
Variational Bayesian inversion of synthetic 3D controlled-source
electromagnetic geophysical data

Sébastien Penz1, Bernard Duchêne2, and Ali Mohammad-Djafari2

ABSTRACT

Inversion of controlled-source electromagnetic data is dealt
with for a geophysical application. The goal is to retrieve a
map of conductivity of an unknown body embedded in a layered
underground from measurements of the scattered electric field
that results from its interaction with a known interrogating
wave. This constitutes an inverse scattering problem whose as-
sociated forward problem is described by means of electric field
domain integral equations. The inverse problem is solved in a
Bayesian framework in which prior information is introduced
via a Gauss-Markov-Potts model. This model describes the
body as being composed of a finite number of different materials
distributed into compact homogeneous regions. The posterior
distribution of the unknowns is approached by means of the

variational Bayesian approximation as a separable distribution
that minimizes the Kullback-Leibler divergence with respect
to the posterior law. Thus, we get a parametric model for the
distributions of the induced currents, the conductivity contrast,
and the various parameters of the prior model that are obtained
following a semisupervised iterative approach. This method
is applied to multifrequency synthetic data corresponding to
a 3D crosswell configuration in which the sought body is made
of two separated anomalies, a conductive heterogeneity and a
resistive one, and its results are compared with that given by the
classic contrast source inversion (CSI). The method succeeds
in retrieving compact homogeneous regions that correspond
to the two anomalies whose shape and conductivities are ob-
tained with a good precision compared with that obtained
with CSI.

INTRODUCTION

Geologic storage is one of the solutions investigated at the
present time to reduce the release of CO2 in the atmosphere. In this
framework, an experiment is led in the pilot site of Hontomín
(Spain), where CO2 is injected in a deep saline aquifer to be stored
(Ogaya et al., 2014). During the injection phase and for a long time
after that, monitoring of the storage site is necessary to make sure
that CO2 remains at the intended place and to detect possible leak-
ages toward the surface. Among the various monitoring methods,
controlled-source electromagnetic (CSEM) techniques are good
candidates due to their noninvasive nature, their low cost, and their
sensitivity to the electrical conductivity of the media and, hence, to

the CO2 saturation of the latter. So, this is the application considered
herein. The goal is to monitor the evolution of a CO2 plume stored
in a deep layer of a known stratified underground by means of
sources (herein electric dipoles) and receivers disposed on the
ground or in boreholes, several of which preexist in the Hontomín
site around the storage location. It is worth noting that, at the present
time, the quantity of CO2 injected in the storage site is not sufficient
to collect significative field data so that this study is led on a syn-
thetic experiment inspired from the Hontomín site but with a very
simplified configuration. However, the layered underground model
(taken from Ogaya et al., 2014) is realistic, as well as the conduc-
tivity contrast and the dimensions of the body.
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The problem at hand is turned into that of retrieving an image that

consists of a map of the electrical conductivity (or resistivity) of an

unknown body embedded in a layered underground from measure-
ments of the scattered electric field that results from its interaction
with a known interrogating wave. This constitutes a nonlinear in-
verse scattering problem, in which “inverse” denotes opposition to
the forward problem that would consist of computing the scattered
electric field when the underground, the body, and the interrogating
wave are known.
The development of imaging solutions able to provide reliable 3D

images of underground features is of considerable interest for
exploration geophysics or monitoring purposes. Hence, since the
early 1990s, there was an important effort in the geologic field to
develop electromagnetic prospection tools and related inversion algo-
rithms. The first approaches were fast imaging methods such as mi-
gration by analytic continuation (Zhdanov et al., 1996; Hokstad and
Røsten, 2007) and linearization techniques based on the Born or Ry-
tov approximations (Habashi et al., 1993; Zhdanov and Fang, 1996).
These techniques only provide low-resolution images whose quality
is not sufficient for retrieving the subsurface conductivity structures,
and linearized solutions do not work when the body shows a high
conductivity contrast with respect to the underground. More rigorous
methods were proposed to deal with the nonlinearity of the problem.
Most of these methods belong to the deterministic inversion frame-
work and turn the problem into an optimization one, in which the
goal is to minimize a cost functional that expresses the discrepancy
between the scattered field data and the output of the forward model
(Abubakar and van den Berg, 1998; Constable and Weiss, 2006; Gri-
benko and Zhdanov, 2007; Plessix and Mulder, 2008; Commer and
Newman, 2009; Wiik et al., 2011; Egbert and Kelbert, 2012). How-
ever, in addition to being nonlinear, inverse scattering problems are
known to be also ill-posed, which means that they need to be regu-
larized to ensure the uniqueness and stability of the solution. This
regularization usually consists of introducing a priori information
on the sought solution and, with the above-mentioned deterministic
approaches, this information is added in the cost functional through a
regularization term (Tikhonov, 1963; Portniaguine and Zhdanov,
1999), which is more or less easy, depending upon the prior that must
be accounted for.
To overcome the limitations of deterministic methods and, in par-

ticular, to account for uncertainties, researchers turned to stochastic
inversion methods such as simulated annealing (Roth and Zach,
2007) and genetic algorithms (Hunziker et al., 2014), keeping with
geophysical applications. However, thesemethods are usually avoided
because they are wildly heuristic and there is no proven optimal strat-
egy for tuning them to a given problem (Mosegaard and Sambridge,
2002). More tractable methods have been developed in the Bayesian
framework (Tarantola and Valette, 1982) and applied to CSEM data
inversion (Chen et al., 2007; Gunning et al., 2010; Minsley, 2011;
Trainor-Guitton and Hoversten, 2011; Buland and Kolbjørnsen,
2012; Ray and Key, 2012; Ray et al., 2014; Gehrmann et al., 2015).
These methods take into account uncertainties (modeling errors and
measurement noises) through an appropriate likelihood function and
allow us to introduce in an easy way all the prior information we may
have on the unknowns through prior probability distributions. The
product of prior distributions and likelihood then yields a joint pos-
terior probability law of all the unknowns.
Once the posterior law is expressed, a usual way is to implement a

