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System-Level Modeling and Optimization of the

Energy Efficiency in Cellular Networks – A

Stochastic Geometry Framework
Marco Di Renzo, Senior Member, IEEE, Alessio Zappone, Senior Member, IEEE,

Thanh Tu Lam, Student Member, IEEE, and Mérouane Debbah, Fellow, IEEE

Abstract—In this paper, we analyze and optimize the en-
ergy efficiency of downlink cellular networks. With the aid
of tools from stochastic geometry, we introduce a new closed-
form analytical expression of the potential spectral efficiency
(bit/sec/m2). In the interference-limited regime for data trans-
mission, unlike currently available mathematical frameworks, the
proposed analytical formulation depends on the transmit power
and deployment density of the base stations. This is obtained
by generalizing the definition of coverage probability and by
accounting for the sensitivity of the receiver not only during
the decoding of information data, but during the cell association
phase as well. Based on the new formulation of the potential
spectral efficiency, the energy efficiency (bit/Joule) is given in
a tractable closed-form formula. An optimization problem is
formulated and is comprehensively studied. It is mathematically
proved, in particular, that the energy efficiency is a unimodal and
strictly pseudo-concave function in the transmit power, given the
density of the base stations, and in the density of the base stations,
given the transmit power. Under these assumptions, therefore, a
unique transmit power and density of the base stations exist,
which maximize the energy efficiency. Numerical results are
illustrated in order to confirm the obtained findings and to prove
the usefulness of the proposed framework for optimizing the
network planning and deployment of cellular networks from the
energy efficiency standpoint.

Index Terms—Cellular Networks, Energy Efficiency, Poisson
Point Processes, Stochastic Geometry, Optimization.

I. INTRODUCTION

The Energy Efficiency (EE) is regarded as a key perfor-

mance metric towards the optimization of operational cel-

lular networks, and the network planning and deployment
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of emerging communication systems [1]. The EE is defined

as a benefit-cost ratio where the benefit is given by the

amount of information data per unit time and area that can be

reliably transmitted in the network, i.e., the network spectral

efficiency, and the cost is represented by the amount of power

per unit area that is consumed to operate the network, i.e.,

the network power consumption. Analyzing and designing a

communication network from the EE standpoint necessitate

appropriate mathematical tools, which are usually different

from those used for optimizing the network spectral efficiency

and the network power consumption individually [2]. The

optimization problem, in addition, needs to be formulated in

a sufficiently simple but realistic manner, so that all relevant

system parameters appear explicitly and the utility function is

physically meaningful.

Optimizing the EE of a cellular network can be tackled in

different ways, which include [1]: the design of medium access

and scheduling protocols for optimally using the available

resources, e.g., the transmit power; the use of renewable

energy sources; the development of innovative hardware for

data transmission and reception; and the optimal planning and

deployment of network infrastructure. In the present paper, we

focus our attention on optimizing the average number of Base

Stations (BSs) to be deployed (or to be kept operational) per

unit area and their transmit power. Henceforth, this is referred

to as “system-level EE” optimization, i.e., the EE across the

entire (or a large portion of the) cellular network is the utility

function of interest.

System-level analysis and optimization are useful when the

network operators are interested in optimizing the average

performance across the entire cellular network. Hence, they

are relevant for optimally operating current networks, and for

deploying and planning future networks. In the first case, given

an average number of BSs per unit area already deployed, they

may provide information on the average number of BSs that

can be switched off based on the average load of the network,

and on their optimal transmit power to avoid coverage holes.

In the second case, they may guide the initial deployment

of cellular infrastructure that employs new types of BSs

(e.g., powered by renewable energy sources), new transmission

technologies (e.g., large-scale antennas), or that operate in new

frequency bands (e.g., the millimeter-wave spectrum).

In the last few years, the system-level modeling and analysis

of cellular networks have been facilitated by capitalizing on the

mathematical tool of stochastic geometry and, more precisely,

http://arxiv.org/abs/1801.07513v1
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on the theory of spatial point processes [3]-[5]. It has been

empirically validated that, from the system-level standpoint,

the locations of the BSs can be abstracted as points of a

homogeneous Poisson Point Process (PPP) whose intensity

coincides with the average number of BSs per unit area [6]. A

comprehensive survey of recent results in this field of research

is available in [7].

A relevant performance metric for the design of cellular

networks is the Potential Spectral Efficiency (PSE), which

is the network information rate per unit area (measured in

bit/sec/m2) that corresponds to the minimum signal quality

for reliable transmission. Under the PPP modeling assumption,

the PSE can be obtained in two steps: i) first by computing

the PSE of a randomly chosen Mobile Terminal (MT) and

by assuming a given spatial realization for the locations of

the BSs and ii) then by averaging the obtained conditional

PSE with respect to all possible realizations for the locations

of the BSs and MTs. In the interference-limited regime, this

approach allows one to obtain a closed-form expression of

the PSE under the (henceforth called) standard modeling

assumptions, i.e., single-antenna transmission, singular path-

loss model, Rayleigh fading, fully-loaded BSs, cell association

based on the highest average received power [3]. Motivated by

these results, the PPP modeling approach for the locations of

the BSs has been widely used to analyze the trade-off between

the network spectral efficiency and the network power con-

sumption, e.g., [8], as well as to minimize the network power

consumption given some constraints on the network spectral

efficiency or to maximize the network spectral efficiency given

some constraints on the network power consumption [9]. The

PPP modeling approach has been applied to optimize the

EE of cellular networks as well. Notable examples for this

field of research are [10]-[26]. A general study of the energy

and spectral efficiencies of multi-tier cellular networks can

be found in [27]. In the authors’ opinion, however, currently

available approaches for modeling and optimizing the system-

level EE of cellular networks are insufficient and/or unsuitable

for mathematical analysis. This is further elaborated in the next

section.

A. Fundamental Limitations of Current Approaches for

System-Level EE Optimization

We begin with an example that shows the limitations of

the available analytical frameworks. In the interference-limited

regime, under the standard modeling assumptions, the PSE is:

PSE = λBSBWlog2 (1 + γD) Pcov (γD)

(a)
=

λBSBWlog2 (1 + γD)

2F1 (1,−2/β, 1− 2/β,−γD)

(1)

where λBS is the density of BSs, BW is the transmission band-

width, γD is the threshold for reliable decoding, β > 2 is the

path-loss exponent, 2F1 (·, ·, ·, ·) is the Gauss hypergeometric

function, Pcov (·) is the coverage probability defined in [3, Eq.

(1)], and (a) follows from [3, Eq. (8)].

The main strength of (1) is its simple closed-form formula-

tion. This is, however, its main limitation as well, especially

as far as formulating meaningful system-level EE optimization

problems is concerned. Under the standard modeling assump-

tions, in fact, the network power consumption (Watt/m2) is1

Pgrid = λBS (Ptx + Pcirc), where Ptx is the transmit power

of the BSs and Pcirc is the static power consumption of the

BSs, which accounts for the power consumed in all hardware

blocks, e.g., analog-to-digital and digital-to-analog converters,

analog filters, cooling components, and digital signal pro-

cessing [1]. The system-level EE (bit/Joule) is defined as

the ratio between (1) and the network power consumption,

i.e., EE = PSE/Pgrid. Since the PSE in (1) is independent

of the transmit power of the BSs, Ptx, and the network

power consumption, Pgrid, linearly increases with Ptx, we

conclude that any EE optimization problems formulated based

on (1) would result in the trivial optimal solution consisting

of turning all the BSs off (the optimal transmit power is

zero). In the context of multi-tier cellular networks, a similar

conclusion has been obtained in some early papers on system-

level EE optimization, e.g., [8], where it is shown that the

EE is maximized if all macro BSs operate in sleeping mode.

A system-level EE optimization problem formulated based

on (1) would result, in addition, in a physically meaningless

utility function, which provides a non-zero benefit-cost ratio,

i.e., a strictly positive EE while transmitting zero power

(EE(Ptx = 0) = PSE/(λBSPcirc) > 0). In addition, the EE

computed from (1) is independent of the density of BSs. We

briefly mention here, but will detail it in Section III, that

the load model, i.e., the fully-loaded assumption, determines

the conclusion that the EE does not depend on λBS. This

assumption, however, does not affect the conclusion that the

optimal Ptx is zero. This statement is made more formal in

the sequel (see Proposition 1 and Corollary 1). It is worth

nothing that the conclusion that the PSE is independent of

Ptx is valid regardless of the specific path-loss model being

used2. It depends, on the other hand, on the assumptions of

interference-limited operating regime and of having BSs that

emit the same Ptx.

Based on these observations, we conclude that a new

analytical formulation of the PSE that explicitly depends on

the transmit power and density of the BSs, and that is tractable

enough for system-level EE optimization is needed. From an

optimization point of view, in particular, it is desirable that

the PSE is formulated in a closed-form expression and that

the resulting EE function is unimodal and strictly pseudo-

concave in the transmit power (given the density) and in the

density (given the transmit power) of the BSs. This would

imply, e.g., that the first-order derivative of the EE with respect

to the transmit power of the BSs (assuming the density given)

would have a unique zero, which would be the unique optimal

transmit power that maximizes the EE [2]. Similar conclusions

would apply to the optimal density of the BSs for a given

transmit power. Further details are provided in Section IV.

In this regard, a straightforward approach to overcome the

limitations of (1) would be to abandon the interference-limited

assumption and to take the receiver noise into account. In this

1In the present paper, this holds true for Load Model 1 that is introduced
in Section II-D.

2The reader may verify this statement by direct inspection of (4), where
Ptx cancels out for any path-loss models.
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case, the PSE would be formulated in terms of a single-integral

that, in general, cannot be expressed in closed-form [3], [17,

Eq. (9)]. This integral formulation, in particular, results in

a system-level EE optimization problem that is not easy to

tackle. This approach, in addition, has the inconvenience of

formulating the optimization problem for an operating regime

where cellular networks are unlikely to operate in practice.

B. State-of-the-Art on System-Level EE Optimization

We briefly summarize the most relevant research contri-

butions on energy-aware design and optimization of cellular

networks. Due to space limitations, we discuss only the

contributions that are closely related to ours. A state-of-the-art

survey on EE optimization is available in [2].

