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Abstract. In this paper, we suggest a different methodology to shorten the code
optimization development time while getting a unified code with good performance
on different targeted devices. In the scope of this study, experiments are illustrated
on a Discontinuous Galerkin code applied to Computational Fluid Dynamics. Tests
are performed on CPUs, KNL Xeon-Phi and GPUs where performance comparison
confirms that the GPU optimization guideline leads to efficient versions on CPU
and Xeon-Phi for this kind of scientific applications. Based on these results, we
finally suggest a methodology to end-up with an efficient hybridized CPU–GPU
implementation.

Keywords. Parallel code optimization, vectorization, hybrid code, GPU, Xeon-Phi.

1. Introduction

The recent development of Graphic Processing Units (GPU) and Xeon-Phi (X-Phi) ac-
celerators now offers a large panel of solutions for an extensive increase of computing
performance without requiring heavy structures of supercomputing centres. However, the
adaptation of existing codes on accelerators may remain tricky. For example, the Seis-
Sol [4] software for seismic simulations based on a Discontinuous Galerkin (DG) nu-
merical scheme, has been severely optimized for the Xeon-Phi Knights Landing (KNL)
architecture. Since 2013, complex optimization works were made to optimize DG com-
putations on GPU architecture: [5] introduced an auto-tuning mechanism to improve an
already optimized generic GPU implementation. In 2016, a semi-Lagrangian DG method
applied to plasma physics applications was developed and implemented on Xeon proces-
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sor, Xeon-Phi KNC and GPU co-processors [2]. However, all these developments have
been designed and optimized for one specific type of device (CPU, Xeon-Phi or GPU).

The application used in this study consists in a 2nd order DG scheme designed to
solve the two-dimensional compressible Navier-Stokes equations. In High Performance
Computing, DG schemes are very well suited to efficient parallelization since the resolu-
tion of partial differential equations are independent for each cell of the numerical mesh
and thus lead to a high degree of parallelism. Anyone confronted to a computationally
intensive sequential code, will try to derive a parallel version from the sequential one. In
such context, the classical development approach consists in adding successive levels of
parallelism. Usually, a multi-threaded and vectorized version is developed as a first step,
then comes a GPU version. Both CPU and GPU codes are optimized apart from each
other and eventually merged in a single program. Finally, a distant communication layer
is added in order to make the program usable on clusters and distant computers.

In this paper, we suggest a different methodology to shorten the code optimization
development time while getting a unified code with good performances on different tar-
geted devices.

The mathematical statement of the problem is given in section 2. In section 3 the ap-
proach for a unified development in presented. Section 4 details the optimization guide-
line common to the different device architectures. Section 5 presents multiple experi-
ments, validating the approach on various devices. Based on the results presented in sec-
tions 4 and 5, a hybridization technique for CPU–GPU code development is introduced
in section 6.

2. Use case: Discontinuous Galerkin

The two dimensional time-dependent compressible Navier-Stokes equations are ex-
pressed as:

∂tW + ∇ ·F(W )− ∇ ·D(W ,∇W ) = 0, (1)

where W = (ρ, ρU, ρE) is the conservation variable vector with the following no-
tations: ρ is the density, U is the 2D velocity field, and E stands for the total energy.
F = F(W ) and D = D(W ,∇W ) are the convective and diffusive fluxes, respectively.
Boundary conditions are set as periodic in each directions for each equation and the test
case is that of a viscous propagating vortex (see Fig 1).

Eqs. (1) with associated boundary conditions are solved in a domain Ω discretized by
either a Cartesian or an unstructured triangular grid Th =

⋃
Ωi. The associated function

space Vh is

Vh = {φ ∈ L2(Ω) | φ/Ωi ∈ Pk}, (2)

where Pk is the space of polynomials of degree k (k = 2 in this study).
The Discontinuous Galerkin formulation is based on a weak formulation after a first

integration by parts: find Wh in (Vh)
4 such that for any cell Ωi in Th,

∀φ ∈Vh,
∫

Ωi
∂tWh φ dx =

∫
Γi
(Fh−Dh) φ dγ−

∫
Ωi
(Fh−Dh)∇φ dx. (3)

where Γi = ∂Ωi is the cell boundary.
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Figure 1. Instantaneous density field of the
flow. The vortex moves across the periodic
numerical domain according to the arrows.

