1.2, we plot what we call the excess-risk (as presented in Definition
1.14) rewritten below as:

Excess-risk := H(Q⇤,�
Y |U |Q

⇤,�
U

)�H(PY |X |PX), (1.50)
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where Q
⇤,�
Y |U , Q⇤,�

U
are computed by using the optimal solution Q

⇤,�
U |X in (1.47)

and the empirical distribution P̂XY . As � defines unequivocally the value of
I
�
PX ;Q⇤,�

U |X
�
, which is basically the rate or complexity associated with the chosen

encoder, we choose the horizontal axis to be labeled by rate R. Experiments were
performed by using synthetic data with alphabets |X | = 128 and |Y| = 4. Excess
risk curve as a function of the rate constraint for different sizes of training samples
is plotted. With dash vertical coloured lines, we denoted the rate for which the
excess risk achieves its minimum. When the number of training samples increases,
the optimal rate R approaches its maximum possible value: H(PX) (vertical line
dashed in black). We emphasize that for every curve there exists a different
limiting rate Rlim, such that for each R � Rlim, the excess-risk remains constant
with value. It is not difficult to check that Rlim = H(P̂X). Furthermore, for
every size of training samples, there is an optimal value of Ropt which provides
the lowest excess-risk in (1.50). In a sense, this is indicating that the rate R

can be interpreted as an effective regularization term and thus, it can provide
robustness for learning in practical scenarios in which the true input distribution
is not known and the empirical data distribution is used. It is worth to mention
that when more data is available then the optimal value of the regularizing
rate R becomes less critical. This fact was expected since when the amount of
training data increases the empirical distribution approaches the data-generating
distribution.

In the next section, we provide a formal mathematical proof of the explicit
relation between the generalization gap and the rate constraint, which explains
the heuristics observations presented in Fig. 1.2.

1.4 The Interplay Between Information and Generalization

In the following we will denote L(QU |X) ⌘ L(QU |X , Q̂Y |U ) and Lemp(QU |X) ⌘

Lemp(QU |X , Q̂Y |U ). We will study informational bounds on the generalization
gap (1.18). More precisely, the goal is to find the learning rate ✏n(Q,Sn, �n) such
that

P
�
Egap(QU |X ,Sn) > ✏n(QU |X ,Sn, �n)

�
 �n, (1.51)

for a given QU |X 2 F and some �n ! 0 as n ! 1. We will further com-
ment implications for practical algorithms minimizing the surrogate of the risk
function:

L(QU |X)  Lemp(QU |X) + Egap(QU |X), (1.52)

which depends on the empirical risk and the so-called generalization gap. Ex-
pression (1.52) states that a suitable selection of the encoder can be obtained by
minimizing the empirical risk and the generalization gap simultaneously, that is:

Lemp
�
QU |X

�
+ � · ✏n(QU |X ,Sn, �n), (1.53)
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for some suitable multiplier � � 0. It is reasonable to expect that the optimal
encoder achieving the minimal risk in (1.10) does not belong to F , so we may
want to enlarge the model classes as much as possible. However, as usual, we
expect a sensitive tradeoff between these two fundamental quantities.

1.4.1 Bounds on the Generalization Gap

We first present the main technical result in Theorem 1.20, that is a sample-
dependent bound on the generalization gap (1.18) with probability of at least
1� �, as a function of a selected randomized encoder QU |X and the data proba-
bility distribution PXY . In particular, we will show that the mutual information
between raw data and its representation controls the learning rate with an or-
der O

⇣
log(n)p

n

⌘
, which leads to an informational PAC style generalization error

bound. From this perspective, we discuss implications for model selection, vari-
ational auto-encoders and the information bottleneck (IB) method.

theorem 1.20 (Informational bound) Let F be a class of encoders. Then, for
every PXY and every � 2 (0, 1), with probability at least 1� � over the choice of
Sn ⇠ P

n

XY
the following inequality holds 8 QU |X 2 F :

Egap(QU |X ,Sn)  A�

q
I(P̂X ;QU |X) ·

log(n)
p
n

+
C�
p
n
+O

✓
log(n)

n

◆
, (1.54)

where (A�, B�, C�) are universal constants:

A� :=

p
2B�

PX(xmin)

�
1 + 1/

p
|X |
�
, B� := 2 +

s

log

✓
|Y|+ 3

�

◆
, (1.55)

C� := 2|U|e�1 +B�

p
|Y| log

|U|

PY (ymin)
. (1.56)

The importance of this result is that the main quantity involves the em-
pirical mutual information between data X and its randomized representation
U(X). This can be understood as a “measure of information complexity” scal-
ing with rate n

�1/2 log(n). The remaining issue is merely how to interpret this
information-theoretic bound and its implication in the learning problem.