In [8], the authors study the impact of switching some macro

BSs off in order to minimize the power consumption under

some constraints on the coverage probability. Since the authors

rely on the mathematical framework in (1), they conclude

that all macro BSs need to be switched off to maximize

the EE. In [9], the author exploits geometric programming

to minimize the power consumption of cellular networks

given some constraints on the network coverage and capacity.

The EE is not studied. A similar optimization problem is

studied in [11] and [17] for two-tier cellular networks but

the EE is not studied either. As far as multi-tier cellular

networks are concerned, an important remark is necessary. In

the interference-limited regime, optimal transmit powers and

densities for the different tiers of BSs may exist if the tiers

have different thresholds for reliably decoding the data. The

PSE, otherwise, is the same as that of single-tier networks, i.e.,

it is independent of the transmit power and density of the BSs.

In [14], the authors study the EE of small cell networks with

multi-antenna BSs. For some parameter setups, it is shown

that an optimal density of the BSs exists. The EE, however,

still decreases monotonically with the transmit power of the

BSs, which implies that the EE optimization problem is not

well formulated from the transmit power standpoint. More

general scenarios are considered in [10], [12], [13], [15], [16],

[18]-[25], but similar limitations hold. In some cases, e.g.,

[20], the existence and uniqueness of an optimal transmit

power and density of the BSs are not mathematically proved

or, e.g., in [24], the problem formulation has a prohibitive

numerical complexity as it necessitates the computation of

multiple integrals and infinite series. It is apparent, therefore,

that a tractable approach for system-level EE optimization is

missing in the open technical literature. In the present paper,

we introduce a new definition of PSE that overcomes these

limitations.

C. Research Contribution and Novelty

In the depicted context, the specific novel contributions

made by this paper are as follows:

• We introduce a new closed-form analytical formulation of

the PSE for interference-limited cellular networks (during

data transmission), which depends on the transmit power

and density of the BSs. The new expression of the PSE

is obtained by taking into account the power sensitivity

of the receiver not only for data transmission but for cell

association as well.

• Based on the new expression of the PSE, a new system-

level EE optimization problem is formulated and com-

prehensively studied. It is mathematically proved that the

EE is a unimodal and strictly pseudo-concave function in

the transmit power given the BSs’ density and in the BSs’

density given the transmit power. The dependency of the

optimal power as a function of the density and of the

optimal density as a function of the power is discussed.

• A first-order optimal pair of transmit power and density

of the BSs is obtained by using a simple alternating

optimization algorithm whose details are discussed in the

sequel. Numerical evidence of the global optimality of

this approach is provided as well.

• Two load models for the BSs are analyzed and compared

against each other. It is shown that they provide the same

PSE but have different network power consumptions.

Hence, the optimal transmit power and density of the

BSs that maximize their EEs are, in general, different.

Their optimal EEs and PSEs are studied and compared

against each other.

The paper is organized as follows. In Section II, the system

model is presented. In Section III, the new definition of PSE

is introduced. In Section IV, the EE optimization problem is

formulated and studied. In Section V, numerical results are

shown. Finally, Section VI concludes the paper.

Notation: The main symbols and functions used in the

present paper are reported in Table I.

II. SYSTEM MODEL

In this section, the network model is introduced. With the

exception of the load model, we focus our attention on a

system where the standard modeling assumptions hold. One of

the main aims of the present paper is, in fact, to highlight the

differences between currently available analytical frameworks

and the new definition of PSE that is introduced. The proposed

approach can be readily generalized to more advanced system

models, such as that recently adopted in [5].

A. Cellular Network Modeling

A downlink cellular network is considered. The BSs are

modeled as points of a homogeneous PPP, denoted by ΨBS, of

density λBS. The MTs are modeled as another homogeneous

PPP, denoted by ΨMT, of density λMT. ΨBS and ΨMT are

independent of each other. The BSs and MTs are equipped

with a single omnidirectional antenna. Each BS transmits with

a constant power denoted by Ptx. The analytical frameworks

are developed for the typical MT, denoted by MT0, that is

located at the origin (Slivnyak theorem [28, Th. 1.4.5]). The

BS serving MT0 is denoted by BS0. The cell association

criterion is introduced in Section II-C. The subscripts 0, i and

n identify the intended link, a generic interfering link, and a

generic BS-to-MT link. The set of interfering BSs is denoted

by Ψ
(I)
BS. As for data transmission, the network operates in

the interference-limited regime, i.e., the noise is negligible

compared with the inter-cell interference.
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TABLE I
SUMMARY OF MAIN SYMBOLS AND FUNCTIONS USED THROUGHOUT THE PAPER.

Symbol/Function Definition

E{·}, Pr {·} Expectation operator, probability measure

λBS, λMT Density of base stations, mobile terminals

ΨBS, ΨMT, Ψ
(I)
BS PPP of base stations, mobile terminals, interfering base stations

BS0, BSi, BSn Serving, interfering, generic base station

Ptx, Pcirc, Pidle Transmit, circuits, idle power consumption of base stations

rn, gn Distance, fading power gain of a generic link

l (·), Ln, L0 Path-loss, shorthand of path-loss, path-loss of intended link

κ, β > 0 Path-loss constant, slope (exponent)

BW, N0 Transmission bandwidth, noise power spectral density

σ2
N = BWN0, Iagg (·) Noise variance, aggregate other-cell interference

γD, γA Reliability threshold for decoding, cell association

L (x) = 1− (1 + x/α)
−α

, α = 3.5 Probability that a base station is in transmission mode

fX(·), FX(·) Probability density/mass, cumulative distribution/mass function of X
1 (·), 2F1 (·, ·, ·, ·), Γ(·) Indicator function, Gauss hypergeometric function, gamma function

max {x, y}, min {x, y} Maximum, minimum between x and y
Υ = 2F1 (−2/β, 1, 1− 2/β,−γD)− 1 ≥ 0 Shorthand

Q (x, y, z) = 1− exp
(

−πx(y/η)2/β (1 + ΥL (z))
)

Shorthand with η = κσ2
NγA

SIR, SNR Signal-to-interference-ratio, average signal-to-noise-ratio

Pcov, PSE, Pgrid Coverage, potential spectral efficiency, network power consumption
.
zx (x, y),

..
zx (x, y) First-order, second-order derivative with respect to x

B. Channel Modeling

For each BS-to-MT link, path-loss and fast-fading are

considered. Shadowing is not explicitly taken into account

because its net effect lies in modifying the density of the

BSs [5]. All BS-to-MT links are assumed to be mutually

independent and identically distributed (i.i.d.).

a) Path-Loss: Consider a generic BS-to-MT link of

length rn. The path-loss is l (rn) = κrβn, where κ and β
are the path-loss constant and the path-loss slope (exponent).

For simplicity, only the unbounded path-loss model is studied

in the present paper. The analysis of more general path-loss

models is an interesting but challenging generalization that is

left to future research [29].

b) Fast-Fading: Consider a generic BS-to-MT link. The

power gain due to small-scale fading is assumed to follow

an exponential distribution with mean Ω. Without loss of

generality, Ω = 1 is assumed. The power gain of a generic

BS-to-MT link is denoted by gn.

C. Cell Association Criterion

A cell association criterion based on the highest average

received power is assumed. Let BSn ∈ ΨBS denote a generic

BS of the network. The serving BS, BS0, is obtained as

follows:

BS0 = argmaxBSn∈ΨBS
{1/l (rn)}

= argmaxBSn∈ΨBS
{1/Ln}

(2)

where the shorthand Ln = l (rn) is used. As for the intended

link, L0 = minrn∈ΨBS {Ln} holds.

D. Load Modeling

Based on (2), several or no MTs can be associated to a

generic BS. In the latter case, the BS transmits zero power, i.e.,

Ptx = 0, and, thus, it does not generate inter-cell interference.

In the former case, on the other hand, two load models are

studied and compared against each other. The main objective

is to analyze the impact of the load model on the power

consumption and EE of cellular networks. Further details are

provided in the sequel. Let NMT denote the number of MTs

associated to a generic BS and BW denote the transmission

bandwidth available to each BS. If NMT = 1, for both load

models, the single MT associated to the BS is scheduled

for transmission and the entire bandwidth, BW, and transmit

power, Ptx, are assigned to it.

a) Load Model 1: Exclusive Allocation of Bandwidth

and Power to a Randomly Selected MT: If NMT > 1, the

BS randomly selects, at each transmission instance, a single

MT among the NMT associated to it. Also, the BS allocates

the entire transmission bandwidth, BW, and the total transmit

power, Ptx, to it. The random scheduling of the MTs at each

transmission instance ensures that, in the long term, all the

MTs associated to a BS are scheduled for transmission.

b) Load Model 2: Equal Allocation of Bandwidth and

Power Among All the MTs: If NMT > 1, the BS selects, at

each transmission instance, all the NMT MTs associated to it.

The BS equally splits the available transmission bandwidth,

BW, and evenly spreads the available transmit power, Ptx,

among the NMT MTs. Thus, the bandwidth and power are

viewed as continuous resources by the BS’s scheduler: each

MT is assigned a bandwidth equal to BW/NMT and the power
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spectral density at the detector’s (i.e., the typical MT, MT0)

input is equal to Ptx/BW.

In the sequel, we show that the main difference between the

two load models lies in the power consumption of the BSs. In

simple terms, the more MTs are scheduled for transmission the

higher the static power consumption of the BSs is. The analysis

of general load models, e.g., based on a discrete number of

resource blocks [5], is left to future research due to space

limits.

E. Power Consumption Modeling

In the considered system model, the BSs can operate in

two different modes: i) they are in idle mode if no MTs are

associated to them and ii) they are in transmission mode if

at least one MT is associated to them. The widespread linear

power consumption model for the BSs is adopted [1], [30],

which accounts for the power consumption due to the transmit

power, Ptx, the static (circuit) power, Pcirc, and the idle power,

Pidle. If the BS is in idle mode, its power consumption is

equal to Pidle. If the BS is in transmission mode, its power

consumption is a function of Ptx, Pcirc, and depends on

the load model. Further details are provided in the sequel.

In the present paper, based on physical considerations, the

inequalities 0 ≤ Pidle ≤ Pcirc are assumed.

