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Abstract

In this paper, the efficient deployment and mobility of multiple unmanned aerial vehicles (UAVs),

used as aerial base stations to collect data from ground Internet of Things (IoT) devices, is investigated.

In particular, to enable reliable uplink communications for IoT devices with a minimum total transmit

power, a novel framework is proposed for jointly optimizing the three-dimensional (3D) placement and

mobility of the UAVs, device-UAV association, and uplink power control. First, given the locations of

active IoT devices at each time instant, the optimal UAVs’ locations and associations are determined.

Next, to dynamically serve the IoT devices in a time-varying network, the optimal mobility patterns

of the UAVs are analyzed. To this end, based on the activation process of the IoT devices, the time

instances at which the UAVs must update their locations are derived. Moreover, the optimal 3D trajectory

of each UAV is obtained in a way that the total energy used for the mobility of the UAVs is minimized

while serving the IoT devices. Simulation results show that, using the proposed approach, the total

transmit power of the IoT devices is reduced by 45% compared to a case in which stationary aerial

base stations are deployed. In addition, the proposed approach can yield a maximum of 28% enhanced

system reliability compared to the stationary case. The results also reveal an inherent tradeoff between

the number of update times, the mobility of the UAVs, and the transmit power of the IoT devices. In

essence, a higher number of updates can lead to lower transmit powers for the IoT devices at the cost

of an increased mobility for the UAVs.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) as flying wireless communication platforms

has received significant attention recently [1]–[8]. On the one hand, UAVs can be used as

wireless relays for improving connectivity and coverage of ground wireless devices. On the
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other hand, UAVs can act as mobile aerial base stations to provide reliable downlink and uplink

communications for ground users and boost the capacity of wireless networks [1], [2], [6]–[12].

Compared to the terrestrial base stations, the advantage of using UAV-based aerial base stations

is their ability to provide on-the-fly communications. Furthermore, the high altitude of UAVs

enables them to effectively establish line-of-sight (LoS) communication links thus mitigating

signal blockage and shadowing. Due to their adjustable altitude and mobility, UAVs can move

towards potential ground users and establish reliable connections with a low transmit power.

Hence, they can provide a cost-effective and energy-efficient solution to collect data from ground

mobile users that are spread over a geographical area with limited terrestrial infrastructure.

Indeed, UAVs can play a key role in the Internet of Things (IoT) which is composed of small,

battery-limited devices such as sensors, and health monitors [13]. These devices are typically

unable to transmit over a long distance due to their energy constraints [13]. In such IoT scenarios,

UAVs can dynamically move towards IoT devices, collect the IoT data, and transmit it to other

devices which are out of the communication ranges of the transmitters [13]. In this case, the

UAVs play the role of moving aggregators or base stations for IoT networks [5]. However,

to effectively use UAVs for the IoT, several challenges must be addressed such as optimal

deployment, mobility and energy-efficient use of UAVs as outlined in [6] and [1].

In [3], the authors investigated the optimal trajectory of UAVs equipped with multiple antennas

for maximizing sum-rate in uplink communications. The work in [4] maximizes the throughput of

a relay-based UAV system by jointly optimizing the UAV’s trajectory as well as the source/relay

transmit power. However these works considered a single UAV in their models. In [1], we

investigated the optimal deployment and movement of a single UAV for supporting downlink

wireless communications. The work in [14] proposed a low-complexity algorithm for the optimal

deployment of multiple UAVs that provide coverage for ground users. The work in [10] provided

a comprehensive downlink coverage analysis for a network in which a finite number of UAVs

serve the ground users. In [15], the authors used UAVs to efficiently collect data and recharge the

clusters’ head in a wireless sensor network which is partitioned into multiple clusters. However,

this work is limited to a static sensor network, and does not investigate the optimal deployment

of the UAVs. While the energy efficiency of uplink data transmission in a machine-to-machine

(M2M) communication network was investigated [16], the presence of UAVs was not considered.

In fact, none of the prior studies in [1]–[16], addressed the problem of jointly optimizing the
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deployment and mobility of UAVs, device association, and uplink power control for enabling

reliable and energy-efficient communications for IoT devices. To our best knowledge, this paper

is one of the first comprehensive studies on the joint optimal 3D deployment of aerial base

stations, device association, and uplink power control in an IoT ecosystem.