Here, the numerical fluxes Fh, Dh and Wh
are numerical approximations of F, D and W .
The inviscid fluxes F are determined using the
HLLC scheme [9], the viscous fluxes D are
computed with the Elastoplast Discontinuous
Galerkin method [1]. Time is discretized with
Shu-Osher’s explicit Total Variation Dimin-
ishing 3rd order (3 steps) Runge Kutta time
scheme [3].

The time step is computed as δ t = C×
min

i

(
min(dxi,dyi)
|Ui|+ci

)
where C = 0.15 is the CFL

number, i is the cell number, dxi,dyi the local
cell dimensions, Ui the local velocity and ci
the local speed of sound. This scheme is fully
described in [1] and references therein.

All integrals are computed using Gaussian quadrature rules. We designed the study
for 2nd order polynomials on a Cartesian grid. Therefore, 3 Gauss points are chosen in
each direction, leading to 3 Gauss points on each segment of Γi, and 9 Gauss points for
integrals on Ωi. Connectivity between cells is restricted to cells with a common edge.

From a computational point of view, each polynomial coefficient needs to be propa-
gated in time in order to reconstruct the total solution. This leads to a total storage space
of Ncoe f s×Neq×Ncells per arrays of variables, with Ncoe f s the number of polynomial co-
efficients (6 for 2-dimensional second order polynomials), Neq the number of equations
(4 in our case) and Ncells = Nx×Ny the number of cells in the x and y directions.

For this application, 3 double precision arrays of variables were used (one to store
the system current state, one for the previous time-step and one to store time-derivatives).
Thus, memory cost can be approximated by 8×3× (6×4×Ncells) Bytes.

3. Unified development approach

Even though GPUs and CPUs are different in their conception, both share the similar idea
of increasing performance through vectorization (vectors for CPUs, warps for GPUs).
Therefore, any optimization which is not fully dependent on the GPU architecture (such
as texture caches) should also be relevant for vectorial CPUs. Since GPU compilers offer
accurate information in terms of resources used per kernel, the effect of every optimiza-
tion can be carefully monitored. This is why, in order to take advantage of the similari-
ties between GPUs and CPUs, we developed a CPU/X-Phi code by following the same
optimization guideline applied to a GPU version of the application. More precisely, once
an optimization is identified as efficient for the GPU code, it is reported in the CPU code.
Basically, the idea is to copy/paste the content of GPU kernels into the vectorized part of
the CPU code, as sketched in Table 1. In this example, the 2D grid of threads is translated
into two nested loops in the CPU version. The outer one is multithreaded (lines 4-5) and
the inner one is vectorized (lines 8-9).

The GPU developments could be done with any GPU API providing a sufficiently
fine control of kernel programming and memory management. The present study is re-
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2D CUDA-GPU code 2D CPU code (vectorized with icc)

1 void __global__ function(...)
2 {
3 //Thread index in x-direction
4 int tidx = ...;
5 //Thread index in y-direction
6 int tidy = ...;
7 //Logical condition
8 //to make computations
9 if(tidx<Nx && tidy<Ny)

10 {
11 ... //Copy to CPU code
12 }
13 }

15

1 void function(...)
2 {
3 //Loop on y-direction
4 #pragma omp for
5 for(tidy=0; tidy<Ny; tidy++)
6 {
7 //Loop on x-direction
8 #pragma simd
9 for(tidx=0; tidx<Nx; tidx++)

10 {
11 [...] //Insert from GPU code
12 }
13 }
14 }
15

Table 1. Sketch of the experimental protocol. Vectorization of the CPU code is ensured by simd pragma.

stricted to the CUDA API [6] as it provides the required low level of code control, yet
we believe that similar results could be achieved with other programming models such
as OpenACC2 and OpenCL3.

4. Optimization guideline

4.1. Compilation setup

Each optimization suggested in this study is tested on a K20Xm for the GPU code and
on an Intel E5–1650v3 (1 socket of 6 cores, no hyperthreading) for the CPU code. The
compilation is done with the Intel 2017 icc compiler for the CPU code and the CUDA8.0
nvcc compiler for the GPU part. Both codes are compiled with -O3 optimization option
with the following additional options for icc:

• -march=native : add specific optimizations considering the machine used for
the compilation,

• -fma : activates fused multiply-add operations for processors that support it,
• -align : activates the memory alignment of data according to the target architec-

ture.