III. A NEW ANALYTICAL FORMULATION OF THE PSE

In this section, we introduce and motivate a new definition

of coverage probability, Pcov, and PSE, which overcomes the

limitations of currently available analytical frameworks and is

suitable for system-level optimization (see Section I-A). All

symbols are defined in Table I.

Definition 1: Let γD and γA be the reliability thresholds

for the successful decoding of information data and for the

successful detection of the serving BS, BS0, respectively. The

coverage probability, Pcov, of the typical MT, MT0, is defined

as follows:

Pcov (γD, γA)

=

{

Pr
{
SIR ≥ γD, SNR ≥ γA

}
if MT0 is selected

0 if MT0 is not selected

(3)

where the Signal-to-Interference-Ratio (SIR) and the average

Signal-to-Noise-Ratio (SNR) can be formulated, for the net-

work model under analysis, as follows:

SIR =
Ptxg0/L0

∑

BSi∈Ψ
(I)
BS

Ptxgi/Li1 (Li > L0)

SNR =
Ptx/L0

σ2
N

.

(4)

Remark 1: The definition of Pcov in (3) reduces to the

conventional one if γA = 0 [3]. �
Remark 2: The average SNR, SNR, in (4) is averaged with

respect to the fast fading. The SIR depends, on the other hand,

on fast fading. This choice is discussed in the sequel. �
Remark 3: The new definition of coverage probability, Pcov,

in (3) is in agreement with the cell selection criterion specified

Fig. 1. Illustration of the interplay between Ptx and λBS. For simplicity,
only a cluster of seven BSs is represented by keeping the size of the region of
interest (square box) the same. The inter-site distance of the BSs (represented
as red dots), i.e., the size of the hexagonal cells, is determined by λBS. The
shape of the cells depends on the cell association in (2). The circular shaded
disk (in light yellow) represents the actual coverage region of the BSs that is
determined by Ptx: i) a MT inside the disk receives a sufficiently good signal
to detect the BS and to get associated with it, ii) a MT outside the disk cannot
detect the BS and is not in coverage. The sub-figures (a)-(c) are obtained by
assuming the same λBS but a different Ptx. The sub-figures (d) and (e) are
obtained by considering a λBS greater than that of sub-figures (a)-(c) but
keeping the same Ptx as sub-figures (a) and (b), respectively. The sub-figure
(f) is obtained by considering a λBS smaller than that of sub-figure (c) but
keeping the same Ptx as it. We observe that, for a given λBS, the transmit
power Ptx is appropriately chosen in sub-figures (a), (e) and (f). Ptx is, on
the other hand, under-provisioned in sub-figure (b) and over-provisioned in
sub-figures (c) and (d). In the first case, the MTs are not capable of detecting
the BS throughout the entire cell, i.e., a high outage probability is expected.
In the second case, the BSs emit more power than what is actually needed,
which results in a high power consumption.

by the 3rd Generation Partnership Project (3GPP) [31, Sec.

5.2.3.2]. �
a) Motivation for the New Definition of Pcov: The moti-

vation for the new definition of coverage probability originates

from the inherent limitations of the conventional definition

(obtained by setting γA = 0 in (3)), which prevents one

from taking into account the strong interplay between the

transmit power and the density of the BSs for optimal cellular

networks planning. In fact, the authors of [3] have shown

that, in the interference-limited regime, Pcov is independent

of the transmit power of the BSs. If, in addition, a fully-

loaded model is assumed, i.e., λMT/λBS ≫ 1, then Pcov is

independent of the density of BSs as well. This is known as

the invariance property of Pcov as a function of Ptx and λBS

[5]. The tight interplay between Ptx and λBS is, on the other

hand, illustrated in Fig. 1, where, for ease of representation,

an hexagonal cellular layout is considered. Similar conclusions

apply to the PPP-based cellular layout studied in the present

paper. In Fig. 1, it is shown that, for a given λBS, Ptx needs

to be appropriately chosen in order to guarantee that, for

any possible location of MT0 in the cell, two conditions are

fulfilled: i) the MT receives a sufficiently good signal quality,

i.e., the average SNR is above a given threshold, γA, that

ensures a successful cell association, i.e., to detect the presence

(pilot signal) of the serving BS and ii) the BSs do not over-

provision Ptx, which results in an unnecessary increase of the
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power consumption. It is expected, therefore, that an optimal

value of Ptx given λBS and an optimal value of λBS given

Ptx that optimize EE exist [32].

b) Advantages of the New Definition of Pcov: The new

definition of Pcov allows one to overcome the limitations of the

conventional definition and brings about two main advantages.

The first advantage originates from direct inspection of (4). In

the conventional definition of Pcov, only the SIR is considered

and the transmit power of the BSs, Ptx, cancels out between

numerator and denominator. This is the reason why Pcov is

independent of Ptx. In the proposed new definition, on the

other hand, Ptx explicitly appears in the second constraint

and does not cancel out. The density of the BSs, λBS, appears

implicitly in the distribution of the path-loss of the intended

link, L0. The mathematical details are provided in the sequel.

The second inequality, as a result, allows one to explicitly

account for the interplay between Ptx and λBS (shown in Fig.

1). If λBS increases (decreases), in particular, L0 decreases

(increases) in statistical terms. This implies that Ptx can be

decreased (increased) while still ensuring that the average SNR

is above γA. The second advantage is that the new definition of

Pcov is still mathematically tractable and the PSE is formulated

in a closed-form expression. This is detailed in Proposition 1.

Remark 4: The new definition of Pcov in (3) is based on the

actual value of L0 because a necessary condition for the typical

MT to be in coverage is that it can detect the pilot signal of at

least one BS during the cell association. If the BS that provides

the highest average received power cannot be detected, then

any other BSs cannot be detected either. The second constraint

on the definition of Pcov, in addition, is based on the average

SNR, i.e., the SNR averaged with respect to the fast fading,

because the cell association is performed based on long-term

statistics, i.e., based on the path-loss in the present paper, in

order to prevent too frequent handovers. �
Remark 5: Compared with the conventional definition

of coverage based on the Signal-to-Interference+Noise-Ratio

(SINR) [3], the new definition in (3) is conceptually different.

Equation (3) accounts for the signal quality during both the

cell association and data transmission phases. The definition

of coverage based on the SINR, on the other hand, accounts

for the signal quality only during the data transmission phase.

In spite of this fundamental difference, Pcov in (3) may be

interpreted as an approximation for the coverage probability

based on the SINR, and, more precisely, as an alternative

method to incorporate the thermal noise into the problem

formulation. Compared with the coverage based on the SINR,

however, the new definition in (3) accounts for the impact of

thermal noise when it is the dominant factor, i.e., during the

cell association phase when the inter-cell interference can be

ignored as orthogonal pilot signals are used. �
Remark 6: Figure 1 highlights that the new definition of

coverage in (3) is not only compliant with [31] but it has a

more profound motivation and wider applicability. In PPP-

based cellular networks, in contrast to regular grid-based

network layouts, the size and shape of the cells are random.

This implies that it is not possible to identify a relation, based

on pure geometric arguments, between the cell size and the

transmit power of the BSs that makes the constraint on SNR

in (3) ineffective in practice. In equivalent terms, in this case,

the threshold γA may turn out to be sufficiently small to

render the constraint on SNR ineffective. This is, e.g., the

approach employed in [32, Eq. (1)], where the relation between

the transmit power and density of BSs is imposed a priori

based on the path-loss. In practice, however, cellular networks

are irregularly deployed, which makes the optimal relation

between the transmit power and density of BSs difficult to

identify because of the coexistence of cells of small and large

sizes. The constraint on SNR in (3) allows one to take into

account the interplay between the transmit power and density

of BSs in irregular (realistic) cellular network deployments. �

A. Analytical Formulation of the PSE

In this section, we provide the mathematical definitions

of the PSE for the two load models introduced in Section

II-D. They are summarized in the following two lemmas,

which constitute the departing point to obtain the closed-form

analytical frameworks derived in Section III-B.

Remark 7: The PSE is defined from the perspective of

the typical MT, MT0 rather than from the perspective of the

typical cell (or BS). This implies that the proposed approach

allows one to characterize the PSE of the so-called Crofton

cell, which is the cell that contains MT0. This approach is

commonly used in the literature and is motivated by the lack

of results on the explicit distribution of the main geometrical

characteristics of the typical cell of a Voronoi tessellation.

Further details on the Crofton and typical cells are available

in [34] and [35]. �
Let N̄MT be the number of MTs that lie in the cell of

the typical MT, MT0, with the exception of MT0. N̄MT is

a discrete random variable whose probability mass function

in the considered system model can be formulated, in an

approximated closed-form expression, as [33, Eq. (3)]:

fN̄MT
(u) = Pr

{
N̄MT = u

}

≈
3.54.5Γ (u+ 4.5) (λMT/λBS)

u

Γ (4.5) Γ (u+ 1) (3.5 + λMT/λBS)
u+4.5 .

(5)

Remark 8: The probability mass function in (5) is an

approximation because it is based on the widely used empirical

expression of the probability density function of the area of

the Voronoi cells in [36, Eq. (1)]. A precise formula for the

latter probability density function is available in [37]. It is,

however, not used in the present paper due to its mathematical

intractability, as recently remarked in [26]. Throughout the

rest of the paper, for simplicity, we employ the sign of

equality (“=”) in all the analytical formulas that rely solely

on the approximation in (5). This is to make explicit that

our analytical frameworks are not based on any other hidden

approximations. �
Based on (5), a formal mathematical formulation for the

PSE is given as follows.

Lemma 1: Let Load Model 1 be assumed. The PSE

(bit/sec/m2) can be formulated as shown in (6) at the top of

this page.

Proof : It follows from the definition of PSE [5], where (a)

originates from the fact that MT0 is scheduled for transmission
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PSE (γD, γA) = EN̄MT

{
PSE

(
γD, γA| N̄MT

)}

(a)
= λMTBWlog2 (1 + γD) Pr

{
SIR ≥ γD, SNR ≥ γA

}
Pr
{
N̄MT = 0

}

+

+∞∑

u=1

λMTBWlog2 (1 + γD)
1

u+ 1
Pr
{
SIR ≥ γD, SNR ≥ γA

}
Pr
{
N̄MT = u

}

= λMTBWlog2 (1 + γD) Pr
{
SIR ≥ γD, SNR ≥ γA

}
+∞∑

u=0

Pr
{
N̄MT = u

}

u+ 1
.