The main contribution of this paper is to introduce a novel framework for optimized deploy-

ment and mobility of multiple UAVs for the purpose of energy-efficient uplink data collection

from ground IoT devices. In particular, we consider an IoT network in which the IoT devices can

be active at different time instances. To minimize the total transmit power of these IoT devices,

given device-specific signal-to-interference-plus-noise-ratio (SINR) constraints, we propose an

efficient approach to jointly and dynamically find the UAVs’ locations, the association of devices

to UAVs, and the optimal uplink transmit power. Our proposed framework is composed of two

key steps. First, given the locations of the IoT devices, we propose a solution for optimizing

the deployment and association of the UAVs. In this case, we solve the formulated problem by

decomposing it into two subproblems which are solved iteratively. In the first subproblem, given

the fixed UAVs’ locations, we find the jointly optimal device-UAV association and the devices’

transmit power. In the second subproblem, given the fixed device association, we determine

the joint 3D UAVs’ locations. For this subproblem, we transform the non-convex continuous

location optimization problem to a convex form and provide tractable solutions. Next, following

our proposed algorithm, the results of solving the second subproblem are used as inputs to

the first subproblem for the next iteration. Here, we show that our proposed approach leads to

an efficient solution with a reasonable accuracy compared to the global optimal solution that

requires significant overhead. Clearly, the UAVs’ locations and the device association that we

obtain in this first step will depend on the locations of active IoT devices.

In the second step, we analyze the IoT network over a time period during which the set of

active devices changes. In this case, we present a framework for optimizing the UAVs’ mobility

by allowing them dynamically update their locations depending on the time-varying devices’

activation process. First, we derive the closed-form expressions for the time instances (update

times) at which the UAVs must move according to the activation process of the devices. Next,

using the update time results, we derive the optimal 3D UAVs’ trajectory such that the total

movement of the UAVs while updating their locations is minimized. Our simulation results

show that, using the proposed approach, the total transmit power of the IoT devices can be
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significantly reduced compared to a case in which stationary aerial base stations are deployed.

The results also verify our analytical derivations for the update times and reveal an inherent

tradeoff between the number of updates, the mobility of the UAVs, and transmit power of the

IoT devices. In particular, it is shown that a higher number of updates leads to lower transmit

powers for the IoT devices at the cost of higher UAVs’ energy consumptions.

The rest of this paper is organized as follows. In Section II, we present the system model

and problem formulation. Section III presents the optimal deployment of UAVs and device

association. In Section IV, we address the mobility and update time of the UAVs. In Section V

we provide the simulation and analytical results, and Section VI draws some conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an IoT system consisting of a set L = {1, 2, ..., L} of L IoT devices. Examples of

such devices include various types of sensors used for environmental monitoring, smart traffic

control, and smart parking devices. In this system, a set K = {1, 2, ..., K} of K rotary wing UAVs

must be deployed to collect the data from the ground IoT devices. These UAVs can dynamically

move, when needed, to effectively serve the IoT devices using uplink communication links. Here,

the term served by a UAV implies that the uplink SINR is above the threshold and, thus, the

UAV can successfully collect data from the ground IoT device. In our model, we assume that the

devices transmit their data to the UAVs in the uplink using frequency division multiple access

(FDMA) over R orthogonal channels. Let Emax be the maximum energy that each UAV can

spend on its movement. The locations of device i ∈ L and UAV j ∈ K are, respectively, given

by (xi, yi) and vj = (xuav
j , yuav

j , hj) as shown in Fig. 1. In our model, we consider a centralized

network in which the locations of the devices and UAVs are known to a control center located at

a central cloud server. The cloud server will determine the UAVs’ locations, device association,

and the transmit power of each IoT device.

We analyze the IoT network within a time interval [0, T ] during which the IoT devices can be

active at different time instances and must be served by the UAVs at some pre-defined time slots.

At the beginning of each slot, the positions of the UAVs as well as the device-UAV association

are updated based on the locations of currently active devices that are assumed to be known to the
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cloud center1. Hereinafter, the time instance at which the UAVs’ locations and associations are

jointly updated, is referred to as the update time. The update times are denoted by tn, 1 ≤ n ≤ N ,

with N being the number of updates. At each update time tn, based on the location of active

devices, the optimal UAVs’ locations and the corresponding association must be determined for

effectively serving the ground devices. Here, the IoT devices that become active during [tn−1, tn)

are served by the UAVs during the time period [tn, tn+1). Note that, during [tn−1, tn), the UAVs’

locations and their device association do not change until the next update time, tn. Clearly,

since at different update times, a different subset of devices might be active, the locations of

the UAVs must dynamically change at each update time. Therefore, each UAV’s trajectory will

consist of N stop locations at which the UAV serves the ground devices. Note that, in our model,

the UAVs locations are not necessarily updated once the set of active devices changes. Instead,

we consider some specific time instances (update times) at which the UAVs locations device

associations, and devices’ transmit power are optimized. In particular, considering the fact that

the set of active devices may continuously change, continuously updating the UAVs’ locations,

the devices transmit powers, and the device-UAV associations may not be feasible as it can

lead to low reliability, high UAVs’ energy consumption, and a need to solve complex real-time

optimization processes. In our model, the update times are design parameters that depend on the

activity of the devices, and the energy of UAVs. Given this model, our objective is to find the

optimal joint UAVs’ locations and device association at each update time tn so as to minimize

the total transmit power of the active devices while meeting each device’s SINR requirement.

Moreover, we need to develop a framework for determining the update times as well as the

UAVs’ mobility to handle dynamic changes in the activity of the devices. To this end, first, we

present the ground-to-air channel model and the activation models for the IoT devices.