By combining Theorem 1.20 with inequality (1.52) we obtain the following
corollary.

corollary (PAC style generalization error bound) Let F be the class of
randomized encoders. Then, for every PXY and every � 2 (0, 1), with probability
at least 1� � over the choice of Sn ⇠ P

n

XY
the following inequality holds:

L(Q̂Y |U , QU |X)  H(Q̂Y |U |Q̂U ) +A�

q
I(P̂X ;QU |X)

log(n)
p
n

+
C�
p
n
+O

✓
log(n)

n

◆
. (1.57)
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An interesting connection between the empirical risk minimization of the cross-
entropy loss and the information bottleneck method presented in the previous
section arises which motivates formally the following algorithm [15,20,37].

definition 1.21 (Information bottleneck algorithm) A representation learn-
ing algorithm inspired by the information bottleneck principle [20] consists in
finding an encoder QU |X 2 F that minimizes over the random choice Sn ⇠ P

n

XY

the functional:

L
(�)
IB (QU |X) := H(Q̂Y |U |Q̂U ) + � · I(P̂X ;QU |X), (1.58)

for a suitable multiplier � > 0, where Q̂Y |U is given by (1.16) and Q̂U is its
denominator.

This algorithm optimizes a tradeoff between H(Q̂Y |U |Q̂U ) and the information-
based regularization term I(P̂X ;QU |X). Interestingly, the resulting regularized
empirical risk suggested by (1.57) can be seen as an optimization of the IB
method from the empirical distribution (1.58) but based on the square-root of
the mutual information in expression (1.58). Additionally, we observe that by
selecting an arbitrary Q̃U 2 P(U) in (1.58) and using the information-radius
identity [24], the next inequality holds:

L
(�)
IB (QU |X)  H(Q̂Y |U |Q̂U ) + � ·D

�
QU |X(·|X)kQ̃U |P̂X

�
(1.59)

⌘ L
(�)
VA(QU |X , Q̃U ). (1.60)

The new surrogate function (1.60), denoted by L
(�)
VA(QU |X), shares a lot of in

common with a slightly more general form of the variational auto-encoders
(VAEs) [16] and the recently introduced Information Dropout (ID) [15,37], where
the latent space is regularized using a prior Q̃U . Therefore, the information-
theoretic bound in Theorem 1.20 shows that the algorithm in Definition 1.21
as well as VAEs and ID are slightly different but related information-theoretic
ways to control the generalization gap. In all of them the mutual information
I(P̂X ;QU |X) (or its upper bound given by D

�
QU |X(·|X)kQ̃U |P̂X

�
) plays the

fundamental role, although the specific way in which this term control the gen-
eralization gap could be different for each case.

1.4.2 Information Complexity of Representations

We could think of the most significative term in the upper bound (1.54) as an
information complexity cost of data representations, which depends only on the
data samples and on the selected randomized encoder from the restricted model.
Suppose we are given with a set of different model classes for the randomized
encoders k = [1 : K]:

F
(k)
E

:=
n
QU |X ⌘ EPZ

⇥
1[u = f✓(x, Z)]

⇤
: ✓ = (✓1, . . . , ✓k) 2 ⇥k, PZ 2 Pk(Z)

o
,
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where there are two kinds of parameters: a structure parameter k and real-value
parameters ✓, whose parameters depend on the structure, e.g., ⇥k may account
for different number of layers or non-linearities while Pk(Z) indicates different
kind of noise distributions. Theorem 1.20 motivates the following model selection
principle for learning compact representations:

Find a parameter k and real-value parameters ✓ for the observed data Sn with which

the corresponding data representation can be encoded with the shortest code length:

inf
✓2⇥k , k=[1:K]

"
Lemp

⇣
Q(✓,k)

U|X ,Sn

⌘
+ � ·

r
I
⇣
P̂X ;Q(✓,k)

U|X

⌘#
, (1.61)

where the mutual information penalty term indicates the minimum of the expected re-

dundancy between the minimum code-length
5

(measured in bits) � logQ(✓,k)
U|X (·|x) to

encode representations under a known data source and the best code-length � logQU (·)
chosen to encode the data representations without knowing the input samples:

I
⇣
P̂X ;Q(✓,k)

U|X

⌘
= min

QU2P(U)
EP̂X

E
Q

(✓,k)
U|X

h
� logQU (U) + logQ(✓,k)

U|X (U |X)
i
. (1.62)

This information principle combines the empirical cross-entropy risk (1.14) with
the “information complexity” of the selected encoder (1.62) as being a regulariza-
tion that acts as a sample-dependent penalty against overfitting. One may view
(1.62) as a possible means of comparing the appropriateness of distinct repre-
sentation models (e.g., number of layers or amount of noise), after a parametric
choice has been selected.

The coding interpretation of the penalty term in (1.61) is that the length of
the description of the representations themselves can be quantified in the same
units as the code length in data compression, namely, bits. In other words, for
each data sample x, a randomized encoder can induce different types of represen-
tations U(x) with expected information length given by H

�
QU |X(·|x)

�
. When

this representation has to be encoded without knowing QU |X since x is not given
to us (e.g. a communication problem where the sender wishes to communicate
the representations only), the required average length of an encoding distribu-
tion QU results in EQU|X

⇥
� logQU (U)

⇤
. In this sense, expression (1.61) suggests

to select encoders that allow us to then encode representations efficiently. In-
terestingly, this is closely related to the celebrated minimum description length
(MDL) method for density estimation [38,39]. However, the fundamental differ-
ences between these principles is that the information complexity (1.62) follows
from the generalization gap and measures the amount of information conveyed
by the representations relative to an encoder model, as opposed to the model
parameters of the encoder itself.

The information-theoretic significance of (1.62) goes beyond a simply regular-
ization term since it leads to us to introduce the fundamental notion of encoder
capacity. This key idea of encoder capacity is made possible thanks to Theo-
rem 1.20 that connects mathematically the generalization gap to the information
5

As is well known in information theory, the shortest expected code length achievable by a

uniquely decodable code under a known data source [24].
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complexity which is intimately related to the number of distinguishable samples
from the representations. Notice that the information complexity can be upper
bounded as:

I

⇣
P̂X ;QU |X

⌘
=

1

n

nX

i=1

D

0

@QU |X(·|xi)
�� 1
n

nX

j=1

QU |X(·|xj)

1

A (1.63)


1

n2

nX

i=1

nX

j=1

D
�
QU |X(·|xi)

��QU |X(·|xj)
�
, (1.64)

where {xi}
n

i=1 are the training examples from the dataset Sn and the last inequal-
ity follows from the convexity of the relative entropy. This bound is measuring
the average degree of closeness between the corresponding representations for
the different sample inputs. When two distributions, QU |X(·|xi) and QU |X(·|xj)
are very close to each other, i.e., QU |X assigns high likelihood to similar repre-
sentations corresponding to different inputs xi 6= xj , they do not contribute so
much to the complexity of the overall representations. In other words, the more
sample inputs an encoder can differentiate, the more patterns it can fit well so
the larger the mutual information will be and thus the risk of overfitting. This
observation suggests that the complexity of a representation model with respect
to a sample dataset can be related to the number of data samples that essen-
tially yields different (distinguishable) representations. Inspired by the concept
of stochastic complexity [39], we introduce below the notion of encoder capacity
to measure the complexity of a representation model:

definition 1.22 (Capacity of randomized encoders) The encoder capacity Ce

of a randomized encoder QU |X with respect to a sample set A ✓ X is defined as:

Ce(A, QU |X) := max
 :U!A

log

 
X

u2U
QU |X

�
u| (u)

�
!

= log |A|� log

✓
1

1� "

◆
,

(1.65)

" := min
 :U!A

1

|A|

X

x2A

X

u2U
QU |X (u|x)1 [ (u) 6= x]  1�

1

|A|
. (1.66)

The argument of the logarithm in the second term of (1.65) represents the
probability to distinguish samples from their representations 1 � ", i.e., the av-
erage probability that estimated samples via the maximum-likelihood estimator
 (·) from QU |X be equal to the true samples. Therefore, the encoder capacity
is the logarithm of the number of total samples minus a term that depends on
the misclassification probability of the input samples from their representations.
When " is small, then Ce(A, QU |X) ⇡ log |A| � " and thus, all samples are per-
fectly distinguishable. The following proposition gives simple bounds6 on the
6

Notice that it is possible to provide better bounds on " by relaying on the results in [40].