(6)

PSE (γD, γA) = EN̄MT

{
PSE

(
γD, γA| N̄MT

)}

(b)
=

+∞∑

u=0

λMT
BW

u+ 1
log2 (1 + γD) Pr

{
SIR ≥ γD, SNR ≥ γA

}
Pr
{
N̄MT = u

}

= λMTBWlog2 (1 + γD) Pr
{
SIR ≥ γD, SNR ≥ γA

}
+∞∑

u=0

Pr
{
N̄MT = u

}

u+ 1
.

(7)

with unit probability if it is the only MT in the cell, while it is

scheduled for transmission with probability 1/(u+ 1) if there

are other u MTs in the cell. �
Lemma 2: Let Load Model 2 be assumed. The PSE

(bit/sec/m2) can be formulated as shown in (7) at the top of

this page.

Proof : It follows from the definition of PSE [5], where (b)

originates from the fact that MT0 is scheduled for transmission

with unit probability but the bandwidth is equally allocated

among the MTs in the cell, i.e., each of the u + 1 MTs is

given a bandwidth equal to BW/(u+ 1). �
Remark 9: By comparing (6) and (7), we note that the same

PSE is obtained for both load models. This originates from

the fact that Pcov in (3) is independent of the number of

MTs in the cell. This property follows by direct inspection

of (4) and has been used in the proof of Lemma 1 and Lemma

2. As far as the first load model is concerned, this property

originates from the fact that a single MT is scheduled at

every transmission instance. It is, however, less intuitive for

the second load model. In this latter case, as mentioned in

Section II-D, Ptx and BW are viewed as continuous resources

by the BS’s scheduler. The transmit power per unit bandwidth

of both intended and interfering links is equal to Ptx/BW.

Regardless of the number of MTs available in the interfering

cells, MT0 “integrates” this transmit power per unit bandwidth

over the bandwidth allocated to it, which depends on the total

number of MTs in its own cell. Let the number of these MTs

be u+1. Thus, the receiver bandwidth of MT0 is BW/(u+ 1).
This implies that the received power (neglecting path-loss and

fast-fading) of both intended and interfering links is Prx =
(Ptx/BW) (BW/(u+ 1)) = Ptx/(u+ 1). As a result, the

number of MTs, u+1, cancels out in the SIR of (4). Likewise,

the received average SNR (neglecting the path-loss) is equal to

Prx/(N0BW/(u+ 1)) = (Ptx/(u+ 1))/(N0BW/(u+ 1)) =
Ptx

/
σ2
N, which is independent of the number of MTs, u+ 1,

and agrees with the definition of average SNR in (4). In the

next section, we show that the load models are not equivalent

in terms of network power consumption. �

B. Closed-Form Expressions of PSE and Pgrid

In this section, we introduce new closed-form analytical

frameworks for computing the PSE. We provide, in addition,

closed-form expressions of the network power consumption

for the two load models under analysis. These results are

summarized in the following three propositions.

Let NMT be the number of MTs that lie in an arbitrary

cell. The probability that the BS is in idle mode, P
(idle)
BS , and

in transmission mode, P
(tx)
BS , can be formulated as follows [33,

Prop. 1]:

P
(idle)
BS = Pr {NMT = 0} = 1− L (λMT/λBS)

P
(tx)
BS = Pr {NMT ≥ 1} = 1− P

(idle)
BS = L (λMT/λBS)

(8)

where L (·) is defined in Table II. Using (8), PSE and Pgrid

are given in the following propositions.

Proposition 1: Consider either Load Model 1 or Load Model

2. Assume notation and functions given in Tables I and II.

The PSE (bit/sec/m2) can be formulated, in closed-form, as

follows:

PSE (γD, γA) = BWlog2 (1 + γD)
λBSL (λMT/λBS)

1 + ΥL (λMT/λBS)

×Q (λBS,Ptx, λMT/λBS) .

(9)

Proof : See Appendix A. �
Corollary 1: If γA = 0, i.e., the conventional definition of

Pcov is used, the PSE in (9) simplifies as follows:

PSE (γD, γA = 0) = BWlog2 (1 + γD)
λBSL (λMT/λBS)

1 + ΥL (λMT/λBS)
.

(10)

If, in addition, λMT/λBS ≫ 1, the PSE in (9) reduces to

(1).

Proof : It follows because Q (·, ·, ·) = 1 if γA = 0 and

L (λMT/λBS ≫ 1)→ 1. �
Remark 10: Corollary 1 substantiates the comments made

above in this section about the need of a new definition of PSE,
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EE (Ptx, λBS) =
PSE

Pgrid
=

BWlog2 (1 + γD)L (λMT/λBS)Q (λBS,Ptx, λMT/λBS)

[1 + ΥL (λMT/λBS)] [L (λMT/λBS) (Ptx + Pcirc − Pidle) + Pidle +M (λMT/λBS) Pcirc]
. (14)

as well as the advantages of the proposed analytical formula-

tion. In particular, (10) confirms that the PSE is independent

of Ptx if γA = 0 and that the PSE is independent of Ptx and

λBS if fully-loaded conditions hold, i.e., λMT/λBS ≫ 1. �
Proposition 2: Let Load Model 1 be assumed. Pgrid

(Watt/m2) can be formulated as follows:

P
(1)
grid = λBS (Ptx + Pcirc)L (λMT/λBS)

+ λBSPidle (1− L (λMT/λBS)) .
(11)

Proof : The network power consumption is obtained by

multiplying the average number of BSs per unit area, i.e., λBS,

and the average power consumption of a generic BS, which

is Ptx + Pcirc if the BS operates in transmission mode, i.e.,

with probability L (λMT/λBS), and Pidle if the BS operates

in idle mode, i.e., with probability 1− L (λMT/λBS). �
Proposition 3: Let Load Model 2 be assumed. Pgrid

(Watt/m2) can be formulated as follows:

P
(2)
grid = λBSPtxL (λMT/λBS)

+ λMTPcirc + λBSPidle (1− L (λMT/λBS)) .
(12)

Proof : It is similar to the proof of Proposition 2. The

difference is that the power dissipation of a generic BS

that operates in transmission mode is, in this case, equal to

Ptx+Pcirc

∑+∞

u=1 uPr {NMT = u} = Ptx+Pcirc (λMT/λBS),
where NMT is the number of MTs in the cell and the last

equality follows from [33, Lemma 1]. �
Remark 11: The power consumption models obtained in

(11) and (12), which account for the transmit, circuits, and idle

power consumption of the BSs, have been used, under some

simplifying assumptions, in previous research works focused

on the analysis of the EE of cellular networks. Among the

many research works, an early paper that has adopted this

approach under the assumption of fully-loaded BSs and of

having a single active MT per cell is [8]. �
Remark 12: Since L (λMT/λBS) ≤ λMT/λBS for every

λMT/λBS ≥ 0, we conclude that P
(2)
grid ≥ P

(1)
grid by assuming

the same Ptx and λBS for both load models. This originates

from the fact that, in the present paper, we assume that the

circuits power consumption increases with the number of MTs

that are served by the BSs. It is unclear, however, the best

load model to be used from the EE standpoint, especially if

Ptx and λBS are optimized to maximize their respective EEs.

In other words, the optimal Ptx and λBS that maximize the

EE of each load model may be different, which may lead to

different optimal EEs. The trade-off between the optimal PSE

and the optimal EE is analyzed numerically in Section V for

both load models. �

IV. SYSTEM-LEVEL EE OPTIMIZATION: FORMULATION

AND SOLUTION

In this section, we formulate a system-level EE optimiza-

tion problem and comprehensively analyze its properties. For

convenience of analysis, we introduce the following auxiliary

function (LM = Load Model):

M (λMT/λBS)

=

{

0 if LM− 1 is assumed

λMT/λBS − L (λMT/λBS) if LM− 2 is assumed.

(13)

A unified formulation of the EE (bit/Joule) for the cellular

network under analysis is provided in (14) shown at the top of

this page, where the parameters of interest from the optimiza-

tion standpoint, i.e., Ptx and λBS, are explicitly highlighted.

In the rest of the present paper, all the other parameters are

assumed to be given.

A. Preliminaries

For ease of presentation, we report some lemmas that

summarize structural properties of the main functions that

constitute (14). Some lemmas are stated without proof because

they are obtained by simply studying the sign of the first-order

and second-order derivatives of the function with respect to

the variable of interest and by keeping all the other variables

fixed. Functions of interest for this section are given in Table

II. Also, we define ∆P = Pcirc − Pidle ≥ 0.

Lemma 3: The function L (λMT/λBS) fulfills the fol-

lowing properties with respect to λBS (assuming λMT

fixed): i) L (λMT/λBS) ≥ 0 for λBS ≥ 0; ii)

L (λMT/λBS) = 1 if λBS → 0; iii) L (λMT/λBS) =
0 if λBS → ∞; iv)

.
LλBS (λMT/λBS) ≤ 0 for

λBS ≥ 0; v)
..
LλBS (λMT/λBS) ≤ 0 for λMT/λBS ≥

2α/(α− 1) = 2.8; and vi)
..
LλBS (λMT/λBS) ≥ 0 for

λMT/λBS ≤ 2α/(α− 1) = 2.8.

Lemma 4: As far as Load Model 2 is concerned, the function

M (λMT/λBS) fulfills the following properties with respect to

λBS (assuming λMT fixed): i) M (λMT/λBS) ≥ 0 for λBS ≥
0; ii)M (λMT/λBS)→∞ if λBS → 0; iii)M (λMT/λBS) =
0 if λBS → ∞; iv)

.
MλBS (λMT/λBS) ≤ 0 for λBS ≥ 0; and

v)
..
MλBS (λMT/λBS) ≥ 0 for λBS ≥ 0.

Lemma 5: The function Q (λBS,Ptx, λMT/λBS)
fulfills the following properties with respect to Ptx:

i) Q (λBS,Ptx, λMT/λBS) ≥ 0 for Ptx ≥ 0; ii)

Q (λBS,Ptx, λMT/λBS) = 0 if Ptx → 0; iii)

Q (λBS,Ptx, λMT/λBS) = 1 if Ptx → ∞; iv).
QPtx (λBS,Ptx, λMT/λBS) ≥ 0 for Ptx ≥ 0; and v)..
QPtx (λBS,Ptx, λMT/λBS) ≤ 0 for Ptx ≥ 0.