A. Ground-to-Air Path Loss Model

In our model, while optimizing the locations of the UAVs, the information available includes

the ground devices’ locations, and the type of environment (e.g. rural, suburban, urban, highrise

urban, etc.). Note that, in such practical scenarios, one will not have any additional information

about the exact locations, heights, and number of the obstacles. Therefore, one must consider the

1We consider static IoT devices in delay-tolerant applications which their fixed locations and activation patterns are known

to the cloud center.
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Fig. 1: System model.

randomness associated with the LoS and NLoS links while designing the UAV-based commu-

nication system. Therefore, for ground-to-air communications, each device will typically have a

LoS view towards a specific UAV with a given probability. This LoS probability depends on the

environment, location of the device and the UAV as well as the elevation angle [8]. One suitable

expression for the LoS probability is given by [1], [6], [8]:

P ij
LoS =

1

1 + ψ exp(−β [θij − ψ])
, (1)

where ψ and β are constant values which depend on the carrier frequency and type of environment

such as rural, urban, or dense urban, and θij is the elevation angle. Clearly, θ = 180
π
×sin−1

(
hj
dij

)
,

where dij =
√

(xi − xuav
j )2 + (yi − yuav

j )2 + h2
j is the distance between device i and UAV j.

From (1), we can see that by increasing the elevation angle or increasing the UAV altitude,

the LoS probability increases. The path loss model for LoS and non-line-of-sight (NLoS) links

between device i and UAV j is given by [6] and [8]:

Lij =

 η1

(
4πfcdij

c

)α
, LoS link,

η2

(
4πfcdij

c

)α
, NLoS link,

(2)

where fc is the carrier frequency, α is the path loss exponent, η1 and η2 (η2 > η1 > 1) are the

excessive path loss coefficients in LoS and NLoS cases, and c is the speed of light. Note that,

the NLoS probability is P ij
NLoS = 1− P ij

LoS. Typically, given only the locations of the UAVs and

devices, it is not possible to exactly determine which path loss type (LoS/NLoS) is experienced

by the device-UAV link. In this case, the path loss average considering both LoS and NLoS

links can be used for the device-UAV communications [6] and [8]. Now, using (1) and (2), the

average path loss between device i and UAV j can be expressed as:

L̄ij = P ij
LoSη1

(
4πfcdij

c

)α
+ P ij

NLoSη2

(
4πfcdij

c

)α
=
[
P ij

LoSη1 + P ij
NLoSη2

]
(Kodij)

α , (3)
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where Ko = 4πfc
c

. Clearly, the average channel gain between the UAV and the device is

ḡij = 1
L̄ij

. Note that, by using the average channel gain, there is no need to account for LoS

and NLoS links separately, and, hence, the SINR expressions become more tractable. Therefore,

we use the average channel gain to model the interference and desired links for all device-UAV

communications while computing the SINRs.

B. IoT Device Activation Model

Indeed, the activation of IoT devices depends on the services that they are supporting. For

instance, in some applications such as weather monitoring, smart grids, or home automation, the

IoT devices need to report their data periodically. However, the IoT devices can have random

activations in health monitoring, or smart traffic control applications. Therefore, the UAVs must

be properly deployed to collect the IoT devices data while dynamically adapting to the activity

patterns of these devices. Naturally, the optimal locations of the UAVs and their update times

depend on the activation process of the IoT devices. Here, we consider two activation models. In

the first model, the IoT devices are randomly activated, as in smart traffic control applications.

In this case, the concurrent transmissions of a massive number of devices within a short time

duration can lead to a bursty traffic as pointed out in [17] and [18]. In fact, when massive IoT

devices attempt to transmit within a short time period, the arrival patterns become more bursty

[19]. Thus, 3GPP suggests a beta distribution to capture this traffic characteristic of IoT devices

[20]. In this case, each IoT device will be active at time t ∈ [0, T ] following the beta distribution

with parameters κ and ω [18]–[20]:

f(t) =
tκ−1(T − t)ω−1

T κ+ω−1B(κ, ω)
, (4)

where [0, T ] is the time interval within which the IoT devices can be active, and B(κ, ω) =∫ 1

0
tκ−1(1− t)ω−1dt is the beta function with parameters κ and ω [21].

In addition, IoT devices such as smart meters typically report their data periodically rather

than randomly. For such devices, the activation process is deterministic and assumed to be known

in advance. In such case, we assume that device i becomes active each τi seconds during [0, T ]

time duration. Clearly, the number of activations for a device i during [0, T ] is
⌊
T
τi

⌋
.

C. Channel Assignment Strategy

Here, given only the devices’ locations, a practical channel assignment approach is to assign

different channels to devices which are located in proximity of each other. This approach
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significantly mitigates the possibility of having strong interference between two closely located

devices. For the channel assignment problem, we have adopted a constrained K-mean clustering

strategy [22], which is an efficient distance-based clustering approach in which a set of given

points are grouped into K clusters based on their proximity. In this case, given the number of

active devices, Ln, and the number of orthogonal channels, R ≤ Ln, we group the devices based

on proximity, and assign different channels to devices which are in the same group.