Markov Chain Monte Carlo method (MCMC) (Robert and Casella,

2000) that estimates the posterior distribution through a stochastic
sampling method such as a Metropolis-Hastings or a transdimensional
Metropolis-Hastings-Green algorithm (Minsley, 2011; Trainor-
Guitton and Hoversten, 2011; Buland and Kolbjørnsen, 2012; Ray
and Key, 2012; Ray et al., 2014; Gehrmann et al., 2015), a slice sam-
pling method (Chen et al., 2007; Trainor-Guitton and Hoversten,
2011), or a Gibbs sampler (Rothman, 1986; Sen and Stoffa, 1996).
However, these methods are particularly costly in terms of computa-
tions because they require drawing a significant number of samples.
They are, therefore, hardly applicable to large-scale problems such as
the inversion of 3D CSEM data, and the state of the art only mentions
1D configurations (Ray and Key, 2012) or 2D configurations (Ray
et al., 2014) with a 1D forward approximation. This is the reason
why we introduce, herein, the variational Bayesian approximation
(VBA) as an alternative to MCMC methods for CSEM Bayesian in-
version. The purpose of this approach is to approximate the posterior
distribution by a separable law. Calculations are performed analyti-
cally, which reduce significantly the computation cost and, thus, al-
lows us to handle problems of much higher dimensions than with
MCMC methods. The VBA method has already been applied with
success to 2D inversion problems in other domains with different con-
figurations, i.e., monofrequency optical diffraction tomography in
stratified media (Ayasso et al., 2012) and multifrequency microwave
imaging in homogeneous backgrounds (Gharsalli et al., 2014). The
originality herein is that it is applied to a 3D inversion problem
for a geophysical application in which multifrequency data and strati-
fied underground are considered.
This paper is organized as follows. “The forward model” section

presents the forward model based on frequency-domain electric
field volume integral equations and its numerical solution based
on discrete counterparts of the above-mentioned equations obtained
by means of the method of moments. The “Deterministic inversion”
section presents a deterministic inversion method, i.e., contrast
source inversion (CSI), which will serve as a reference to evaluate
the performance of VBA. The Bayesian inversion approach is ad-
dressed in the “Bayesian inversion approach” section, which dis-
plays, in particular, the prior and posterior probability laws. It is
worth noting that the former account for the prior information that
we would like to introduce in the inversion algorithm which consists
of the fact that CO2 is supposed to remain confined in a few com-
pact domains with homogeneous conductivity distributions corre-
sponding to homogeneous CO2 saturations (Bourgeois and Girard,
2010) located in the intended storage layer or, possibly, in case of
leakage of CO2 toward an upper aquifer layer, in several such
domains with different conductivity distributions. This prior knowl-
edge is translated by a Gauss-Markov-Potts model (Mohammad-
Djafari, 2008) that describes the conductivity distribution as a
Gaussian mixture, where each Gaussian law corresponds to a given
conductivity distribution, and that accounts for the compactness of
the domains by means of a hidden Potts-Markov field. The “Baye-
sian computations” section presents the VBA, and it details, in
particular, the parameters of the distributions involved in the
approximate joint posterior law. The “Application and results” sec-
tion displays the results obtained by means of VBA on a very simple
synthetic experiment as a proof of concept of its applicability to the
application considered herein. The body then consists of two
heterogeneities, one being conductive and the other resistive, and
it is probed at six different frequencies from sources and receivers
located in four boreholes surrounding the test domain that is sup-

E26 Penz et al.

D
ow

nl
oa

de
d 

12
/0

6/
22

 to
 1

93
.5

6.
4.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

16
-0

68
2.

1



posed to contain the body. Finally, the last section highlights the
advantages of VBA and opens some prospects.

THE FORWARD MODEL

Frequency-domain electric field integral equations

Let us consider a 3D body Ω supposed to be contained in a test
domain D embedded in the layer l of a 1D stratified underground
made of Nl nonmagnetic homogeneous layers of various thick-
nesses. The body is illuminated by a time harmonic electromagnetic
wave of which implicit time dependence is chosen as expð−iωtÞ
and of which frequency is low enough to consider that the displace-
ment currents are negligible, so that the body and the different
layers are characterized by their respective conductivities σΩ and
σl (l ¼ 1; 2; : : : ; Nl) or, equivalently, by their resistivities ρΩ and
ρl. Let us now define in D a normalized contrast function χ that
expresses the contrast of conductivity between the body Ω and
the embedding layer l:

χðrÞ ¼ σðrÞ − σl
σl

; r ∈ D: (1)

In the presence of an electric field E, this conductivity contrast in-
duces fictitious Huygens type sources w (or contrast sources),
wðrÞ ¼ χðrÞEðrÞ, which are in fact a distribution of conduction cur-
rents defined in D and null outside the body.
By applying Green’s theorem to the Helmholtz wave equations

satisfied by the fields and by accounting for continuity and radiation
conditions (Colton and Kress, 1992; Chew, 1995), we get two
coupled integral equations, the first one of which, denoted as the
coupling or state equation, links the unknown total electric field
E in D to the induced sources w:

EðrÞ¼EincðrÞþiωμ0σl

Z
D
Ḡeðr;r0Þwðr0Þdr0; r∈D; (2)

where ω is the angular frequency, μ0 is the magnetic permeability of
the vacuum, and EincðrÞ and Ḡeðr; r 0Þ are the so-called incident
field and the electric dyadic Green’s function (Wannamaker et al.,
1984) that represent, respectively, the primary electric field due to
the interrogating source and the field due to a point source located at
r 0, both observed at r in the layered underground in the absence of
the body. It is worth noting that the unknown total field E within the
body appears on both sides of the above equation, hidden in the
sources w on the right side. This allows one to get two versions
of this equation, i.e., a field formulation (used, e.g., in Kleinman
and van den Berg, 1992) in which the sources wðr 0Þ are explicitly
replaced by the product χðr 0ÞEðr 0Þ or a source-type integral equa-
tion (used, e.g., in van den Berg and Kleinman [1997] and adopted
herein from now on) obtained by multiplying both sides of equa-
tion 2 by χðrÞ.
The second equation, denoted as the observation or data equation,

expresses the so-called scattered field Esc (i.e., the secondary field
due to the presence of the body), measured on an observation domain
S anywhere outside D, as radiated by the induced sources w:

EscðrÞ ¼ iωμ0σl

Z
D
Ḡeðr; r 0Þwðr 0Þdr0; r ∈ S: (3)