Proof : The result in v) follows from
..
QPtx (·, ·, ·) in Table

II, because iv) and β > 2 hold. �
Lemma 6: The function Q (λBS,Ptx, λMT/λBS) ful-

fills the following properties with respect to λBS (as-

suming λMT fixed): i) Q (λBS,Ptx, λMT/λBS) ≥ 0 for

λBS ≥ 0; ii) Q (λBS,Ptx, λMT/λBS) = 0 if λBS →
0; iii) Q (λBS,Ptx, λMT/λBS) = 1 if λBS → ∞; iv)
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TABLE II
SUMMARY OF MAIN AUXILIARY FUNCTIONS USED THROUGHOUT THE PAPER.

Function Definition

L (λMT/λBS) = 1− (1 + (1/α)λMT/λBS)
−α

M (λMT/λBS) = λMT/λBS − L (λMT/λBS)

Q (λBS,Ptx, λMT/λBS) = 1− exp
(

−πλBS(Ptx/η)
2/β (1 + ΥL (λMT/λBS))

)

.
QPtx (λBS,Ptx, λMT/λBS) = πλBS(1/η)

2/β
(2/β) (1 + ΥL (λMT/λBS)) P

2/β−1
tx

× exp
(

−πλBS(Ptx/η)
2/β (1 + ΥL (λMT/λBS))

)

..
QPtx

(λBS,Ptx, λMT/λBS) = πλBS(1/η)
2/β

(2/β) (1 + ΥL (λMT/λBS)) P
2/β−1
tx

×
[

−Q̇Ptx (λBS,Ptx, λMT/λBS)
]

+πλBS(1/η)
2/β

(2/β) (2/β − 1) (1 + ΥL (λMT/λBS))P
2/β−2
tx

× exp
(

−πλBS(Ptx/η)
2/β

(1 + ΥL (λMT/λBS))
)

.
LλBS (λMT/λBS) = −

(
λMT

/
λ2
BS

)
(1 + (1/α)λMT/λBS)

−(α+1)

.
MλBS (λMT/λBS) = −

(
λMT

/
λ2
BS

) [

1− (1 + (1/α)λMT/λBS)
−(α+1)

]

.
QλBS (λBS,Ptx, λMT/λBS) = π(Ptx/η)

2/β
[

1 + ΥL (λMT/λBS) + ΥλBS

.
LλBS (λMT/λBS)

]

× exp
(

−πλBS(Ptx/η)
2/β

(1 + ΥL (λMT/λBS))
)

..
LλBS (λMT/λBS) =

(
λMT

/
λ3
BS

)
(1 + (1/α)λMT/λBS)

−(α+1)

×
[

2− (1 + α) (1/α)λMT/λBS(1 + (1/α)λMT/λBS)
−1
]

..
MλBS (λMT/λBS) = 2

(
λMT

/
λ3
BS

) [

1− (1 + (1/α)λMT/λBS)
−(α+1)

]

+(1 + α) (1/α)
(
λ2
MT

/
λ4
BS

)
(1 + (1/α)λMT/λBS)

−(α+2)

SP (Ptx) = L
(

λMT

λBS

)[

Q(λBS,Ptx,λMT/λBS).
QPtx

(λBS,Ptx,λMT/λBS)
− (Ptx +∆P)

]

− PcircM (λMT/λBS)

SD (λBS) =
Pcirc.

LλBS
(λMT/λBS)

(

L
(

λMT

λBS

) .
MλBS

(
λMT

λBS

)

−
.
LλBS

(
λMT

λBS

)

M
(

λMT

λBS

))

+ΥL2
(

λMT

λBS

)

(Ptx +∆P) + ΥPcircL
2
(

λMT

λBS

) .
MλBS

(λMT/λBS).
LλBS

(λMT/λBS)

−
L(λMT/λBS)

.
QλBS

(λBS,Ptx,λMT/λBS).
LλBS

(λMT/λBS)Q(λBS,Ptx,λMT/λBS)

(

1 + ΥL
(

λMT

λBS

))

× [L (λMT/λBS) (Ptx +∆P) + Pidle + PcircM (λMT/λBS)]

.
QλBS (λBS,Ptx, λMT/λBS) ≥ 0 for λBS ≥ 0; and v)..
QλBS (λBS,Ptx, λMT/λBS) ≤ 0 for λBS ≥ 0.

Proof : The result in iv) follows from
.
QλBS (·, ·, ·)

in Table II because, for λBS ≥ 0, L (λMT/λBS) +
λBS

.
LλBS (λMT/λBS) ≥ 0. This latter inequality holds true

because 1 + x (1 + 1/α) ≤ (1 + x/α)(α+1)
for x ≥ 0. The

result in v) follows without explicitly computing
..
QλBS (·, ·, ·)

because
.
QλBS (·, ·, ·) in Table II is the composition of two

increasing and concave functions in λBS, i.e., the function in

the square brackets in the first row and the exponential function

in the second row. �
Lemma 7: The EE in (14) fulfills the following properties

with respect to Ptx and λBS: i) EE (Ptx, λBS) = 0 if Ptx → 0
or λBS → 0; and ii) EE (Ptx, λBS) = 0 if Ptx → ∞ or

λBS =→∞.

Proof : This immediately follows from Lemmas 3-6. �

B. Optimal Transmit Power Given the Density of the BSs

In this section, we analyze whether there exists an optimal

and unique transmit power, P
(opt)
tx , that maximizes the EE for-

mulated in (14), while all the other parameters, including λBS,

are fixed and given. In mathematical terms, the optimization

problem can be formulated as follows:

maxPtx EE (Ptx, λBS)

subject to Ptx ∈
[

P
(min)
tx ,P

(max)
tx

]

.
(15)

where P
(min)
tx ≥ 0 and P

(max)
tx ≥ 0 are the minimum and

maximum power budget of the BSs, respectively. One may

assume, without loss of generality, P
(min)
tx → 0 and P

(max)
tx →

∞.

The following theorem completely characterizes the solution

of (15).

Theorem 1: Let SP (·) be the function defined in Table II.

The EE in (14) is a unimodal and strictly pseudo-concave func-

tion in Ptx. The optimization problem in (15) has a unique so-

lution given by P
(opt)
tx = max

{

P
(min)
tx ,min

{

P∗
tx,P

(max)
tx

}}

,

where P∗
tx is the only stationary point of the EE in (14) that

is obtained as the unique solution of the following equation:
.

EEPtx (P
∗
tx, λBS) = Pidle − SP (P∗

tx) = 0

⇔ SP (P∗
tx) = Pidle.

(16)
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Proof : See Appendix B. �

C. Optimal Density Given the Transmit Power of the BSs

In this section, we analyze whether there exists an optimal

and unique density of BSs, λ
(opt)
BS , that maximizes the EE for-

mulated in (14), while all the other parameters, including Ptx,

are fixed and given. In mathematical terms, the optimization

problem can be formulated as follows:

maxλBS EE (Ptx, λBS)

subject to λBS ∈
[

λ
(min)
BS , λ

(max)
BS

] (17)

where λ
(min)
BS ≥ 0 and λ

(max)
BS ≥ 0 are the minimum and

maximum allowed density of the BSs, respectively. One may

assume, without loss of generality, λ
(min)
BS → 0 and λ

(min)
BS →

∞.

The following theorem completely characterizes the solution

of (17).

Theorem 2: Let SD (·) be the function defined in Table II.

The EE in (14) is a unimodal and strictly pseudo-concave func-

tion in λBS. The optimization problem in (17) has a unique so-

lution given by λ
(opt)
BS = max

{

λ
(min)
BS ,min

{

λ∗
BS, λ

(max)
BS

}}

,

where λ∗
BS is the only stationary point of the EE in (14) that

is obtained as the unique solution of the following equation:
.

EEλBS (Ptx, λ
∗
BS) = SD (λ∗

BS)− Pidle = 0

⇔ SD (λ∗
BS) = Pidle.

(18)

Proof : See Appendix C. �

D. On the Dependency of Optimal Transmit Power and Den-

sity of the BSs

The optimal transmit power and BSs’ density that maximize

the EE are obtained from the unique solutions of (16) and

(18), respectively. These equations, however, cannot be further

simplified and, therefore, explicit analytical expressions for

P
(opt)
tx and λ

(opt)
BS cannot, in general, be obtained. This is

an inevitable situation when dealing with EE optimization

problems, and, indeed, a closed-form expression of the optimal

transmit power for simpler EE optimization problems does not

exist either [1]. In some special cases, the transmit power can

be implicitly expressed in terms of the Lambert-W function,

which, however, is the solution of a transcendental equation

[2]. Notable examples of these case studies include even basic

point-to-point communication systems without interference

[40]. Based on these considerations, it seems hopeless to

attempt finding explicit analytical expressions from (16) and

(18), respectively. However, thanks to the properties of the

EE function, i.e., unimodality and strict pseudo-concavity,

proved in Theorem 1 and Theorem 2, P
(opt)
tx and λ

(opt)
BS can be

efficiently computed with the aid of numerical methods that

are routinely employed to obtain the roots of non-linear scalar

equations, e.g., the Newton’s method [42]. For example, the

unique solutions of (16) and (18) may be obtained by using the

functions FSolve in Matlab and NSolve in Mathematica.

Theorem 1 and Theorem 2 are, however, of paramount impor-

tance, since they state that an optimum maximizer exists and

is unique.

Even though explicit analytical formulas for P
(opt)
tx and

λ
(opt)
BS cannot be obtained, it is important to understand how

these optimal values change if any other system parameter

changes. For instance, two worthwhile questions to answer are:

“How does P
(opt)
tx change as a function of λBS?” and “How

does λ
(opt)
BS change as a function of Ptx?”. These questions

are relevant to optimize the deployment of cellular networks

from the EE standpoint, since they unveil the inherent interplay

between transmit power and density of BSs discussed in

Section III and illustrated in Fig. 1. A general answer to these

two questions is provided in the following two propositions.