4.2. Optimization steps and performance measurements

Results of our experiments are reported in Table 2. Performances are expressed in cell
updates per second (cus) as:

P = (Ncells×n)/t (4)

where Ncells is the number of cells and t the time (in seconds) required to make n time-
steps of the system.

2http://www.openacc.org/About_OpenACC
3https://www.khronos.org/opencl
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Code versions CPU (6 th.) Speedup Progres- GPU Speedup Progres-
E5- 1650 v3 vs sive K20Xm vs sive

seq. CPU speedup seq. CPU speedup

Sequential CPU 8.35×104cus 1.00 – – – –
code (1 thread)

Initial CPU version 5.91×105cus 7.06 7.06 – – –
(OpenMP +

simd pragmas)

Initial GPU – – – 1.44×106cus 17.21 17.21
version (CUDA)

Reduced accesses 8.05×105cus 9.63 1.36 5.71×106cus 68.36 3.97
to distant memories
Merged funcs with 1.09×106cus 13.05 1.37 10.0×106cus 119.62 1.85
same mem. patterns
Simplification of 2.01×106cus 24.05 1.82 12.1×106cus 145.00 1.21
computations
CPU Only: Tiling 2.48×106cus 29.72 1.23 – – –
(cache optim.)
Data alignment 2.86×106cus 34.25 1.19 12.5×106cus 149.53 1.03

CPU Only: Tuning 2.96×106cus 35.44 1.03 – – –
on vectorization
CPU Only: MPI + 3.05×106cus 36.52 1.03 – – –
OpenMP (3 proc.×
2 th.)

Table 2. Performance results of the different versions of code. The test case is made on a 2001×2001 mesh
and is integrated over 100 time-steps. Performances (in cell updates per seconds [cus]) are evaluated from
eq. (4).

Except for a few optimizations (such as tiling algorithms) which are specific to CPU
developments, four optimization steps have been identified as crucial. These are summed
up in the list below, but it is worth noticing that some of them induce important code
modifications.

1. Reduce accesses to distant memories which is achieved by transferring redundant
accesses to global/DRAM memory into registers. While on the GPU this strategy
avoids unnecessary accesses to global memory, for the CPU it consists in improv-
ing data cache locality. When completed, this step increases performance on GPU
by a factor of 3.97, and on CPU by a factor of 1.36.

2. Merge kernels which share the same memory patterns. This optimization consists
in limiting the number of accesses to distant memories by improving the re-use
of distant variables. For the CPU this translates in an increase of cache re-use.
According to Table 2, this step increases performance on the GPU by a factor of
1.75, and by a factor of 1.37 on the CPU.

3. Simplify and factor computations which consists in the suppression of non-
essential variables as well as storing recurrent computations (such as multiplica-
tions by constants, constant square roots,...) in intermediate variables, and to con-
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trol whether or not a static loop should be unrolled. Although this step is the most
time-consuming in terms of development time, it increases GPU performance by
a factor of 1.21, whereas it enhances CPU performance by a factor of 1.82.

4. Align data. From the GPU point of view, this step consists in aligning data on the
size of a warp (32 elements). By doing so, we ensure coalescent memory accesses
for each warp. For the CPU, this corresponds to a tiling algorithm (for cache fitting)
with static tile sizes (for better vectorization). This induces two more nested loops
in the CPU version of Table 1 (two for the tiles and two for the cells). On GPU,
this optimization step slightly increases performance by a factor of 1.03 (for warp
size data alignment). On CPU, the performance increase factor is 1.23 (for tiling)
×1.19 (for static tile sizes) = 1.46.

4.3. Vectorization tuning

The approach described in sec. 3 and optimizations steps described above tend to cre-
ate huge vectorized loops, which highly increases the register pressure and may not be
suitable for CPU vectorization. Therefore, we adjusted the CPU vectorization by split-
ting SIMD loops into smaller loops and replaced every #pragma simd by #pragma
vector always indications. According to [7], this instruction tells the compiler to
perform auto-vectorization if the loop does not carry dependencies. By doing so, CPU
performances have been increased by a factor 1.03.