Numerical solution

Assuming that Einc and χ are known, the forward problem consists
of, first, solving equation 2 (in its source-type form) for w and, then,
equation 3 for Esc. This is done from discrete counterparts of these
equations obtained by means of the method of moments (MoM) with
pulse basis functions and point matching (Newman et al., 1986; New-
man and Hohmann, 1988). The test domain is then subdivided into
ND ¼ Nx × Ny × Nz parallelepipedic elementary cells over which E
and χ are considered as constant. In the last equation,Nx, Ny, andNz

are the number of cells along the corresponding spatial axes. In an
operator notation, this leads to the two following linear systems:

wðriÞ ¼ χðriÞEincðriÞ þ χðriÞ
XND

j¼1

Ḡcðri; rjÞwðrjÞ;

i ¼ 1; : : : ; ND; (4)

EscðriÞ ¼
XND

j¼1

Ḡoðri; rjÞwðrjÞ; i ¼ 1; : : : ; NS; (5)

where NS is the number of observation points and the elements of the
tensors Ḡc and Ḡo result from the integration of the dyadic Green’s
function over the elementary cells. Although the choice of pulse basis
functions is not optimal because it does not ensure the continuity of
the normal component of the electric flux density at the interface be-
tween two neighboring elementary cells, it has the advantage of pre-
serving the convolutional nature of equations 2 and 3, which is
important as will be seen later. Furthermore, this formulation is ex-
pected to be accurate enough as far as we are concerned with bodies
whose contrasts are not too high and that are illuminated at a low
frequency. Let us now rewrite the above tensorial equations in a matrix
form by appending quantities corresponding to the three spatial com-
ponents. It is worth noting that matrix Gc, which corresponds to the
tensor Ḡc of equation 4, is a block-Toeplitz matrix (Gao, 2005; Gor-
einov et al., 2009). The redundancy of its terms allows us to reduce its
storage size from 3ND × 3ND to ð2Nx − 1Þ × ð2Ny − 1Þ × N2

z . Fur-
thermore, a huge amount of computation time can be saved by per-
forming the convolution products that appear in equations 2 and 3 in
the spectral domain (i.e., in the k-space) where they are reduced to
matrix-vector products (Lesselier and Duchêne, 1991; Gao, 2005);
hence, equation 4 is solved in this way by means of the bi-conjugate
gradient stabilized-fast Fourier transform method (BCGS-FFT) (Xu
and Liu, 2002).

DETERMINISTIC INVERSION

Problem statement

Let us now consider the inverse problem that consists of retrieving
the unknown contrast function χ within the test domain D from mea-
surements of the scattered electric field at NS points in the measure-
ment domain S. With iterative deterministic approaches, this inverse
problem is turned into an optimization problem where χ is sought by
minimizing a cost functional that expresses the misfit between the data
(the scattered field) and the direct model output, in other words, the
error in satisfying the observation equation. However, in addition to
being nonlinear, inverse scattering problems are also known to be ill-
posed, which means that they need to be regularized. This can be done
in the sense of Tikhonov (Tikhonov, 1963), for example, where a pri-
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ori information on the sought solution is introduced in the functional
to be minimized. Hence, this functional will likely take the form

J ðχÞ ¼ kEsc − FðχÞk2S þ λkRðχÞk2D; (6)

where χ is the conductivity contrast model,F is the forward operator,
R is the regularization operator, k:kA represents the norm associated
to the inner product h:; :iA in L2ðAÞ, with A ¼ S orD, and λ > 0 is a
regularization parameter that expresses the relative confidence that we
can have in the data and in the a priori. As for the regularization term,
it can express the fact that a minimum norm solution is sought, which
would lead to smoothed solutions, or, on the contrary, it can be built
up to preserve the edges (Charbonnier et al., 1997) (it should be noted
that in that case, it is not quadratic), or it can account for the coupling
equation as in the modified gradient method (Kleinman and van den
Berg, 1992) and so on. Let us here emphasize the fact that the prior
information that the sought body is made of compact homogeneous
regions, i.e., the prior information that we would like to account for
herein, has already been introduced in some deterministic inversion
methods by considering regularization operators that involve low-
dimensional parametrizations of the unknown body that is then sought
with a shape- (Miller et al., 2000) or model-based (Abubakar et al.,
2009) approach or through a level set representation (Dorn et al.,
2000).
As for the minimization problem that aims at finding the param-

eter distribution that minimizes J ðχÞ, numerous methods have
been proposed to solve it. To focus on the electromagnetic case
for geophysical applications, let us quote the Gauss-Newton ap-
proaches of Constable and Weiss (2006), Abubakar et al. (2006),
and Li et al. (2011) that consider 1D, 2D, and 3D inversion prob-
lems, respectively, those of Commer and Newman (2009) and Gri-
benko and Zhdanov (2007) that solve the 3D problem by means of a
nonlinear conjugate gradient method, and, finally, those of Plessix
and Mulder (2008) that use a quasi-Newton method associated with
depth weighting to limit memory consumption and improve the
convergence rate of the method. Some other methods use a decom-
position of the forward problem into bilinear (the Born iterative
method [Li et al., 2004] and contrast-source inversion) or trilinear
problems (Barrière et al., 2007) involving χ, w, and/or E.

The CSI method

The CSI method, first introduced by van den Berg and Kleinman
(1997), uses the same formulation of the forward problem as in pre-
vious section with coupling and observation equations expressed in
terms of conductivity contrast χ and induced sources (or contrast
sources)w. The contrast and the induced sources are sought by min-
imizing a cost functional J ðw;χÞ consisting of two terms that re-
present the errors J oðwÞ and J cðw;χÞ in satisfying the observation
and coupling equations, respectively:

J ðw;χÞ ¼ J oðwÞ þ J cðw;χÞ; (7)

with

J oðwÞ ¼
P

νkEsc
ν −Gowνk2SP
ν
kEsc

ν k2S
(8)

and

J cðw;χÞ ¼
P

νkχEinc
ν − wν þ χGcwνk2DP
ν
kχEinc

ν k2D

¼
P

νkχEν − wνk2DP
ν
kχEinc

ν k2D
; (9)

where the observation and coupling errors are normalized in such a
way that they are equal to one when the contrast sources vanish. In
the above equations, the subscript ν stands for the source position, a
single frequency being considered. It can be noted that the perfor-
mances of CSI can be significantly improved by accounting for ad-
ditional multiplicative or additive constraints in the cost functional,
such as a positivity constraint on σ (van den Berg and Kleinman,
1997), a total variation term (Abubakar and van den Berg, 2002),
or a weighted L2-norm regularizer (Li et al., 2011), but this falls be-
yond the scope of this paper because CSI is considered, herein, as a
reference solution and we do not aim at performing an exhaustive
comparison of CSI solutions with additional constraints against VBA.
The CSI method minimizes the cost functional given by equation 7

in an iterative way by alternately updating the contrast sources and
the conductivity contrast with a Polak-Ribière conjugate gradient
scheme. Details of the minimization and derivation of the contrast-
source and contrast updates are given in van den Berg and Kleinman
(1997), Abubakar and van den Berg (1998, 2000), Abubakar (2000),
and van den Berg and Abubakar (2001).
Although the cost functionals given by equations 8 and 9 are writ-

ten for a single frequency, CSI can obviously handle multifrequency
data, and this can be done in several ways, from a basic frequency
hopping scheme to a simultaneous inversion of data corresponding
to several frequencies and, in the latter case, by considering an ad-
ditive cost functional (the subscript ν of equations 8 and 9 is then
replaced by a subscript n that holds for the source position and fre-
quency) as in the original version of the method or a multiplicative
one (Abubakar, 2000) as considered herein. This multiplicative cost
functional reads

Cðw;χÞ ¼
Y
f

J fðwf;χÞ; (10)

where J f is the cost for a single frequency f, as described in
equation 7.

BAYESIAN INVERSION APPROACH

First, let us define two vectors ϵ and ξ that represent the meas-
urement uncertainties and all the model errors (due to approxima-
tions and discretization issues), respectively. By accounting for
these errors, the discrete forward model can be rewritten in a matrix
operator notation as follows:

Esc
n ¼ Go

fwn þ ϵn;

wn ¼ χEinc
n þ χGc

fwn þ ξn: (11)

The subscript n accounts for the different frequencies f and source
positions ν; for the sake of clarity, it will be omitted from now on.
In any statistical method, the first step is to characterize ϵ and ξ

and, in the Bayesian approach, probability distributions must be
assigned to them. Preliminary studies (Vilamajó et al., 2015) con-
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ducted on the Hontomín site have shown that, to a large extent, the
experimental uncertainties in the range of 0.5–384 Hz follow Gaus-
sian distributions, so that we can reasonably assume that the obser-
vation noise ϵ follows a centered Gaussian distribution with a fixed
variance γ2ϵ . As for the coupling noise ξ, we have obviously no in-
formation about it except for the finiteness of its variance. Although
there is absolutely no reason why it should follow such a law, we
shall assume that ξ also satisfies a centered Gaussian distribution
with fixed variance γ2ξ . Indeed, any other choice would lead to a
much more complex likelihood term. Elsewhere, this choice is
the less informative a priori that can be assigned, and it can be in-
terpreted at a maximum entropy point of view. Furthermore, as will
be seen later on, inverse-gamma laws are assigned to γ2ϵ and γ2ξ that
are estimated from the data, and this can be interpreted as if ϵ and ξ
were assigned to follow Student’s t probability distributions. Such
distributions have heavier tails and, hence, yield more robustness
against deviation from prior settings than the Gaussian ones (Wang
et al., 2016).
From the above observation and coupling equations, we can then

write the two following probability laws:

pðEscjwÞ ¼
�

1

2πγ2ϵ

�NS
2

exp

�
−
kEsc −Gowk2S

2γ2ϵ

�
; (12)

pðwjχÞ ¼
�

1

2πγ2ξ

�ND
2

exp

�kw − χEinc − χGcwk2D
2γ2ξ

�
; (13)

where ND and NS are the number of cells partitioning the test
domain and the number of observation points, respectively.

The prior modeling

A significant advantage of Bayesian inversion methods over
deterministic ones is the easiness of introducing a priori informa-
tion in the inversion process. Here, we would like to take into ac-
count the fact that the unknown body is composed of a finite
number Nk of materials (with different conductivities), and that
these materials are distributed in compact homogeneous regions.
It can be noted that, herein, “homogeneous” does not mean that
the contrast takes a constant value throughout the whole region,
but that its values vary slightly around a mean
value mk. This prior information is introduced
by means of a hidden field hðrÞ associated to
each cell r. This field can take discrete values
k ðk ¼ 1; : : : ; NkÞ which define different classes
of materials. These classes are characterized by a
contrast that satisfies a Gaussian distribution
with mean value mk and variance γ2k:

pðχðrÞjhðrÞ ¼ kÞ ¼ N ðmk; γ2kÞ;
k ¼ 1; : : : ; Nk: (14)

Information relative to the compactness and
homogeneity of the different regions is intro-
duced by means of a Potts-Markov model on h ¼
fhðrÞ; r ∈ Dg that expresses the spatial depend-
ence between neighboring cells:

pðhÞ ¼ 1

TðϒÞ exp
�
ϒ
X
r∈D

X
r 0∈Vr

δ½hðrÞ − hðr 0Þ�
�
; (15)

where TðϒÞ is a normalization factor, ϒ determines the degree of
dependency between neighbor values, Vr is the neighborhood of r
(herein made of the six nearest cells), and δ is the Dirac distribution.
The construction of the above model is illustrated in Figure 1

which depicts a configuration in which the sought body is made of
two different materials distributed in three compact regions, so that
there are Nk ¼ 3 classes characterized by respective hidden field
values hðrÞ ¼ 1, 2, or 3 (hðrÞ ¼ 1 stands for the embedding layer
medium) and by contrast values that satisfy Gaussian laws
pðχðrÞjhðrÞ ¼ kÞ ¼ N ðmk; γ2kÞ, k ¼ 1, 2, or 3.
From now on, the variables γ2ϵ , γ2ξ , mk, and γ2k, which appear in

the above-defined probability distributions, will be denoted as hy-
perparameters and gathered in a vector ψ (ψ ¼ fγ2ϵ ; γ2ξ ; ðmk; γ2k;
k ¼ 1; : : : ; NkÞg). As, in practice, they are not known, these hyper-
parameters need to be estimated, and, so, prior probability distribu-
tions are assigned to them. Concerning the hyperparameters, it has
been observed that the reconstruction results are less sensitive to
their priors than to that of the parameters. Therefore, to make the
computations easier, conjugate prior laws (Bernardo and Smith,
2008) are assigned to the hyperparameters as, in this way, the cor-
responding posteriors stay in the same distribution family. Hence,
their prior distributions read

pðmkÞ ¼ N ðmkjμ0; τ0Þ; pðγ2kÞ ¼ IGðγ2kjη0;ϕ0Þ;
pðγ2ϵÞ ¼ IGðγ2ϵ jηϵ0;ϕϵ0Þ; pðγ2ξÞ ¼ IGðγ2ξ jηξ0;ϕξ0Þ; (16)

where IG and N stand for inverse-gamma and Gaussian distribu-
tions, respectively:

