Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection - CentraleSupélec
Communication Dans Un Congrès Année : 2018

Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection

Résumé

In this paper, we propose a method for separating known targets of interests from the background in hyperspectral imagery. More precisely, we regard the given hyperspectral image (HSI) as being made up of the sum of low-rank background HSI and a sparse target HSI that contains the known targets based on a pre-learned target dictionary specified by the user. Based on the proposed method, two strategies are outlined and evaluated independently to realize the target detection on both synthetic and real experiments.
Fichier principal
Vignette du fichier
icassp2018.pdf (1018.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01773529 , version 1 (22-04-2018)

Identifiants

Citer

Ahmad W. Bitar, Loong-Fah Cheong, Jean-Philippe Ovarlez. Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'18), Apr 2018, Calgary, Canada. ⟨10.1109/icassp.2018.8462257⟩. ⟨hal-01773529⟩
139 Consultations
207 Téléchargements

Altmetric

Partager

More