Proposition 4: Let P
∗

tx be the unique solution of (16) if

λBS = λBS. Let the optimal Ptx according to Theorem 1

be P
(opt)

tx = max
{

P
(min)
tx ,min

{

P
∗

tx,P
(max)
tx

}}

. Let λBS ≶
λBS be another BSs’ density. Let

.
EEPtx (·, ·) be the first-order

derivative in (16). The following holds:

P
(opt)

tx ⋚ P
(opt)

tx ⇔
.

EEPtx

(

P
(opt)

tx , λBS

)

⋚ 0. (19)

Proof : Theorem 1 states that the EE function has a single

stationary point that is its unique global maximizer. In mathe-

matical terms, this implies
.

EEPtx (Ptx, λBS) > 0 if Ptx < P∗
tx

and
.

EEPtx (Ptx, λBS) < 0 if Ptx > P∗
tx for every λBS ≥ 0.

Therefore, the optimal transmit power needs to be increased

(decreased) if the first-order derivative of the EE is positive

(negative). Based on this, (19) follows because min {·, ·} and

max {·, ·} are increasing functions. �
Proposition 5: Let λ

∗

BS be the unique solution of (18) if

Ptx = Ptx. Let the optimal λBS according to Theorem 2 be

λ
(opt)

BS = max
{

λ
(min)
BS ,min

{

λ
∗

BS, λ
(max)
BS

}}

. Let Ptx ≶ Ptx

be another transmit power. Let
.

EEλBS (·, ·) be the first-order

derivative in (18). The following holds:

λ
(opt)

BS ⋚ λ
(opt)

BS ⇔
.

EEλBS

(

Ptx, λ
(opt)

BS

)

⋚ 0. (20)

Proof : It follows from Theorem 2, similar to the proof of

Proposition 4. �
Remark 13: It is worth mentioning that the approach utilized

to prove Proposition 4 and Proposition 5 is applicable to study

the dependency of P
(opt)
tx and λ

(opt)
BS , respectively, with respect

to any other system parameters. The findings in Proposition 4

and Proposition 5 are especially relevant for cellular network

planning. Let us consider, e.g., (19). By simply studying the

sign of the first-order derivative
.

EEPtx (·, ·), one can identify,

with respect to an optimally deployed cellular network, the set

of BSs’ densities that would require to increase or decrease the

transmit power while still operating at the optimum. In Section

V, numerical examples are shown to highlight that P
(opt)
tx may

either decrease or increase as λBS increases or decreases. �

E. Joint Optimization of Transmit Power and Density of the

BSs

In Sections IV-B and IV-C, either λBS or Ptx are assumed

to be given, respectively. In practical applications, however,

it is important to identify the optimal pair
(

P
(opt)
tx , λ

(opt)
BS

)
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TABLE III
ALTERNATING OPTIMIZATION OF THE EE.

Algorithm

Let Ptx ∈
[

P
(min)
tx ,P

(max)
tx

]

; λBS ∈
[

λ
(min)
BS , λ

(max)
BS

]

;

Set λBS = λ
(opt)

BS ∈
[

λ
(min)
BS , λ

(max)
BS

]

(initial guess); V = 0; ǫ > 0;

Repeat

V0 = V ;

P
∗

tx ←
.

EEPtx

(

Ptx, λ
(opt)

BS

)

= 0; P
(opt)

tx = max
{

P
(min)
tx ,min

{

P
∗

tx,P
(max)
tx

}}

; (16)

λ
∗

BS ←
.

EEλBS

(

P
(opt)

tx , λBS

)

= 0; λ
(opt)

BS = max
{

λ
(min)
BS ,min

{

λ
∗

BS, λ
(max)
BS

}}

; (18)

V = EE
(

P
(opt)

tx , λ
(opt)

BS

)

; (14)

Until |V − V0| /V ≤ ǫ;

Return P
(opt)
tx = P

(opt)

tx ; λ
(opt)
BS = λ

(opt)

BS .

that jointly maximizes the EE in (14). This joint optimization

problem can be formulated as follows:

maxPtx,λBS EE (Ptx, λBS)

subject to Ptx ∈
[

P
(min)
tx ,P

(max)
tx

]

, λBS ∈
[

λ
(min)
BS , λ

(max)
BS

]

(21)

where a notation similar to that used in (15) and (17) is

adopted.

In Theorem 1 and Theorem 2, we have solved the optimiza-

tion problem formulated in (21) with respect to Ptx for a given

λBS and with respect to λBS for a given Ptx, respectively. By

leveraging these results, a convenient approach for tackling

(21) with respect to Ptx and λBS is to utilize the alternating

optimization method, which iteratively optimizes Ptx for a

given λBS and λBS for a given Ptx until convergence of the

EE in (14) within a desired level of accuracy [41, Proposition

2.7.1]. The algorithm that solves (21) based on the alternating

optimization method is reported in Table III. Its convergence

and optimality properties are summarized as follows.

Proposition 6: Let P
(opt)

tx (m), λ
(opt)

BS (m), and EE(m) be

Ptx, λBS and EE obtained from the algorithm in Table III at the

mth iteration, respectively. The sequence EE(m) is monoton-

ically increasing and converges. In addition, every limit point

of the sequence
(

P
(opt)

tx (m) , λ
(opt)

BS (m)
)

fulfills the Karush-

Kuhn-Tucker (KKT) first-order optimality conditions of the

problem in (21).

Proof : At the end of each iteration of the algorithm in Table

III, the value of EE does not decrease. The sequence EE(m),
hence, converges, because the EE in (14) is a continuous

function over the compact feasible set of the problem in

(21) and, thus, it admits a finite maximum by virtue of the

Weierstrass extreme value theorem [41]. From [41, Proposition

2.7.1], the alternating optimization method fulfills the KKT

optimality conditions, provided that i) the objective and con-

straint functions are differentiable, ii) each constraint function

depends on a single variable, and iii) each subproblem has a

unique solution. The first and second requirements follow by

direct inspection of (21). The third requirement is ensured by

Theorem 1 and Theorem 2. �

TABLE IV
SETUP OF PARAMETERS (UNLESS OTHERWISE STATED). IT IS WORTH

NOTHING THAT THE SETUP γD = γA CONSTITUTES JUST A CASE STUDY

AND THAT THE MAIN FINDINGS OF THE PRESENT PAPER HOLD TRUE FOR

EVERY γA > 0.

Parameter Value

β 3.5

κ =
(
4πfc/3 · 10

8
)2

fc = 2.1 GHz

N0 -174 dBm/Hz

BW 20 MHz

Pcirc 51.14 dBm [8]

Pidle 48.75 dBm [8]

Ptx 43 dBm [8]

λBS = 1/
(
πR2

cell

)
BSs/m2 Rcell = 250 m

λMT = 1/
(
πR2

MT

)
= 121 MTs/km2 RMT = 51.29

γD = γA 5 dB

Remark 14: The optimization problems in Theorem 1 and

Theorem 2 can be efficiently solved by using the Newton’s

method, which allows one to find the root of real-valued ob-

jective functions via multiple iterations of increasing accuracy

and at a super-linear (i.e., quadratic if the initial guess is

sufficiently close to the actual root) convergence rate [42].

The properties of convergence of the alternating maximization

algorithm in Table III to a stationary point of the objective

function in (21) are discussed in [41, Proposition 2.7.1]. Under

mild assumptions that hold for the specific problem at hand,

the algorithm in Table III is locally q-linearly convergent to

a local maximizer of the objective function provided that the

initial guess is sufficiently close to the actual root [43, Section

2]. Further details can be found in [43]. �
In Section V, numerical evidence of the global optimality

of the algorithm in Table III is given as well. In addition,

numerical results on the average (with respect to the initial

guess) number of iterations as a function of the tolerance of

convergence, ǫ > 0, are illustrated.

V. NUMERICAL RESULTS

In this section, we show numerical results to validate the

proposed analytical framework for computing the PSE and
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Solid lines: Optimum from Theorem 1. Markers: Optimum from a brute-force
search of (15). Special case with β = 6.5 and λMT = 21 MTs/km2.
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Fig. 3. Energy efficiency versus the transmit power for Load Model 1 (a)
and Load Model 2 (b). Solid lines: Framework from (14). Markers: Monte
Carlo simulations.

EE, as well as to substantiate the findings originating from

the analysis of the system-level EE optimization problems as

a function of the transmit power and density of the BSs. Unless

otherwise stated, the simulation setup is summarized in Table

IV. For ease of understanding, the BSs’ density is represented

via the inter-site distance (Rcell) defined in Table IV. A similar

comment applies to the density of the MTs that is expressed

in terms of their average distance (RMT). As far as the choice

of the setup of parameters is concerned, it is worth mentioning

that the power consumption model is in agreement with [8]

and [30]. The density of the MTs coincides with the average

density of inhabitants in France.

a) Validation Against Monte Carlo Simulations: In Figs.

3 and 4, we validate the correctness of (14) against Monte

Carlo simulations. Monte Carlo results are obtained by sim-

ulating several realizations, according to the PPP model, of

the cellular network and by empirically computing the PSE
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Fig. 5. Optimal transmit power (a) and energy efficiency (b) versus Rcell.
Solid lines: Optimum from Theorem 1. Markers: Optimum from a brute-force
search of (15). LM-1: Load Model 1 and LM-2: Load Model 2.

according to its definition in (6) and (7), as well as the power

consumption based on the operating principle described in

the proofs of Proposition 2 and Proposition 3. It is worth

mentioning that, to estimate the PSE, only the definitions in

the first line of (6) and (7) are used. The results depicted

in Figs. 3 and 4 confirm the good accuracy of the proposed

mathematical approach. They highlight, in addition, the uni-

modal and pseudo-concave shape of the EE as a function

of the transmit power, given the BSs’ density, and of the

BSs’ density, given the transmit power. If the same transmit

power and BSs’ density are assumed for both load models,

we observe, as expected, that the first load model provides a

better EE than the second load model.

b) Validation of Theorem 1 and Theorem 2: In Figs.

5 and 6, we compare the optimal transmit power and BSs’

density obtained from Theorem 1 and Theorem 2, i.e., by

computing the unique zero of (16) and (18), respectively,
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Fig. 7. Optimal transmit power (a), density of BSs (Rcell) (b), and energy
efficiency (c) versus the density of MTs (RMT). Solid lines: Optimum from
the algorithm in Table III. Markers: Optimum from a brute-force search of
(21). LM-1: Load Model 1 and LM-2: Load Model 2.

against a brute-force search of the optimum of (15) and (17),

respectively. We observe the correctness of Theorem 1 and

Theorem 2 for the load models analyzed in the present paper.