IGðγ2jη;ϕÞ ∝ ð1∕γ2Þη−1 expð−ϕ∕γ2Þ;
N ðmjμ; τÞ ∝ expð−ðm − μÞ2∕2τÞ; (17)

and μ0, τ0, η0, ϕ0, ηϵ0, ϕϵ0, ηξ0, and ϕξ0 are meta-hyperparameters
that are set to introduce almost noninformative flat prior distribu-
tions, i.e., μ0, η0, ηϵ0, and ηξ0 are set to one, whereas τ0 is set at a
rather high value and ϕ0, ϕϵ0, and ϕξ0 at low values.

Figure 1. The case of a body made of two different materials distributed in three compact
regions: (a) the three regions R1, R2, and R3 (R1 and R2 are made of the same material),
(b) the hidden field hðrÞ that can take three different values, and (c) the contrast χðrÞ that is
sought as a Gaussian mixture.
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Posterior laws

We consider herein a semisupervised inversion process (because
the number of classes Nk is supposed to be known) where the con-
trast χ, the induced currents w, the segmentation h and the hyper-
parameters ψ are estimated simultaneously. Using the Bayes rule,
the expression of the joint posterior distribution of all the unknowns
reads

pðχ;w;h;ψjEscÞ∝pðEscjw;ψÞpðwjχ;ψÞpðχjh;ψÞpðhÞpðψÞ:
(18)

The different components of pðψÞ are given by equations 16 and
17, whereas the probability laws pðχjh;ψÞ and pðhÞ are given by
equations 14 and 15 and, finally, pðEscjw;ψÞ and pðwjχ;ψÞ are
given by equations 12 and 13, respectively.

BAYESIAN COMPUTATIONS

VBA

Because all the right-side terms of equation 18 are known, we
have the expression of the joint posterior law of all the unknowns
(the left-side expression) up to a normalizing factor. From now on,
using this expression, different inferences can be done on all the
unknowns of the problem. It can be noted, however, that working
directly with probability distributions is often not easy. This is the
reason why different point estimators, such as the maximum a pos-
teriori (MAP) or the posterior mean (PM), are usually computed.
But computations of these estimators are generally also difficult be-
cause they require a nonconvex optimization or a hardly tractable
integration, respectively. Hence, approximate solution methods,
such as the joint maximum a posteriori (JMAP), MCMC, or VBA
algorithms, are often used. Concerning JMAP, its main interest is its
link with deterministic regularization methods. However, this esti-
mator does not account for all the uncertainties: Particularly, when
looking simultaneously to several parameters in an iterative way, at
each iteration, each parameter is estimated by considering that the
others are certain. As for the MCMC methods, they try, in general,
to explore the whole space of the unknowns by generating samples
from the joint posterior law. Because they are based upon stochastic
samplers whose convergence requires the drawing of a huge number
of samples, they are computationally ineffective for high dimen-
sional problems such as those encountered in the inversion of
3D CSEM data, although recent methods allow hastening their con-
vergence (Ray et al., 2013).
The VBA avoids these difficulties by performing an analytical

approximation of the posterior law. In return, because VBA does not
browse the whole solution space, one could be faced with a draw-
back of the method: Although a priori information has been intro-
duced in the prior modeling, this may not be sufficient to avoid
VBA to be stuck in a local minimum corresponding to a suboptimal
solution because the posterior marginal law for the contrast χ may
be multimodal (Gunning et al., 2010; Ray et al., 2013). One pos-
sible way to cope with this situation would be to restart the algo-
rithm with different priors.
The idea behind VBA is to approximate the true posterior

pðw;χ; h;ψjEscÞ with a separable distribution qðw;χ; h;ψÞ
that minimizes the Kullback-Leibler divergence KLðqkpÞ ¼
∫ q logðq∕pÞ (Kullback and Leibler, 1951; Hinton and van Camp,

1993; Šmídl and Quinn, 2006; Mohammad-Djafari, 2015). Let us
first define the separable form as

qðw;χ; h;ψÞ ¼
Y
n

Y
r

qðwnðrÞÞ
Y
n

qðγ2ϵnÞqðγ2ξnÞ

×
Y
r

qðχðrÞÞ
Y
k

qðhkÞqðmkÞqðγ2kÞ; (19)

where subscript n stands for the frequency and the source position,
subscript k stands for the material class, and r stands for the cell.
The optimal form of q that minimizes the Kullback-Leibler diver-
gence leads to the following parametric distributions (Ayasso,
2010):

qðwnðrÞÞ ¼ N ðwnðrÞj ~mwnðrÞ; ~vwnðrÞÞ;
qðχðrÞÞ ¼ N ðχðrÞj ~mχðrÞ; ~vχðrÞÞ; qðhkÞ ¼

Y
r

~ζkðrÞ;

qðmkÞ ¼ N ðmkj ~μk; ~τkÞ; qðγ2kÞ ¼ IGðγ2kj ~ηk; ~ϕkÞ;
qðγ2ϵnÞ ¼ IGðγ2ϵn j ~ηϵn ; ~ϕϵnÞ; qðγ2ξnÞ ¼ IGðγ2ξn j ~ηξn ; ~ϕξnÞ;

where ~v stands for the variance and ~ζkðrÞ is defined by equation 25.
It is worth noting that the tilded parameters are mutually depen-

dent and are computed in an iterative way with the updating expres-
sions given below. In these expressions, the superscript iwill denote
the iteration step and, for clarity, the superscript (i − 1), which in-
dicates that the values of variables are that of the previous iteration,
will be omitted (variables without superscript are those at the pre-
vious iteration). For the same reason, the subscript n will be omitted
in the contrast source updating expressions.