4.4. Data locality improvement

Finally, we created a mixed OpenMP–MPI version of the CPU code in order to make sure
that the memory locations of data used in one MPI process and its threads are close to
their associated cores. The domain decomposition has been performed along the y−axis
by using a ghost-cell technique to share boundaries of neighbouring domains between
MPI processes. This optimization, well suited to NUMA architectures, increases the code
performance by a factor of 1.03. In the end, the CPU (resp. GPU) application is around
36 (resp. 149) times faster than the original sequential code.

5. Experiments on various devices

5.1. Testbed

The final CPU code has been tested on a bi-socket of E5–2698v3 (with DDR4 memory)
processors (2×16 cores), a bi-sockets of E5–2680v4 (DDR4) and a KNL 7250 in quad-
rant mode, with either DDR4 or MCDRAM, MCDRAM itself configured in flat mode
(all data are stored in MCDRAM) or in cache mode (the MCDRAM acts as a L3 cache).
The quadrant mode allows to manage the KNL in four distinct areas where internal data
accesses are preferred to accesses between areas. The final GPU code has been tested
on different Tesla devices: a K20Xm (DDR5), a K40 (DDR5), a P100 (HBM2) with a
bandwidth of 540GB/s and another P100 (HBM2) with a bandwidth of 720GB/s. Each
simulation has been made with active ECC.

In order to see the performance limit, the test case has been extended to a 2731×
2731 mesh (this multiplies the problem size by 1.86, the total memory consumption of
the application being around 5GB).
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Figure 2. Performance for various devices. The energy efficiency is evaluated from the corresponding device
documentation.

Figure 3. Single-threated cache roofline profile of the CPU application evaluated on a E5-2680v4, with
Intel R© Advisor (2017). BdW stands for Bandwidth. Only the loops (red) which are the most time-consuming
(> 2% of the application runtime) are shown for clarity. The dot between DRAM and L3 cache corresponds to
the cost of saving variables at each Runge-Kutta step. The overall performances of the code is evaluated around
11 GFlops (blue square).

5.2. Performance analysis

Results presented in Fig. 2 show that the CPU version of the code running on the X-Phi
KNL 7250 is competitive with the CUDA version on the GPU K40, and that the bi-socket
E5-2698v3 is competitive with the K20Xm. The P100 (540GB/s) is around 2.64 times
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faster than the KNL and this ratio becomes 3.29 for the P100 (720GB/s). And last comes
the bi-socket E5-2680v4 which is almost as power efficient as the KNL.

Due to the cache optimization effort (tiling in Table 2), the use of the MCDRAM
does not scale with the increase of available bandwidth. According to [8], MCDRAM has
a bandwidth faster than 400GB/s while the DRAM used in the KNL 7250 stays around
90GB/s. Profiling the code with the Intel R© Advisor (2017) cache roof-lines tool shows
that most of data accesses are kept between L2 and L1 caches (see Fig. 3). Therefore,
MCDRAM is not expected to be as useful as it could be as the L2 bandwidth is around
five times faster (around 2TB/s as given by the Intel R© Advisor (2017) profiler) than the
bandwidth of MCDRAM. The size of the problem (∼ 5GB) being less than the total
amount of available MCDRAM (∼ 16GB), all the data are kept in MCDRAM. Therefore,
we do not see any impact on the mode used to configure MCDRAM (flat or cache).

The cache roof-lines provided by Advisor (Fig. 3) show that the CPU code could
still be improved (by increasing L1 arithmetic intensity). However, such an optimization
would require consequent code modifications which may not be suitable as it would
create strong divergences between GPU and CPU codes.