Figures 5 and 6, in addition, confirm two important remarks

that we have made throughout this paper. The first is that a

joint pair of transmit power and BSs’ density exists. This is

highlighted by the fact that the EE evaluated at the optimal

transmit power, given the BSs’ density, and at the optimal

BSs’ density, given the transmit power, is still a unimodal

and pseudo-concave function. This motivates one to use the

alternating optimization algorithm proposed in Section IV-E.

The second is related to the difficulty of obtaining an explicit

closed-form expression of the optimal transmit power as a

function of the BSs’ density and of the BSs’ density as a

function of the transmit power. Figure 6(a), for example,
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efficiency (c) versus the reliability thresholds (γD = γA). Solid lines:
Optimum from the algorithm in Table III. Markers: Optimum from a brute-
force search of (21). LM-1: Load Model 1 and LM-2: Load Model 2.
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Fig. 9. Analysis of the EE vs. PSE trade-off. Solid lines: Optimum from the
algorithm in Table III. Markers: Optimum from a brute-force search of (21).
LM-1: Load Model 1 and LM-2: Load Model 2.

clearly shows that the behavior of the optimal transmit power

is not monotonic as a function of the BSs’ density. This

is in contrast with heuristic optimization criteria based on

the coverage probability metric [32]. Figure 5(a), on the

other hand, provides more intuitive trends according to which

the optimal transmit power increases as the density of the

BSs decreases. This is, however, just a special case that is

parameter-dependent. A counter-example is, in fact, illustrated

in Fig. 2, where, for a different set of parameters, it is shown

that the optimal transmit power may increase, decrease and

then increase again as a function of the average inter-site

distance of the BSs (Rcell). In this case, the density of the MTs

coincides with the average density of inhabitants in Sweden

and a large path-loss exponent is assumed to highlight the

peculiar performance trend. These numerical examples clearly

substantiate the importance of Theorem 1 and Theorem 2, and
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Fig. 10. Number of iterations of the algorithm in Table III as a function of
ǫ > 0. The number of iterations is averaged (15000 trials) over the initial

guess λBS = λ
(opt)
BS ∈

[

λ
(min)
BS , λ

(max)
BS

]

. (a) Load Model 1 and (b) Load

Model 2. Setup: R
(min)
cell = 10 m, R

(max)
cell = 2000 m, P

(min)
tx = −20 dBm,

P
(max)
tx = 60 dBm.

highlight the complexity of the optimization problem that is

analyzed and successfully solved in the present paper.

c) Validation of the Alternating Optimization Algorithm

in Table III: In Figs. 7 and 8, we provide numerical evidence

of the convergence of the alternating optimization algorithm

introduced in Section IV-E towards the global optimum of

the optimization problem formulated in (21). The study is

performed by computing the joint optimal transmit power and

BSs’ density as a function of the density of the MTs (Fig. 7)

and of the reliability thresholds (Fig. 8). We observe a very

good agreement between the algorithm in Table III and a brute-

force search of the optimum of (21). Similar studies have been

conducted as a function of other system parameters, but they

are not reported in the present paper due to space limitations.

d) Comparison Between Load Model 1 and 2: With the

exception of Figs. 3 and 4, all the figures reported in this

section illustrate the achievable EE of the two load models

analyzed in the present manuscript when they operate at

their respective optima. Based on the obtained results, we

conclude that, for the considered system setup, the first load

model outperforms the second one in terms of EE. Figures

7 and 8 show, for example, that this may be obtained by

transmitting a higher power but, at the same time, by reducing

the deployment density of the BSs. It is worth mentioning

that, even though both load models provide the same PSE and

serve, in the long time-horizon, all the MTs of the network,

they have one main difference: the MTs under the first load

model experience a higher latency (i.e., the MTs experience

a longer delay before being served, since they are randomly

chosen among all the available MTs in the cell), since a single

MT is served at any time instance. We evince, as a result, that

the higher EE provided by the first load model is obtained

at the price of increasing the MTs’ latency. The analysis and

optimization of energy-efficient cellular networks with latency

constraints is, therefore, an important generalization of the

study conducted in the present paper.

e) Analysis of the EE vs. PSE Trade-Off: In Fig. 9,

we illustrate the trade-off between EE and PSE, which is

obtained by setting the transmit power and density of the

BSs at the optimal values that are obtained by solving the

optimization problem in (21) with the aid of the algorithm in

Table III. Figure 9 provides a different view of the comparison

between Load Model 1 and 2 introduced in Section II-D.

The Load Model 1 is a suitable choice to obtain a high

EE at low-medium PSEs, while the Load Model 2 is a

more convenient option torequired to converge within obtain

a good EE at medium-high PSEs. Based on these results,

the optimization of the EE vs. PSE trade-off constitutes an

interesting generalization of the study carried out in the present

paper.

f) Convergence Analysis of the Maximization Algorithm

in Table III: Motivated by Remark 14, Fig. 10 shows the

average number of iterations of the alternating optimization

algorithm in Table III as a function of the convergence

accuracy ǫ. We observe that the algorithm necessitates more

iterations for Load Model 1. In general, however, we observe

that the number of iterations that are required to converge

within the defined convergence accuracy is relatively small.

VI. CONCLUSION

In the present paper, we have introduced a new closed-

form analytical expression of the potential spectral efficiency

of cellular networks. Unlike currently available analytical

frameworks, we have shown that the proposed approach allows

us to account for the tight interplay between transmit power

and density of the base stations in cellular networks. Therefore,

the proposed approach is conveniently formulated for the

optimization of the network planning of cellular networks,

by taking into account important system parameters. We have

applied the new approach to the analysis and optimization of

the energy efficiency of cellular networks. We have mathemat-

ically proved that the proposed closed-form expression of the

energy efficiency is a unimodal and strictly pseudo-concave

function in the transmit power, given the density, and in the

density, given the transmit power of the base stations. Under

these assumptions, as a result, a unique transmit power and

density of the base stations exist, which can be obtained by

finding the unique zero of a simple non-linear function that

is provided in a closed-form expression. All mathematical

derivations and findings have been substantiated with the

aid of numerical simulations. We argue that the applications

of the proposed approach to the system-level modeling and

optimization of cellular networks are countless and go beyond

the formulation of energy efficiency problems.

Extensions and generalizations of the analytical and opti-

mization frameworks proposed in the present paper, include,

but are not limited to, the system-level analysis and opti-

mization of i) the energy efficiency versus spectral efficiency

trade-off, ii) uplink cellular networks, iii) three-dimensional

network topologies with elevated base stations and spatial

blockages, iv) cache-enabled cellular networks, v) cellular

networks with network slicing, vi) cellular networks with
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renewable energy sources and energy harvesting, and vii)

multi-tier (heterogeneous) cellular networks.

APPENDIX A

PROOF OF PROPOSITION 1

Under the assumption that MT0 is selected, from (3) and

(4), we have:

Pcov (γD, γA) = Pr

{

g0/L01
(
L0 ≤ Ptx

/(
γAσ

2
N

))

∑

BSi∈Ψ
(I)
BS

gi/Li1 (Li > L0)
≥ γD

}

=

Ptx/(γAσ2
N)∫

0

Pr

{

g0/x
∑

BSi∈Ψ
(I)
BS

gi/Li1 (Li > x)
≥ γD

}

︸ ︷︷ ︸

G(γD;x)

fL0 (x) dx

(22)

where fL0 (x) = 2πλBS

(
κ2/ββ

)−1
x2/β−1e−πλBS(x/κ)

2/β

is

the probability density function of L0 that is obtained by

applying the displacement theorem of PPPs [5, Eq. (21)]. It

is worth mentioning that (22) is exact if the Crofton cell is

considered, while it is an approximation if the typical cell is

considered (see Remark 7 for further details).

The probability term, G (·; ·), in the integrand function of

(22) can be computed as follows:

G (γD;x)
(a)
= exp

(

−

∫ +∞

x

(

1 +
y

xγD

)−1

2πλ
(tx)
BS

y2/β−1

κ2/ββ
dy

)

(b)
= exp

(

−πλ
(tx)
BS (x/κ)

2/β
Υ
)

(23)

where (a) follows from the probability generating functional

theorem of PPPs [3] by taking into account that, based on

(8), the interfering BSs constitute a PPP of intensity equal

to λ
(tx)
BS = λBSP

(tx)
BS = λBSL (λMT/λBS), and (b) follows by

solving the integral. The intensity of the interfering PPP, λ
(tx)
BS ,

is obtained by taking into account that only that BSs that are

in transmission mode contribute to the inter-cell interference.

The analytical expression of λ
(tx)
BS is, in particular, obtained

with the aid of the independent thinning theorem of PPPs,

similar to [5] and [38]. The impact of the spatial correlation

that exists among the BSs that operate in transmission mode

[39], is, on the other hand, postponed to future research.

By inserting (23) in (22) and by applying some changes of

variable, we obtain:

Pcov (γD, γA) = πλBSκ
−2/β

×

(Ptx/(γAσ2
N))

2/β

∫

0

exp
(

−πλBSκ
−2/β (1 + ΥL (λMT/λBS)) z

)

dz.

(24)

The proof follows from (6) and (7) with

the aid of some simplifications and by using

the identity
∑+∞

u=0 (u+ 1)−1 Pr
{
N̄MT = u

}
=

(λMT/λBS)
−1
L (λMT/λBS) [33, Proposition 2].

APPENDIX B

PROOF OF THEOREM 1

In this section, we are interested in the functions that

depend on Ptx. For ease of writing, we adopt the simplified

notation: Ptx → P, L (·) → L, M (·) → M, Q (·,Ptx, ·) →
Q (P),

.
QPtx (·,Ptx, ·) →

.
Q (P), Pcirc = Pc, Pidle = Pi,

EE (Ptx, ·) → EE (P), and
.

EEPtx (Ptx, ·) →
.

EE (P). A

similar notation is adopted for higher-order derivatives with

respect to P.