Now, we present our optimization problem to find the UAVs’ locations, device association,

and transmit power of IoT devices at each update time tn during [0, T ]:

(OP):
min
vj ,c,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (5)

s.t.
Piḡici(vci)∑

k∈Zi
Pkḡkci(vci) + σ2

≥ γ, (6)

0 < Pi ≤ Pmax, (7)

where Ln is the total number of active devices at update time tn, and Ln is the set of devices’

index. P is the transmit power vector with each element Pi being the transmit power of device

i. Also, vj is the 3D location of UAV j, and c is the device association vector with each element

ci being the index of the UAV that is assigned to device i. Pmax is the maximum transmit power

of each IoT device, and σ2 is the noise power. Furthermore, ḡici(vci) is the average channel

gain between device i and UAV ci which is a function of the UAV’s location. Also, ḡkci(vci) is

the average channel gain between interfering device k and UAV ci. In (6), Zi is the set of all

other devices that use the same channel as device i and create interference. γ is the SINR target

which must be achieved by all the devices, (6) represents the SINR requirement, and (7) shows

the maximum transmit power constraint. Hereinafter, we call (OP) the original problem.

Note that, in (5), the transmit power of the IoT devices, the 3D locations of the UAVs, and the

UAV-device associations are unknowns. Clearly, the locations of the UAVs impact the channel

gain between the devices and UAVs, and, hence, they affect the transmit power of each device,

Pi. Furthermore, given (6), due to the mutual interference between the devices, the transmit

power of each device depends also on the transmit power of the interfering devices as well as

the device-UAV associations. In addition, the device-UAV associations depend on the UAVs’

locations which are also unknowns. Therefore, there is a mutual dependency between all the
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Fig. 2: Block diagram for the proposed solution.

optimization variables in (OP). Moreover, considering (1) and constraint (6), we can see that,

this optimization problem is highly non-linear and non-convex. Indeed, solving (5) is significantly

challenging due to the mutual dependency of the optimization variables, non-linearity, and non-

convexity of the problem. Next, we propose a framework for solving this optimization problem.

In essence, our proposed framework for solving (OP) proceeds as follows. At each update

time tn, given the fixed UAVs’ locations, we find the optimal device-UAV association and the

transmit power of the devices. Next, given the fixed UAV association from the previous step,

we determine the sub-optimal locations of the UAVs and update the transmit power the devices

accordingly. This procedure is done iteratively until the 3D UAVs’ locations, device association,

and the transmit power of the devices are found. Clearly, at each step, the total transmit power

of the devices decreases, and, hence, the proposed algorithm converges. Fig. 2 shows a block

diagram that summarizes the main steps for solving (OP). Next, we discuss, in detail, each block

of the proposed solution in Fig. 2.

III. UAV DEPLOYMENT AND DEVICE ASSOCIATION WITH POWER CONTROL

Here, given the locations of active IoT devices, we minimize the total transmit power of

the devices by solving (5). Clearly, the UAVs’ locations and the device association are mutually

dependent. In particular, to find the device association, the locations of the UAVs must be known.

Moreover, the UAVs’ locations cannot be optimized without knowing the device association.

Therefore, we decompose (OP) into two subproblems that will be solved iteratively. In the

first subproblem, given the locations of the UAVs, we find the optimal device association and

the transmit power of the devices such that the uplink SINR requirements of all active devices

are satisfied with a minimum total transmit power. In the second subproblem, given the device

association resulting from the first subproblem, we determine the sub-optimal locations of the



10

UAVs for which the transmit power of the devices is minimized. Note that, this is an iterative

process in which the results of each subproblem are used in the other subproblem for the next

iteration. These computations are performed by the control center until the 3D UAVs’ locations,

device association, and transmit power of the devices are obtained.

Note that, given the limited number of available orthogonal channels, the interference between

the devices will depend on the number of active devices at each update time. Clearly, there is no

interference when the number of active devices at time tn is less than the number of orthogonal

channels, or equivalently Ln ≤ R. Given that, in the interference-free scenario, one can provide

a more tractable analysis, here, for the deployment and association steps. Therefore, we will

investigate the interference and interference-free scenarios, separately.

A. Device Association and Power Control

Here, given initial locations of the UAVs, we aim to find the optimal device association as well

as the transmit power of each IoT device such that the total transmit power used for successful

uplink communications is minimized.