• Concerning the contrast sources, we obtain

~mi
w ¼ ~mw þ ~Vi

w½γ−2ϵ Go†ðEsc −Go ~mwÞ
þ γ−2ξ ðI −Gc† ~m†

χÞð ~MχðEinc þGc ~mwÞ − ~mwÞ
þ γ−2ξ ~VχðEinc þGc ~mwÞ�;
~Vi
w ¼ ½Diagðγ−2ϵ Γo þ γ−2ξ ΓcÞ�−1; (20)

where the overbar denotes the expectation of the variable
with respect to q (i.e., u ¼ EðuÞq) and superscript † indicates
the conjugate transpose. In the above expression, ~Mχ and ~Vχ

are diagonal matrices built up from the components of the
vectors ~mχ and ~vχ ( ~mχ ¼ f ~mχðrÞg; ~vχ ¼ f ~vχðrÞg; r ∈ D) that
represent the means and variances of the cell contrasts, re-
spectively, and Γo and Γc are given by

ΓoðrÞ ¼
X
r 0

jGoðr 0; rÞj2;

ΓcðrÞ ¼ 1 − 2Re½Gcðr; rÞ ~mχðrÞ�
þ ½ ~m2

χðrÞ þ ~vχðrÞ�
X
r 0

jGcðr 0; rÞj2: (21)
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• Concerning the contrast χ, the updates read

~mi
χ ¼ ~Vi

χ

�X
k

γ−2k ~ζk ~μk þ
X
n

γ−2ξn wnE�
n

�
;

~Vi
χ ¼

�
Diag

�X
n

γ−2ξn E2
n þV−1

χ

��
−1
; (22)

where � denotes the complex conjugate and wnE�
n is such

that

wnE�
nðrÞ ¼ Einc�

n ðrÞ ~mwn
ðrÞ þ Gc�

n ðr; rÞ ~vwn
ðrÞ

þ ~mwn
ðrÞ

X
r 0

Gc�
n ðr; r 0Þ ~m�

wn
ðr 0Þ: (23)

In equation 22, V−1
χ and E2

n are diagonal matrices of which
elements read

V−1
χ ðr;rÞ¼

X
k

~ζkðrÞγ−2k ;

E2
nðr;rÞ¼jEinc

n ðrÞj2þ2Re½Einc�
n ðrÞGc

nðr;rÞ ~mwn
ðrÞ�

þ
����
X
r0
Gc

nðr;r0Þ ~mwn
ðrÞ

����
2

þ
X
r0
jGc

nðr;r0Þj2 ~vwn
ðrÞ: (24)

• The parameter of the hidden field distribution is

~ζikðrÞ ¼ exp

�
−
1

2

�
Ψð ~ηkÞ þ logð ~ϕkÞ − ϒ

X
r 0∈νðrÞ

~ζkðr 0Þ

þ γ−2k ½ð ~mχðrÞ − ~μkÞ2 þ ~τk þ ~vχðrÞ�
��

; (25)

where Ψ stands for the digamma function.
• For each frequency and source position, the parameters of

the observation and coupling noise variances are

~ϕi
ϵ ¼ ϕϵ þ

NS

2
; ~ϕi

ξ ¼ ϕξ þ
ND

2
;

~ηiϵ ¼ ηϵ þ
1

2
½kEsck2S þ kGo ~mwk2S

−2ReðEsc†Go ~mwÞ þ kG2
o ~vwkL1 �;

~ηiξ ¼ ηξ þ
1

2
½k ~mwk2D þ k ~VwkL1

þ kð ~M†
χ
~Mχ þ ~VχÞE2kL1 − 2Reð ~m†

χwE�Þ�; (26)

where k:kL1 represents the L1 norm and the elements of G2
o

are the squared elements of Go.
• The parameters that concern the variances of the classes are

~ϕi
k¼ϕ0þ

1

2

X
r

~ζkðrÞ;

~ηik¼η0þ
1

2

X
r

~ζkðrÞðj ~mχðrÞj2þ ~vχðrÞþ ~m2
kþ ~τ2kÞ: (27)

• Finally, the means of the classes involve the following
parameters:

~τik ¼
�
τ−10 þ γ−2k

X
r
~ζkðrÞ

�
−1
;

~μik ¼ ~τk

�
μ0
τ0

þ γ−2k
X
r

~ζkðrÞ ~mχðrÞ
�
: (28)

The reconstruction algorithm

In the algorithm, the tilted parameters are updated iteratively fol-
lowing formulas given in the previous section until convergence is
reached. The latter is evaluated empirically by looking at the evo-
lution of the contrast and hyperparameters through the iterative
process. Finally, the VBA algorithm can be summarized as follows:

VBA algorithm
Set initial estimates: χð0Þ;wð0Þ; hð0Þ and ψð0Þ,
repeat

determine qðhÞ: update ~ζk using equation 25,
determine qðγ2ϵÞ and qðγ2ξÞ: update ~ϕϵ, ~ηϵ, ~ϕξ and ~ηξ using
equations 26,
determine qðγ2kÞ: update ~ϕk and ~ηk using equations 27,
determine qðmkÞ: update ~τk and ~μk using equations 28,
determine qðwÞ: update ~mw and ~Vw using equations 20,
determine qðχÞ: update ~mχ and ~Vχ using equations 22,

until convergence.

APPLICATION AND RESULTS

A synthetic crosswell experiment

Let us consider a simple synthetic crosswell experiment in which
the body is made of two 32 m sided cubic blocks, of which respective
resistivities are 60 Ωm (resistive inhomogeneity) and 2 Ωm (conduc-
tive inhomogeneity), disposed as indicated in Figure 2a. This body is
sought in a 112 m sided cubic test domain centered at (0, 0, 1413 m)
and embedded in a 11-layer stratified underground (Figure 2b; Ogaya
et al., 2014). The test domain is subdivided into 14 × 14 × 14 cubic
cells and, hence, the total number of conductivity contrast unknowns

Figure 2. (a) The body is made of two 32 m sided cubic inhomoge-
neities: a resistive one (yellow, ρ ¼ 60 Ωm) and a conductive one
(blue, ρ ¼ 2 Ωm), centered at (x¼−20m, y ¼ −20 m, z ¼ 1385 m)
and (x ¼ 20 m, y ¼ 20 m, z ¼ 1441 m), respectively, and located in
a 112 m thick layer (with resistivity ρ ¼ 10 Ωm) of (b) a stratified
underground whose resistivity profile is taken from Ogaya et al.
(2014).
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is equal to 2744. Four boreholes are located around this test domain
at horizontal positions (x [m], y [m]) = (−65, −65), (−65, 65), (65,
−65), and (65, 65). In each borehole, six sources (vertical electric di-
poles) are located every 30 m, ranging from 1333 to 1483 m, whereas
the vertical component of the electric field is measured at nine loca-
tions, every 25 m from 1313 to 1513 m, for six different frequencies
(i.e., 16, 64, 256, 1024, 4096, and 16,384 Hz). This leads to the col-
lection of 5184 scattered field data. Before inversion, the data corre-
sponding to each frequency are corrupted with an additive white
Gaussian noisewith zero mean and variance γ2f, where γf is arbitrarily
set to 2% of the maximum signal received at the given frequency.