The stationary points of (14) are the zeros of the first-order

derivative of EE (·) with respect to P. From (14), we obtain.
EE (P) = 0 ⇔ Pi − SP (P) = 0, which can be re-written as

follows:

Q (P)
/ .
Q (P)− P

︸ ︷︷ ︸

Wleft(P)

= ∆P+ Pi/L+ PcM/L
︸ ︷︷ ︸

Wright

. (25)

With the aid of some algebraic manipulations and by

exploiting Lemmas 3-6, the following holds: i) Wright ≥ 0
is a non-negative function that is independent of P, ii)

Wleft (P) ≥ 0 is a non-negative and increasing function of

P, i.e.,
.
W left (P) ≥ 0, since Q (P) ≥ 0 and

..
Q (P) ≤ 0 from

Lemma 5, iii) Wleft (P→ 0) = 0 and Wleft (P→∞) = ∞.

This implies that Wleft (·) and Wright intersect each other

in just one point. Therefore, a unique stationary point, P∗,

exists. Also,
.

EE (P) > 0 for P < P∗ and
.

EE (P) < 0 for

P > P∗. Finally, by taking into account the constraints on the

transmit power, it follows that the unique optimal maximizer

of the EE is P(opt) = max
{
P(min),min

{
P∗,P(max)

}}
, since

P ∈
[
P(min),P(max)

]
. This concludes the proof.

APPENDIX C

PROOF OF THEOREM 2

In this section, we are interested in the functions that

depend on λBS. For ease of writing, we adopt the simplified

notation: λBS → λ, L (·/λBS) → L (λ), M (·/λBS) →
M (λ), Q (λBS, ·, ·/λBS) → Q (λ),

.
QλBS (λBS, ·, ·/λBS) →.

Q (λ), Pcirc = Pc, Pidle = Pi, EE (·, λBS) → EE (λ),.
EEλBS (·, λBS)→

.
EE (λ), Ptx → P. Similar notation applies

to higher-order derivatives.

The proof is split in two parts: i) λMT/λ ≥ 2.8 and ii)

λMT/λ ≤ 2.8. This is necessary because, from Lemma 3,

L (·) is concave in λ if λMT/λ ≥ 2.8 and convex in λ if

λMT/λ ≤ 2.8.

a) Case Study λMT/λ ≥ 2.8: The stationary points of

(14) are the zeros of the first-order derivative of EE (·) with

respect to λ. From (14), we obtain
.

EE (λ) = 0 ⇔ SD (λ) −
Pi = 0. This stationary equation can be re-written as follows
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(Wright (λ) =
∑5

ℓ=1 Wℓ (λ)):

Pi
︸︷︷︸

Wleft

= −
(

L (λ)
/ .
L (λ)

)( .
Q (λ)

/

Q (λ)
)

︸ ︷︷ ︸

W1(λ)

× [1 + ΥL (λ)] [L (λ) (P +∆P) + Pi + PcM (λ)]
︸ ︷︷ ︸

W2(λ)

+ Pcirc

( .
M (λ)L (λ)

/ .
L (λ)−M (λ)

)

︸ ︷︷ ︸

W3(λ)

+ΥL2 (λ) (P +∆P)
︸ ︷︷ ︸

W4(λ)

+ΥPcL
2 (λ)

.
M (λ)

/ .
L (λ)

︸ ︷︷ ︸

W5(λ)

.

(26)

With the aid of some algebraic manipulations and by

exploiting Lemmas 3-6, the following holds: i) Wleft ≥ 0 is a

non-negative function that is independent of λ, ii) Wright (λ) ≥
0 is a non-negative function of λ, since Wℓ (λ) ≥ 0 for

ℓ = 1, . . . , 5 if λMT/λ ≥ 2.8. In particular, W3 (λ) ≥ 0 if

λMT/λ ≥ 1.4 and Wℓ (λ) ≥ 0 for λ ≥ 0 if ℓ = 1, 2, 4, 5, iii)

Wright (λ→ 0) = ∞ and Wright (λ→∞) = 0. This implies

that Wleft and Wright (·) would intersect each other in just

a single point if Wright is a decreasing function in λ, i.e.,.
W right (λ) ≤ 0 for λMT/λ ≥ 2.8. A sufficient condition for

this to hold is that Wℓ (·) for ℓ = 1, . . . , 5 are decreasing

functions in λ, i.e.,
.

Wℓ (λ) ≤ 0 for λMT/λ ≥ 2.8. This

holds to be true and can be proved as follows.
.

W2 (λ) ≤ 0
for λ ≥ 0 and

.
W4 (λ) ≤ 0 for λ ≥ 0 because L (·)

and M (·) are decreasing functions in λ (see Lemma 3 and

Lemma 4).
.

W3 (λ) ≤ 0 for λ ≥ 0 and
.

W5 (λ) ≤ 0 for

λ ≥ 0 immediately follow by inserting into them the first-

order derivatives of L (·) andM (·) with respect to λ and with

the aid of simple algebraic manipulations. Less evident is the

behavior of W1 (·) as a function of λ. Using some algebra,

the first-order derivative satisfies the following:

.
W 1 (λ)

(

Q (λ)
.
L (λ)

)2

= −L (λ)
.
L (λ)Q (λ)

..
Q (λ)

︸ ︷︷ ︸

A1(λ)

+
(

−
.
L
2
(λ)Q (λ)

.
Q (λ)

)

︸ ︷︷ ︸

A2(λ)

+ L (λ)
.
L (λ)

.
Q

2
(λ)

︸ ︷︷ ︸

A3(λ)

+ L (λ)
..
L (λ)Q (λ)

.
Q (λ)

︸ ︷︷ ︸

A4(λ)

.

(27)

A sufficient condition for W1 (·) to be a decreasing function

in λ is that Aℓ (λ) ≤ 0 for ℓ = 1, . . . , 4. From Lemmas 3-6,

this can be readily proved. In particular, Aℓ (λ) ≤ 0 for λ ≥ 0
if ℓ = 1, 2, 3 and A4 (λ) ≤ 0 for λMT/λ ≥ 2.8. Therefore,

a unique stationary point, λ∗, exists. Also,
.

EE (λ) > 0 for

λ < λ∗ and
.

EE (λ) < 0 for λ > λ∗. Finally, by taking

into account the constraints on the density of BSs, it follows

that the unique optimal maximizer of the EE is λ(opt) =
max

{
λ(min),min

{
λ∗, λ(max)

}}
, since λ ∈

[
λ(min), λ(max)

]
.

b) Case Study λMT/λ ≤ 2.8: As for this case study,

we leverage a notable result in fractional optimization [2]:

the ratio between a i) non-negative, differentiable and concave

function, and a ii) positive, differentiable and convex function

is a pseudo-concave function. It is, in addition, a unimodal

function with a finite maximizer if the ratio vanishes when

the variable of interest (i.e., the BSs’ density) tends to zero

and to infinity. As for the case study under analysis, the EE

in (14) can be re-written, by neglecting unnecessary constants

that are independent of λ and do not affect the properties of

the function, as follows:

EE (λ) =

Q (λ)

[1 + ΥL (λ)] [(P + ∆P) + Pi/L (λ) + PcM (λ)/L (λ)]
.

(28)

From Lemma 6, the numerator of (28) is a non-negative,

differentiable, increasing and concave function for λ ≥ 0.

From Lemma 7, the EE in (28) tends to zero if λ → 0
and λ → ∞. Therefore, a sufficient condition to prove the

unimodality and pseudo-concavity of the EE is to show that

the denominator of (28) is a positive, differentiable and convex

function in λ for λMT/λ ≤ 2.8. From Lemma 3 and Lemma 4,

the first two properties are immediately verified. To complete

the proof, the convexity of the denominator of (28) needs to

be analyzed.

Let Den (·) be the denominator of (28). Let us introduce the

function K (λ) = 2
.
L
2
(λ)
/

L (λ) −
..
L (λ). The second-order

derivative of Den (·), as a function of λ, is as follows:
..
Den (λ) = Υ(P +∆P)

..
L (λ)

︸ ︷︷ ︸

D1(λ)

+ΥPc

..
M (λ)

︸ ︷︷ ︸

D2(λ)

+
(
Pc

/
L2 (λ)

) (
2λMT

/
λ3
)

︸ ︷︷ ︸

D3(λ)

(

L (λ) + λ
.
L (λ)

)

︸ ︷︷ ︸

D4(λ)

+ Pc

(
M (λ)

/
L2 (λ)

)

︸ ︷︷ ︸

D5(λ)

K (λ) +
(
Pc

/
L (λ)

)

︸ ︷︷ ︸

D6(λ)

K (λ)

+
(
Pi

/
L2 (λ)

)

︸ ︷︷ ︸

D7(λ)

K (λ) .

(29)

A sufficient condition for proving that Den (·) is a convex

function in λ is to show that Dℓ (λ) ≥ 0 for ℓ = 1, 2, . . . , 7
and K (λ) ≥ 0 if λMT/λ ≤ 2.8. This can be proved as

follows. D1 (λ) ≥ 0 for λMT/λ ≤ 2.8 follows from Lemma

3. Dℓ (λ) ≥ 0 for ℓ = 2, 5 if λ ≥ 0 follows from Lemma 4.

Dℓ (λ) ≥ 0 for ℓ = 3, 6, 7 if λ ≥ 0 follows from Lemma 3.

D4 (·) and K (·) require deeper analysis. Define ξ = λMT/λ.

D4 (·) and K (·) are positive functions in ξ if:

D4 (ξ) ≥ 0⇔

D4 (ξ) = 1− (1 + ξ/α)−α − x(1 + ξ/α)−(α+1) ≥ 0
(30)

K (ξ) ≥ 0⇔

K (ξ) = (1 + ξ/α)
−α

+ [2 + (1 + 1/α)x] [2− (1− 1/α)x]
−1
≥ 1.

(31)
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By direct inspection of (30) and (31), it is not difficult to

prove the following: i) D4 (ξ → 0) = 0 and
.
D4 (ξ) ≥ 0 for

ξ ≥ 0, and ii) K (ξ → 0) = 1 and
.
K (ξ) ≥ 0 for ξ ≤ 2.8.

These two conditions imply D4 (λ) ≥ 0 for λ ≥ 0 and

K (λ) ≥ 0 for λMT/λ ≤ 2.8. This concludes the proof.
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