1) Interference scenario: In the presence of uplink interference when Ln > R, the power

minimization problem at update time tn will be given by:
(P1-a):

min
c,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (8)

s.t.
Piḡici∑

k∈Zi
Pkḡkci + σ2

≥ γ, (9)

0 < Pi ≤ Pmax. (10)

To solve (P1-a), we need to jointly find the optimal device association and the transmit power

of all active devices under the SINR constraints for the given UAVs’ locations. Clearly, given the

fixed UAVs’ locations, optimization variables are the device association and the transmit power

of the devices. Note that, satisfying the SINR requirement of each device significantly depends

on the distance and altitude of its serving UAV. Therefore, the feasibility of the optimization

problem in (8) depends on the locations of the UAVs. Next, we derive an upper bound and a

lower bound for the altitude of serving UAV j as a function of its distance from device i.
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Proposition 1. The lower and upper bounds for the altitude of a UAV j needed to serve a

device i (meeting its SINR requirement), are given by:

dij sin

(
1

β
ln

(
ψQ

1−Q

)
+ ψ

)
≤ hj ≤

(
Pmax

γKα
o σ

2η1

)1/α

, (11)

where dij is the distance between UAV j and device i, and Q = Pmax
γdαijKo

ασ2(η1−η2)
− η2

η1−η2 .

Proof: Let Ii be the cumulative interference from interfering devices on device i, then:

SINRi =
Piḡij
Ii + σ2

≥ γ,

dαij ≤
Pi

γKα
o (Ii + σ2)

(
η1P

ij
LoS + η2P

ij
NLoS

) ≤ Pmax

γKα
o σ

2
(
η1P

ij
LoS + η2(1− P ij

LoS)
) ,

P ij
LoS ≥

Pmax

γdαijK
α
o σ

2 (η1 − η2)
− η2

η1 − η2

,

considering Q =
Pmax

γdαijK
α
o σ

2 (η1 − η2)
− η2

η1 − η2

, and using equation (1),

θij
(a)

≥ 1

β
ln

(
ψQ

1−Q

)
+ ψ,

hj ≥ dij sin

(
1

β
ln

(
ψQ

1−Q

)
+ ψ

)
, (12)

where (a) stems from (1). Also, we have:

dαij ≤
Pmax

γKα
o σ

2
(
η1P

ij
LoS + η2(1− P ij

LoS)
) (b)

≤ Pmax

γKα
o σ

2η1

, (13)

where in (b) we consider PLoS = 1 which is equivalent to hj = dij . Finally,

hj ≤
(

Pmax

γKα
o σ

2η1

)1/α

. (14)

Clearly, (12) and (14) prove the proposition.

Proposition 1 provides the necessary conditions for the UAV’s altitude needed in order to be

able to serve the IoT device. From (11), the minimum altitude must increase as the distance

increases. In other words, the UAV’s altitude needs to be adjusted based on the distance such

that the elevation angle between the device and the UAV exceeds 1
β

ln
(
ψQ

1−Q

)
+ψ. Furthermore,

as expected, the maximum altitude of the UAVs significantly depends on the maximum transmit

power of the devices as given in (14).

Now, given the fixed UAVs’ locations, problem (P1-a) corresponds to the problem of joint

user association and uplink power control in the terrestrial base station scenario. The algorithm
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presented in [23] and [24] leads to the global optimal solution to the joint user association and

uplink power control under the SINR and maximum transmit power constraints. As a result, the

optimal transmit power of users and the base station association for which the total uplink transmit

power is globally minimized, is determined. In problem (P1-a), the IoT devices correspond to

the users, and fixed positioned UAVs correspond to the terrestrial base stations. For our case,

this algorithm, as given in Algorithm 1, will proceed as follows. We start with an initial value

for transmit power of all active devices in step 3. Then, in step 4 we compute ρ(t)
ij at iteration t.

In this case, ρ(t)
ij represents the minimum required transmit power of device i to reach an SINR

of 1 while connecting to UAV j, given the fixed transmit power of other devices. In step 5, we

find the minimum transmit power of device i if it connects to the best UAV. Then, the index of

the best UAV which is assigned to device i is given in step 6. In step 7 we update the transmit

power of device i in order to achieve an SINR of γ. Steps 4 to 7 must be repeated for all devices

to obtain the optimal transmit power and the device association vectors.

Algorithm 1 Iterative algorithm for joint power control and device-UAV association

1: Inputs: Locations of UAVs and IoT devices

2: Outputs: Device association vector (c), and transmit power of all devices (P ).

3: Set t = 0, and initialize P (0) =
(
P

(0)
1 , ..., P

(0)
K

)
.

4: Define ρ(t)
ij =

σ2+
∑

k∈Zi

P
(t)
k ḡkj

ḡij
.

5: Compute Si(P (t)) = min
j∈K

ρ
(t)
ij .

6: Find ci(P (t)) = argmin
j∈K

ρ
(t)
ij .

7: Update P (t+1)
i = min

{
γSi(P

(t)), Pmax

}
, ∀i ∈ Ln.

8: Repeat steps 4 to 7 for all devices until P (t) converges.

9: P = P (t), c =
[
ci(P

(t))
]
,∀i ∈ Ln.