However, we preferred simplicity to “tightness” since the purpose of Proposition 1.23 is to

link the encoder capacity and the information complexity.
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encoder capacity from the information complexity (1.62) which as we already
know has a close relation with the generalization gap:

proposition 1.23 Let QU |X be an encoder distribution and P̂X be an empir-
ical distribution with support An ⌘ supp(P̂X). Then, the information complexity
and the encoder capacity satisfy:

Ce

�
An, QU |X

�
= log |An|� log

✓
1

1� "

◆
(1.67)

g
�1
⇣
log |An|� I

�
P̂X ;QU |X

�⌘
 " 

1

2

⇣
log |An|� I

�
P̂X ;QU |X

�⌘
, (1.68)

where " is defined by (1.66) with respect to An and, for 0  t  1,

g(t) := t · log (|An|� 1) + h(t) (1.69)

with h(t) := �t log(t)� (1� t) log(1� t) and 0 log 0 := 0. Furthermore,

I
�
P̂X ;QU |X

�
 Ce. (1.70)

Proof We begin with the lower bound (1.70). Consider the inequalities:

I
�
P̂X ;QU |X

�
= min

QU2P(U)
D
�
QU |X

��QU

��P̂X

�
(1.71)

 min
QU2P(U)

E
P̂X

EQU|X


max
x2An

log
QU |X(U |x)

QU (U)

�
(1.72)

 min
QU2P(U)

max
u2U

log
QU |X

�
u| 

?(u)
�

QU (u)
(1.73)

= log

 
X

u2U
QU |X

�
u| 

?(u)
�
!

= Ce

�
QU |X ,An

�
, (1.74)

where inequality (1.73) follows by letting  
? to be the mapping maximizing

Ce

�
QU |X ,An

�
and (1.74) follows by noticing that (1.73) is the smallest worst-

case regret, known as the minimax regret , and thus by choosing QU to be the
normalized maximum-likelihood distribution on the restricted set An the claim
is a consequence of remarkable result of Shtarkov [41].

It remains to show the bounds in (1.68). In order to show the lower bound,
we can simply apply Fano’s lemma [42, Lemma 2.10] from which we can bound
from below the error probability (1.66) based on An. As for the upper bound,

log |An|� I
�
P̂X ;QU |X

�
� H

�
P̂X

�
� I
�
P̂X ;QU |X

�
(1.75)

=
X

u2U
Q̂U (u)H

�
Q̂X|U (·|u)

�
(1.76)

� 2
X

u2U
Q̂U (u)

✓
1� max

x02X
Q̂X|U (x

0
|u)

◆
(1.77)

= 2", (1.78)

where (1.75) follows from the assumption An = supp
�
P̂X

�
and the fact that the
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entropy is maximal over the uniform distribution; (1.77) follows by using [43, eq.
(7)] and (1.78) by the definition of " in (1.66). This concludes the proof.

Remark 1.1 In Proposition 1.23, the function g
�1(t) := 0 for t < 0 and, for

0 < t < log |An|, g�1(t) is a solution of the equation g(") = t with respect to
" 2

⇥
0, 1 � 1/ |An|

⇤
; this solution exists since the function g is continuous and

increasing on
⇥
0, 1� 1/ |An|

⇤
and g(0) = 0, g

�
1� 1/ |An|

�
= log |An|.

Remark 1.2 (Generalization requires learning invariant representations) An
important consequence of the lower bound in (1.68) in Proposition 1.23 is that
by limiting the information complexity, i.e., by controlling the generalization gap
according to the criterion (1.61), we bound from below the error probability of
distinguishing input samples from their representations. In other words, from
expression (1.67) and Theorem 1.20 we can conclude that encoders inducing a
large misclassification probability on input samples from their representations,
i.e., different inputs must share similar representations, are expected to achieve
better generalization. Specifically, this also implies formally that we only need to
enforce invariant representations to control the encoder capacity (e.g., injecting
noise during training), from which the generalization is upper bounded naturally
thanks to Theorem 1.20 and the connection with the information complexity.
However, there is a sensitive tradeoff between the amount of noise (enforcing
both invariance and generalization) and the minimization of the cross-entropy
loss. Additionally, it is not difficult to show from the data-processing inequality
that stacking noisy encoder layers reinforce increasingly invariant representa-
tions since distinguishing inputs from their representations becomes harder –or
equivalently the encoder capacity decreases– as the network is deeper.