Reconstructions

The VBA method requires an initialization for the contrast χð0Þ,
the induced sources wð0Þ, the hidden field hð0Þ, and the hyperpara-
meters ψð0Þ. The initial values of the unknowns wð0Þ and χð0Þ are
obtained either by back propagating the scattered field data from the
measurement domain S onto the test domain D or as a result of a
few CSI iteration steps. Initial hyperparameters ψð0Þ are set by
means of empirical estimators. Given the initial contrast χð0Þ and the

number of classes Nk, the initial segmentation hð0Þ is obtained
by k-means clustering. Concerning the number of classes, when un-
known, it can be initialized at a high level. In this case, previous
works have highlighted an interesting behavior of the algorithm
(Ayasso et al., 2012; Gharsalli et al., 2014); i.e., the number of
classes identified during the iterative process converges to the actual
one via two processes: If the number of cells in a given class de-
creases to a low threshold value, the class ends up vanishing or, if
the means of two classes come very close to each other, these classes
merge. This behavior is highlighted in Figure 3a that displays the
evolution of the number of cells in each class versus the iteration
step. Indeed, here, the number of classes is supposed to be unknown
and initialized at Nk ¼ 5, whereas the actual one is three (the back-
ground layer and the resistive and conductive anomalies), and it can
be observed in this figure that the two material classes in excess
quickly vanish in the first 20 iterations.
Figure 3b and 3c display the evolution of class means and varian-

ces, respectively. The evolution of these hyperparameters is useful to
assess the convergence of the VBA algorithm, together with that of
the observation and coupling error variances. In Figure 3b and 3c,
it can be observed that the mean resistivities of classes 1 and 5 (cor-
responding to the resistive and conductive heterogeneities, respec-
tively) tend to slowly increase and decrease toward the good
values and that the variances of these classes slowly decrease, which
leads to more homogeneous materials. In this figure, the evolution of
the various parameters is displayed with a logarithmic iteration scale,
which highlights their behavior in the first 50 iterations but interferes
with the perception of convergence. Figure 4 displays the evolution
of the observation and coupling errors (

P
nkEsc

n −Go
nwnk2S andP

nkwn − χEinc
n − χGc

nwnk2D, respectively) during the inversion
process. Both errors are decaying of several orders of magnitude, much
faster during the first 50 iterations than latter. It can be noted that, when
a single frequency is considered (i.e., 256 Hz), convergence is deemed
to be reached after 1000 iterations as the root-mean-square (rms) error

is close to 1 ðrms error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

nkEsc
n −Go

nwnk2S∕
P

nNS

q
¼ 1.14Þ,

and the various parameters of the model do not evolve anymore after
that, but this is no more true when the above defined six frequencies
are accounted for, as in Figures 3 and 4. In that case, the parameters of
classes 1 and 5 are still evolving after that, but, due to competition
between the different frequencies, convergence is very slow and
1000 iterations more would not have significantly changed the recon-
structed model. This is the reason why, to compare with the single-

Figure 4. Evolution of the observation and coupling errors versus
the iteration step for the multifrequency VBA inversion: (full line)
observation error, (dashed line) coupling error. Both errors are nor-
malized with respect to their value at the first iteration.

Figure 3. Evolution of the class parameters for the multifrequency
VBA inversion: (a) number of cells in each class, (b) class means
and (c) class variances. Class 1 (blue line), class 2 (red line), and
class 5 (green line) correspond to the resistive anomaly, to the back-
ground layer and to the conductive anomaly, respectively.
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frequency case, the process is stopped after 1000 iterations, although
the rms error is still at a high level (rms error = 1.65) due to large
misfits at the higher frequencies (4096 Hz and, more critically,
16 kHz).

Figure 5 compares the actual resistivity map to that obtained by
means of CSI and VBA. Contrast source inversion is applied to mul-
tifrequency data and stopped after 300 iterations, whereas VBA is
applied to multifrequency and single-frequency (256 Hz) data. Due
to a priori information introduced in the inversion algorithm, the
quality of the reconstruction is significantly improved with VBA.
In particular, the algorithm performs better than CSI in retrieving
homogeneous regions corresponding to the two inhomogeneities,
with resistivity values much closer to the actual ones, as it can
be observed in Figure 6 which depicts the resistivity profiles recon-
structed along vertical and horizontal lines crossing the two body
blocks. In this figure, it can be observed that the maximal resistivity
contrast retrieved by VBA reaches 18% and 62% of the actual con-
trasts for the resistive and conductive inhomogeneities, respectively,
which represents a very good reconstruction compared with the 4%
(resistive anomaly) and 27% (conductive anomaly) of the actual re-
sistivity contrast reached by CSI. Of course, accounting for addi-
tional constraints in the functional to be minimized, such as a
total variation term (Abubakar and van den Berg, 2002), would have
led CSI to retrieve more compact anomalies and, thus, to yield re-

Figure 7. Two-dimensional cross-sections of the resistivity map
obtained by means of VBA with six frequencies passing through
(a, c, and e) the resistive and (b, d, and f) the conductive anomalies:
(a and b) y-z cross sections at (a) x ¼ −20 m and (b) x ¼ 20 m, (c
and d) x-z cross sections at (c) y ¼ −20 m and (d) y ¼ 20 m and (e
and f) x-y cross-sections at (e) z ¼ 1384 m and (f) z ¼ 1441 m. The
contours of the actual anomalies are displayed in black lines.

Figure 6. The actual resistivity profile (blue line) compared with
that retrieved in the multifrequency case by means of CSI (red line)
and VBA (black line) along (a and b) vertical lines passing at
(a) (x ¼ −20 m, y ¼ −20 m) and (b) (x ¼ 20 m, y ¼ 20 m) and
(c and d) horizontal lines passing at (c) (y ¼ −20 m, z ¼ 1385 m)
and (d) (y ¼ 20 m, z ¼ 1441 m). On the left, the profiles pass
through the resistive anomaly, whereas on the right they pass
through the conductive one.