As shown in [23], after several iterations this algorithm quickly converges to the global optimal

solution if the SINR of each device is equal to γ. Hence, by solving (P1-a), we are able to find

the optimal transmit power of the devices and the device association for any given fixed locations

of the UAVs. Then, the device association and transmit power of the devices will be used as

inputs for solving the second subproblem in which the UAVs’ locations need to be optimized

(in Subsection III-B).
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2) Interference-free scenario: At each update time tn, if the number of active devices is lower

than the number of orthogonal channels or equivalently Ln ≤ R, there will be no interference

between the devices. Unlike in the interference scenario, here, the transmit power of each device

can be computed only based on the channel gain between the device and its serving UAV.

Therefore, considering (3), and (6) without interference, the minimum transmit power of device

i in order to connect to UAV j is Pi = γσ2L̄ij . In this case, given the locations of the UAVs

(fixed for all vj), L̄ij is known for all devices and problem (P1-a) can be simplified. Hence, the

optimal association problem under minimum power in the interference-free scenario will be:
(P1-b):

min
Aij

K∑
j=1

Ln∑
i=1

AijL̄ij, (15)

s.t.
K∑
j=1

Aij = 1, ∀i ∈ Ln, (16)

AijL̄ij ≤
Pmax

γσ2
, Aij ∈ {0, 1}, ∀i ∈ Ln, j ∈ K, (17)

where L̄ij is the average path loss between device i and UAV j, which is known, give the locations

of the UAV and the device. Aij is equal to 1 if device i is assigned to UAV j, otherwise Aij

will be equal to 0. Clearly, the optimization problem in (15) is an integer linear programming

(ILP). In general, this problem can be solved by using standard ILP solution methods such as the

cutting plane. However, these solutions might not be efficient as the size of the problem grows.

In particular, due to the potentially high number of IoT devices, a more efficient technique for

solving (15) is needed. Here, we transform problem (15) to a standard assignment problem [25]

which can be solved in polynomial time. In the assignment problem, the objective is to find the

optimal one-to-one assignment between two sets of nodes with a minimum cost. In our problem,

the devices and the UAVs can be considered as two sets of nodes that need to be assigned to each

other with an assignment cost of Lij between nodes i and j. However, compared to the classical

assignment problem, (P1-b) has an additional constraint in (17) which results from the transmit

maximum power constraint. This constraint indicates that device i cannot be assigned to UAV j if

L̄ij >
Pmax
γσ2 . Therefore, in the assignment problem we can consider Lij = +∞ to avoid assigning

device i to UAV j when L̄ij > Pmax
γσ2 that implies the constraint in (17) is violated. Subsequently,

using the updated assignment costs, Lij , problem (P1-b) will be transformed to the classical

assignment problem which can be solved using the Hungarian method with a time complexity
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of O((LnK)3) [26]. We note that, in absence of interference, problems (P1-a) and (P1-b) have

the same solution. Next, we present the second subproblem of the original optimization problem

(5) in order to optimize the UAVs’ locations.

B. Optimal Locations of the UAVs

In this section, given the optimal device association, our goal is to find the sub-optimal

locations of the UAVs for which the total transmit power of the devices is minimized. In other

words, considering the mobile nature of the UAVs, we intelligently update the location of each

UAV based on the location of its associated IoT devices.

1) Interference scenario: In this scenario, given the UAV-device associations, the optimization

problem to find the 3D locations of the UAVs and the transmit power of the devices will be:

(P2-a):

min
vj ,P

Ln∑
i=1

Pi , ∀i ∈ Ln, ∀j ∈ K, (18)

s.t.
Piḡij(vj)∑

k∈Zi
Pkḡkj(vj) + σ2

≥ γ, (19)

0 < Pi ≤ Pmax, (20)

where vj = (xuav
j , yuav

j , hj) indicates the 3D location of UAV j. Clearly, the channel gains used

in (19) depend on the locations of the UAVs. Note that, according to (1) and (3), ḡij(vj) is

a non-convex function of vj . Consequently, constraint (19) is also non-linear and non-convex.

Furthermore, the transmit power of the devices and the UAVs’ locations are mutually dependent.

On the one hand, the location of each UAV must be determined such that its associated devices

can connect to it with a minimum transmit power. On the other hand, the UAV’s location

will impact the amount of interference received from other interfering devices. Indeed, solving

the optimization problem in (P2-a) is challenging as the problem is highly non-linear and non-

convex. In particular, the complexity of this problem stems from the mutual dependence between

the transmit power of the devices and the locations of the UAVs.

Our proposed approach to solve (P2-a) is based on optimizing the location of each UAV

separately. Note that, using the results of (P1-a), for each UAV, the associated and non-associated

devices and their transmit power, P ∗i , are known. Our proposed solution proceeds as follows.

The cloud starts by considering a single UAV and then optimizing its location given the fixed
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transmit power for the non-associated devices. Then, the cloud updates the transmit power of

the associated devices according to the new location of their serving UAV. Hence, at each step,

the location of a UAV and the transmit power of its associated devices are updated. At each

iteration, after finding P ∗i , we set Pmax = P ∗i for the next iteration. This ensures that the transmit

power of the devices does not increase during the iterative process. The entire process is repeated

by the cloud for all UAVs one-by-one, until the transmit power of the devices cannot be further

reduced by changing the UAVs’ locations. Note that, at each step, one must determine the optimal

location of each UAV such that the total transmit power of its associated devices is minimized.