1.4.3 Sketch of the Proofs

We begin by observing that the generalization gap can be easily bounded as:

Egap(QU |X ,Sn)  Ẽgap(QU |X ,Sn)

+
���

X

(u,y)2U⇥Y

h
QY U (y, u)� Q̂Y U (y, u)

i
log

 
QY |U (y|u)

Q̂Y |U (y|u)

!���,

(1.79)

where we define:

Ẽgap(QU |X ,Sn) =
���EPXY

"
�

X

u2U
QU |X(u|x) logQY |U (Y |U)

#

� E
P̂XY

"
�

X

u2U
QU |X(u|x) logQY |U (Y |U)

# ���. (1.80)

That is, Ẽgap(QU |X ,Sn) is the gap corresponding to the optimal decoder select-
ing, which depends on the true PXY , according to Lemma 1.5. It is not difficult
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to show that

Ẽgap(QU |X ,Sn) 
���H(QY |U |QU )�H(Q̂Y |U |Q̂U )

���+ E
Q̂U

h
D
�
Q̂Y |UkQY |U

�i
,

(1.81)
where the second term can be bounded as E

Q̂U

h
D
�
Q̂Y |UkQY |U

�i
 D

�
P̂XY kPXY

�
.

The first term of (1.81) is bounded as:
���H(QY |U |QU )�H(Q̂Y |U |Q̂U )

��� 
���H(QU )�H(Q̂U )

���+
���H(PY )�H(P̂Y )

���

+
���H(QU |Y |PY )�H(Q̂U |Y |P̂Y )

��� . (1.82)

To obtain an upper bound, we use the following bounds [18]:

���H(QU )�H(Q̂U )
��� 

X

u2U
�

✓
kpX � p̂Xk2 ·

q
V
�
{QU |X(u|x)}x2X

�◆
, (1.83)

���H(QU |Y |PY )�H(Q̂U |Y |P̂Y )
���  kpY � p̂Y k2

p
|Y| log |U|

+ EPY

hX

u2U
�
���pX|Y (·|Y )� p̂X|Y (·|Y )

��
2
·

q
V
�
{qU |X(u|x)}x2X

�◆ i
(1.84)

where

�(x) =

8
<

:

0 x  0
�x log(x) 0 < x < e

�1

e
�1

x � e
�1

(1.85)

and V(a) = ka� ā1dk
2
2 with a 2 Rd, d 2 N+, ā = 1

d

P
d

i=1 ai, and 1d is the
vector of ones of length d.

It is clear that PY 7! H(PY ) is a differentiable function and thus, we can apply
a first order Taylor expansion to obtain:

H(PY )�H(P̂Y ) =

⌧
@H(PY )

@pY

,pY � p̂Y

�
+ o (kpY � p̂Y k2) , (1.86)

where @H(PY )
@PY (y) = � logPY (y) � log(e) for each y 2 Y. Then using Cauchy-

Schwartz inequality we have:
���H(PY )�H(P̂Y )

��� 
q
V
�
{logpY (y)}y2Y

�
kpY � p̂Y k2 + o (kpY � p̂Y k2) .

(1.87)

The McDiarmid’s concentration inequality and [24, Theorem 12.2.1] allow us
to bound with an arbitrary probability close to one the terms: D

�
P̂XY kPXY

�
,

kpX � p̂Xk2, kpY � p̂Y k2 and kpX|Y (·|y)� p̂X|Y (·|y)k2, 8 y 2 Y simultaneously.
To make sure the bounds hold simoultaneously over these Y + 3 quantities, we
replace � with �/(|Y|+3) in each concentration inequality. Then, with probability
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at least 1� � the following bounds hold:

max
���pX � p̂X

��
2
,
��pX|Y (·|y)� p̂X|Y (·|y)

��
2
,
��pY � p̂Y

��
2

 


B�
p
n
, (1.88)

D
�
P̂XY kPXY

�
 |X ||Y|

log(n+ 1)

n
+

1

n
log

✓
|Y|+ 3

�

◆
. (1.89)

Then, with probability at least 1� � we have:

Ẽgap(QU |X ,Sn)  2
X

u2U
�

✓
B�
p
n

q
V({qU |X(u|x)}x2X )

◆
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|Y| log |U|

+
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V
�
{logpY (y)}y2Y
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n
+O