Figure 5. Resistivity maps: (a) the actual resistivity is compared
with that retrieved by (b) CSI with six frequencies, (c) VBA with
one frequency and (d) VBAwith six frequencies. It can be noted that
the color scale of the retrieved profiles is different from that of the
actual one.
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sults closer to that of VBA. The results obtained by means of the
six-frequency VBA inversion concerning the shape and location
of the retrieved body are detailed in Figure 7 which displays cross
sections of the resistivity map in six vertical and horizontal planes
passing through the centers of the actual anomalies. The size and

location of the retrieved resistive anomaly are in very good agree-
ment with the actual ones. As for the conductive anomaly, its
location is well-retrieved, but its contours are not well described.
Figure 8 displays cross sections of the contrast variance map in the
same planes as Figure 7: The contrast variance quantifies the uncer-
tainty on the retrieved contrast, the yellow cells being those whose
contrast values are the most uncertain.
The evolution of the material distribution is depicted in Figure 9

that displays the initial (derived from k-means clustering) and final
segmentations. In the final segmentation, resistive and conductive
anomalies appear at the right locations. Nevertheless, they are not as
compact as the actual anomalies. It should be mentioned that size
and homogeneity of the regions that are obtained at the end of the
iterative process can be controlled by means of the Potts parameter
ϒ (see equation 15): The smaller ϒ is, the smaller the homogeneous
regions are (Ayasso, 2010). Herein, this parameter has been set to a
value close to, but smaller than, a critical valueϒc ¼ logð1þ ffiffiffiffiffiffi

Nk
p Þ

(Beffara and Duminil-Copin, 2012) so that small anomalies, that
could be present in a situation on the ground, can be recovered
whereas the number of homogeneous regions in the final image re-
mains reasonably low.
At a computational point of view, VBA requires more memory

than CSI due to the additional variables (hidden field, hyperpara-
meters). It also converges slower than CSI, but VBA iterations are
faster than that of CSI. In the multifrequency case considered herein,
one iteration takes 49.3 s with VBA against 103.2 s with CSI on a
laptop with a 2.1 GHz processor. In this case, the total time needed by
VBA to reach convergence is about 1.5 times that needed by CSI, but
the convergence of VBA can be speeded-up by means of a gradient-
like variational Bayesian method (Fraysse and Rodet, 2014) that is
under investigation and has already shown its effectiveness compared
with the classical VBA in other applications.
In Figure 5, it can be observed that using a single frequency or

the whole frequency set leads to almost similar results. This can be
explained by information redundancy (Bucci et al., 2001) of the
experimental configuration considered here, in which data are col-
lected for numerous sources and receivers disposed all around
the body. On the contrary, in realistic situations, data would be col-
lected in various surface-to-surface or well-to-surface measurement
configurations, possibly by using LEMAM arrays (Bourgeois and
Girard, 2010), and, with such aspect limited data, multifrequency
inversion would be essential to get a sufficient sensitivity to the ver-
tical location of anomalies.
Finally, in the synthetic experiment considered herein, for the

sake of simplicity the sought body consists of two distinct hetero-
geneities embedded in the same layer, but the case of numerous
heterogeneities dispersed in several layers could also be considered.

CONCLUSION

This paper deals with a Bayesian method applied to the inversion
of 3D CSEM geophysical data. The goal is to retrieve a map of
resistivity of an unknown body embedded in a layered underground
from measurements of the scattered electric field that results from
its interaction with a known interrogating wave. This constitutes an
inverse scattering problem that is known to be ill-posed, so that
needs to be regularized. Regularization is generally performed by
introducing a priori information on the expected solution. Deter-
ministic inversion methods, such as CSI, introduce a priori infor-
mation by adding a penalization term in the cost functional to be

Figure 9. Segmentation of the resistivity model obtained with the
multifrequency VBA inversion: (a) the initial segmentation into five
classes obtained by k-means clustering and (b) the final segmentation
in which only three classes remain, class 1 (dark blue, the resistive
anomaly), class 2 (blue, the background), and class 5 (yellow, the
conductive anomaly).

Figure 8. Two-dimensional cross sections of the contrast variance
map corresponding to the resistivity maps displayed in Figure 7.
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minimized. The choice of a priori that can be introduced in this way
is limited, and this often leads to suboptimal solutions. Herein, a
priori information that we would like to account for consists of
the fact that the sought body is made of a finite number of different
materials distributed in compact homogeneous regions and the
Bayesian estimation framework allows us to easily introduce this
prior knowledge by means of a Gauss-Markov-Potts prior model
of the sought resistivity contrast.
The VBA presented here seeks to estimate the joint posterior

distribution of all the unknowns as a separable distribution that
gives the best approximation of the true posterior law in the Kull-
back-Leibler sense. The solution is a set of parametric distributions,
with mutual dependency between the different variables, which
are sought in an iterative way. The VBA method is applied to a
synthetic cross-well CSEM experiment and compared with the
deterministic CSI method. It is shown to perform better that CSI
with regard to the retrieved resistivity contrast values and inhomo-
geneity locations. In addition, VBA has the advantage of providing
not only the resistivity model but also its segmentation in regions
and the material class parameters (means and variances) in each of
these regions. This additional information could be of great help in
the interpretation of the results. Furthermore, VBA yields a much
faster estimation of the unknown posterior laws than the traditional
MCMC method based upon a stochastic sampling. On the other
hand, compared with CSI, VBA shows a slower convergence, but
its convergence can be speeded up by means of a gradient-like varia-
tional Bayesian method. This time savings would be crucial for
processing large-scale problems that occur in 3D electromagnetic
geophysical exploration that could require up to several hundred
thousand grid cells, and it could be even more enhanced by
parallelizing the computations in the forward and inverse schemes.
In addition to speed up the computations, a parallelization based
on a domain decomposition of the test domain would also allow
us to deal with high memory requirements linked to the integral equa-
tion — moment method forward model.
The next step would be to apply the algorithm to real experimen-

tal data, if the latter can be collected. This would require further
developments of the algorithm and, particularly, the study of its
behavior when applied to CSEM inversion in aspect limited data
configurations.
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