Now, let Cj be the set of devices’ index associated to UAV j. Given (3), (18), and (19), the

optimal location of UAV j can be determined by solving the following problem:

min
vj

∑
i∈Cj

Fi(vj), (21)

s.t. Fi(vj) = γ
(
η1P

ij
LoS + η2P

ij
NLoS

)
(Kodij)

α

∑
k∈Zi

Pk(
η1P

kj
LoS + η2P

kj
NLoS

)
(Kodkj)

α
+ σ2

, (22)

Fi(vj) ≤ P ∗i , ∀i ∈ Cj, (23)

Note that, P ij
LoS, P kj

LoS, dkj , and dij depend on the locations of UAVs (vj). Also, (23) guarantees

that the transmit power of each device is reduced by updating the location of serving UAV.

Clearly, (21), (22), and (23) are non-linear and non-convex. Considering the fact that the

objective function and constraints are twice differentiable, we convert (21) to a quadratic form

which can be solved using efficient techniques. In particular, we adopt the sequential quadratic

programming (SQP) method as one of the most powerful algorithms for solving large scale and

constrained differentiable non-linear optimization problems [27]. Clearly, considering the high

non-linearity of (22) as well as the large number of constraints, the SQP is a suitable method for

solving our optimization problem. In the SQP method, the objective function is approximated by

a quadratic function, and the constraints are linearized. Subsequently, the optimization problem

is solved by solving multiple quadratic subproblems. In our optimization problem, to find the

optimal location of UAV j, vj,k, we start with an initial point vj,k (starting with k = 0). Then,

we use the first order necessary optimality or Karush-Kuhn-Tucker (KKT) conditions to find the
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Lagrangian variables. In particular, we use:

∇L(vj,k,λk) =
∑
i∈Cj

∇Fi(vj,k) +∇wi(vj,k)λk = 0, (24)

where L(vj,k,λk) =
∑
i∈Cj

Fi(vj,k) + λTw(vj,k) is the Lagrangian function, λk is the vector of

Lagrangian variables, and w(vj,k) is a vector of functions with each element being wi(vj,k) =

(Fi(vj,k)− P ∗i ). Then, given vj,k, we determine the Lagrange variables by [27]:

λk = −
[
wi(vj,k)

T∇wi(vj,k)
]−1∇wi(vj,k)

T
∑
i∈Cj

∇Fi(vj,k). (25)

In the next step, we update vj,k+1 = vj,k + dk, where dk is the solution to the following

quadratic programming problem:

dk = arg min
d

∑
i∈Cj

∇Fi(vj,k)Td+
1

2
dT∇2 [L(vj,k,λk)]d, (26)

s.t. Fi(vj,k) +∇Fi(vj,k)Td− P ∗i ≤ 0, ∀i ∈ Cj, (27)

where, ∇ and ∇2 indicate the gradient and Hessian operations. Clearly, (26) is an inequal-

ity constrained quadratic programming. Moreover, it can be shown that the Hessian matrix,

∇2 [L(v,λk)], is not positive semidefinite, and, hence, (26) is non-convex in general. In this

case, the two possible solution approaches are the active set, and the interior point methods.

Typically, the active set method is preferred when the Hessian matrix is moderate/small and

dense. The interior point, however, is a suitable approach when the Hessian matrix is large and

sparse [28]. In our problem, due to the potential possible high number of active devices, the

number of constraints can be high. Therefore, the Hessian matrix, ∇2 [L(vj,k,λk)], is large and

sparse, and, hence, the interior point method is used.

Finally, based on (24)-(27), the sub-optimal location of each UAV (vj), given the fixed

device association, will be determined. Next, we address the UAVs’ location optimization in

an interference-free scenario.

2) Interference-free scenario: In the absence of interference, we are able to provide tractable

analysis on the UAVs’ locations optimization. Considering α = 2 for LoS ground-to-air propa-

gation [8], the optimal locations of the UAVs will be given by:
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Fig. 3: Error in the objective function approximation.

(P2-b):
min
vj

∑
i∈Cj

K2
oσ

2γ
(
η1P

ij
LoS + η2P

ij
NLoS

)
dij

2, (28)

s.t.
(
η1P

ij
LoS + η2P

ij
NLoS

)
d2
ij ≤

Pmax

K2
oσ

2γ
, ∀i ∈ Cj. (29)

This optimization problem is non-convex over vj = (xuav
j , yuav

j , hj). However, given any altitude

hj , we can provide a tractable solution to this problem. First, given hj , we consider the following

function that is used in (28):

q(dij) = K2
oσ

2γ
(
η1P

ij
LoS + η2P

ij
NLoS

)
d2
ij. (30)

Clearly, considering the fact that 0 ≤ P ij
LoS ≤ 1, and P ij

NLoS = 1− P ij
LoS, we have:

K2
oσ

2γη1d
2
ij ≤ q(dij) ≤ K2

oσ
2γη2d

2
ij. (31)

From (31), we can see that q(dij) is bounded between two quadratic functions that each is linearly

proportional to d2
ij . Now, using the least square estimation method, we find the coefficients α1 and

α2 such that, given any hj , q(dij) is approximated by the following convex quadratic function:

q(dij) ≈ α1d
2
ij + α2. (32)

where α1 and α2 are altitude dependent coefficients. Note that, using the quadratic approximation,

the solution of (28) becomes more tractable.