✓
log(n)
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◆
(1.90)
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p
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, (1.91)

where we use n � a
2
e
2 and �

⇣
ap
n

⌘


a

2
log(n)p

n
+ e

�1
p
n
. By combining this result

with the next inequality [18]:

X

u2U

q
V
�
{qU |X(u|x)}x2X

�


p
2

pX(xmin)

 
1 +

s
1

|X |

!q
I(PX ;QU |X), (1.92)

we relate to the mutual information. Finally, using Taylor arguments as above,
we can easily write:
�����

q
I
�
PX ;QU |X

�
�

r
I

⇣
P̂X ;QU |X

⌘����� ⌘ O(kpX � p̂Xk2)  O(n�1/2) (1.93)

with probability 1 � �. It only remains to analyze the second term in the RHS
of (1.79). Using standard manipulations, we can easily show this term can be
equivalently written as:
���

X

(x,y)2X⇥Y

h
PXY (x, y)� P̂XY (x, y)

iX

u2U
QU |X(u|x) log

 
QY |U (y|u)

Q̂Y |U (y|u)

!���. (1.94)

It is not difficult to see that given QU |X , PXY 7! log
�
QY |U (y|u)

�
is a differen-

tiable function and thus, we can apply a first order Taylor expansion to obtain:

X

u2U
QU |X(u|x) log

 
QY |U (y|u)

Q̂Y |U (y|u)

!
= �

X

u2U
QU |X(u|x)

⌧
@ logQY |U (y|u)

@pXY

,pXY � p̂XY

�

+ o (kpXY � p̂XY k2) , (1.95)

and
@ logQY |U (y|u)

@PXY (x0, y0)
=

QU |X(u|x0)
⇥
1 {y

0 = y}�QY |U (y|u)
⇤

QUY (u, y)
. (1.96)
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With the assumption that for every encoder QU |X(u|x) in the family F satisfying
that QU |X(u|x) > ↵ for every (u, x) 2 U ⇥ X with ↵ > 0, we obtain that:

���
@ logQY |U (y|u)

@PXY (x0, y0)

��� 
2

↵
, 8(x, x0

, y
0
, u) 2 X ⇥ X ⇥ Y ⇥ U . (1.97)

From simple algebraic manipulations, we can bound the term in (1.94) as
���
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h
PXY (x, y)� P̂XY (x, y)

iX
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QU |X(u|x) log
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X

(x,y)2X⇥Y

|PXY (x, y)� P̂XY (x, y)|

1

A
2

. (1.99)

Again, using McDiarmid’s concentration inequality, it can be shown that with
probability close to one this term is O(1/n) which can be neglected compared to
the other terms previously calculated. This concludes the proof of the theorem.

1.5 Summary and Outlook

We discussed how generalization in representation learning based on the cross-
entropy loss is related to the notion of information complexity, and how this
connection is employed to view learning in terms of the information bottleneck
principle. The resulting information complexity penalty is a sample-dependent
bound on the generalization gap that crucially depends on the mutual informa-
tion between the inputs and the randomized (representations) outputs of the
selected encoder, revealing an interesting connection between the generalization
capabilities of representation models and the information carried by the repre-
sentations. Furthermore, we have shown that information complexity is closely
related to the so-called encoder capacity revealing the well-known fact that en-
forcing invariance in the representations is a critical aspect to control the gen-
eralization gap. Among other things the results of this chapter present a new
viewpoint on the foundations of representation learning, showing the usefulness
of information-theoretic concepts and tools in the comprehension of fundamen-
tal learning problems. This survey provided a summary of some useful links
between information theory and representation learning from which we expect
to see advances in years to come.

In the present analysis, the number of samples is the most useful resource
for the reduction of the generalization gap. Nevertheless, we have not consid-
ered other important ingredients of the problem related to the computational
complexity aspect of learning representation models. One of them is the partic-
ular optimization problem that has to be solved in order to find an appropriate
encoder. It is well-known that the specific “landscape” of the cost function (as
function of the parameters of the encoders family) to be optimized and the par-
ticular optimization algorithm used (e.g. stochastic gradient descent algortihms)
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could have some major effects that may not be improved by increasing the num-
ber of samples. Additional constraints imposed by real-world applications such
that computations must be performed with a limited time budget could also be
relevant from more practical perspective. Evidently, it is pretty clear that many
challenges still remain in this exciting research area.
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