6. Hybrid implementation

2D CUDA-GPU code (GPU.cu) Common vectorized kernel (kernel.h) 2D CPU code (CPU.cpp)
1 #define VSIZ 1
2 //Include the kernel
3 #include "kernel.h"

5 void __global__ gpu_function(
6 double *__restrict__ val)
7 {
8 //Thread indexes
9 int tidx = ...;

10 //Logical condition
11 //to make computations
12 if(tidx<Nx)
13 {
14 kernel<VSIZ>(val,tidx);
15 }
16 }

18

1 template<const int VSIZ>
2 //Conditional compilation
3 #ifdef DEFGPU
4 __device__
5 #endif
6 __inline void kernel(
7 double *__restrict__ val,
8 const int tidx)
9 {

10 //Vectorized loop
11 #pragma vector always
12 #pragma unroll
13 for(vec=0; vec<VSIZ; vec++)
14 {
15 ...
16 val[VSIZ*tidx+vec] = ...;
17 }
18 }

1 #define VSIZ 32
2 //Include the kernel
3 #include "kernel.h"

5 void cpu_function(
6 double *__restrict__ val)
7 {
8 //CPU loop
9 for(int tidx=0;

10 tidx<Nx;
11 tidx+=VSIZ)
12 {
13 kernel<VSIZ>(val,tidx);
14 }
15 }

18

Table 3. Programming model for CPU–GPU code hybridization.

Since CPUs and GPUs can benefit from the same optimizations (see sec. 3 and 4),
it is possible to consider that both devices could use the same computational kernels. To
do so, we used C++ templates in order to state the size VSIZ of the vector to be used
by each device. Since GPU threads cannot be considered as vectorial units, VSIZ=1 for
GPUs whereas VSIZ should be taken as a integer multiple of the vector size on CPUs.
The statement indicating if the code of the kernel should be compiled for CPU or GPU is
given by a compilation variable. This programming methodology is illustrated in Table
3 and the overall hybrid implementation in Fig. 4.

In this version of the code, we use only one thread per MPI process. So, one MPI
process should be used for each physical core. Also, the first MPI process of each node
is responsible for the management of the GPUs present on the node. If at least one GPU
is present, this MPI process runs the GPU code while all the remaining MPI processes
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Figure 4. Sketch of the hybrid implementation. Colours indicates the GPU part (blue), the CPU part (red),
branching conditions (green) and common CPU–GPU parts (pink).

of the node execute the CPU code. Otherwise, all MPI processes of the node execute
the CPU code. By doing so, according to Fig. 2, if a GPU is present one can expect an
ill-balanced workshare since GPUs have proved to be faster than a single CPU core. This
is why, we implemented a pre-processing step which consists in the evaluation of the
performances Pi for each MPI process running the application.

Let WT be the total work to be done and Wi the work to be done by the MPI process
i. After the pre-processing step, the work is statically distributed as:

Wi =
Pi

np

∑
j=0

Pj

WT , (5)

where np corresponds to the number of MPI processes.

This implementation has been tested on a two-sockets E5-2580v4 (14 cores, hyper-
threading disabled) processor connected with a P100 (540GB/s) through a PCIe 3.0 con-
nection. The final performances are shown in Table 4, where the hybrid implementation
achieved around 97% of the combined performances. The remaining 3% are lost due to
communications between the different devices and to the dedication of the first CPU core
to the GPU management.

Devices CPU run: 2xE5-2680v4 GPU run: P100 (540GB/s) Hybrid run: 2xE5-2680v4+P100

P (×106cus) 10.4 37 46

Table 4. Performances of the hybrid implementation on the 2731×2731 and n = 50 time-steps test case.
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7. Conclusion

In this study, a general guideline for high performance achievement on different paral-
lel computing devices has been presented. Contrary to classical usage, the proposed ap-
proach consisted in deriving CPU and Xeon-Phi optimized code versions from a GPU
one. This concentrates most of the implementation effort on a single code.

This method has proved to be highly beneficial in the case of a two-dimensional dis-
continuous Galerkin solver for Computational Fluid Dynamics and allowed us to intro-
duce a methodology to develop an hybridized application which uses the same compu-
tational kernels for both CPUs and GPUs. As the vector support inside GPU, Xeon-Phi
and CPU are quite similar, we believe that this approach should provide similar results
for other scientific problems.

As a consequence, the interest of GPU development should be reconsidered, as the
development cost for such devices can be amortized by the inexpensive deduction of
optimized codes for other computing devices. Also, we have observed that adaptation
and integration of the GPU code into CPU/Xeon-Phi codes can be performed, at least in
part, automatically. This will be the subject of further work.
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