Fig. 3 shows the error in the objective function (28) due the quadratic approximation. As we

can see from Fig. 3 which is obtained based on the parameters in Table I, the error is less than

4% for different UAVs’ altitudes.

Now, in constraint (29), we consider D =
(
η1P

ij
LoS + η2P

ij
NLoS

)
d2
ij . Clearly, D is an increasing

function of dij since η1−η2< 0, and for a fixed altitude, LoS probability is a decreasing function

of distance. Therefore, using dij2 = (xi − xuav
j )2 + (yi − yuav

j )2 + h2
j , and (32), for any given hj

we can write the optimization problem (28) as:

min
xuav
j ,yuav

j

∑
i∈Cj

(xuav
j − xi)

2 + (yuav
j − yi)

2 + hj
2, (33)
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s.t. (xuav
j − xi)2 + (yuav

j − yi)2 + h2
j − ε2 ≤ 0, ∀ i ∈ Cj, and j ∈ K. (34)

where ε = {d|K2
oσ

2γ (η1PLoS + η2PNLoS) d2 = Pmax}. Next, we derive the solution to problem

(33) that corresponds to finding the sub-optimal UAVs’ locations.

Theorem 1. The solution to (33) is given by s∗ = (xuav
j
∗, yuav

j
∗) = −P (λ)−1Q(λ), with the

vector λ that maximizes the following concave function:

max
λ

1

2
Q(λ)TP (λ)−1Q(λ) + r(λ), (35)

s.t. λ ≥ 0, (36)

where P (λ) = P o +
|Cj |∑
i=1

λiPi, Q(λ) = Qo +
|Cj |∑
i=1

λiQi and r(λ) = ro +
|Cj |∑
i=1

λiri, with P o, Qo,

ro, P i, Qi, and ri given in the proof.

Proof: As we can see from (33), the optimization problem is a quadratically constrained

quadratic program (QCQP) whose general form is given by [29]:

min
s

1

2
sTP os+QT

o s+ ro, (37)

s.t.
1

2
sTP is+QT

i s+ ri, i ∈ Cj. (38)

Given (33) and (34), we have:

P o =

 2|Cj| 0

0 2|Cj|

, P i =

 2 0

0 2

,Qo =

[
−2

|Cj |∑
i=1

xi −2
|Cj |∑
i=1

yi

]T
,Qi =

[
−2xi −2yi

]T
.

Also, ro =
|Cj |∑
i=1

x2
i +
|Cj |∑
i=1

y2
i , and ri = x2

i +y2
i +h2

j−ε2 with ε = {d|K2
oσ

2γ (η1PLoS + η2PNLoS) d2 =

Pmax}. Note that, P o and P i are positive semidefinite matrices, and, hence, the QCQP problem

in (37) is convex. Now, we write the Lagrange dual function as:

f(λ) = inf
s

[
1

2
sTP os+QT

o s+ ro +
∑
i

λi

(
1

2
sTP is+QT

i s+ ri

)]
= inf

s

[
1

2
sTP (λ)s+Q(λ)Ts+ r(λ)

]
. (39)

Clearly, by taking the gradient of the function inside the infimum with respect to s, we find

s∗ = −P (λ)−1Q(λ). As a result, using s∗, f(λ) = 1
2
Q(λ)TP (λ)−1Q(λ)+ r(λ). Finally, the

dual of problem (37) or (33) will be:

max f(λ), s.t. λ ≥ 0, (40)
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which proves Theorem 1.

Using Theorem 1, for a fixed altitude, we find the optimal 2D coordinates of the UAV, s∗ =

(xuav
j
∗, yuav

j
∗). Then, the optimal UAV’s altitude is the argument that minimizes the following

one-dimensional function as:
h∗j = arg min

hj

[
α1

(
h2
j + ‖s∗‖2)+ α2

]
. (41)

where α1 and α2 are the altitude dependent coefficients given in (32). Note that, given (41), the

sub-optimal altitude of the UAV is obtained via one dimensional search over a feasible range of

altitudes. Consequently, we can determine the optimal 3D location of each UAV.

Note that, the device association (presented in Section III), and UAVs’ locations optimization

(in Section IV) are applied iteratively until there is no change in the location update step. Clearly,

at each iteration, the total transmit power of the devices is reduced and the objective function

is monotonically decreasing. Hence, the solution converges after several iterations. Note that,

our proposed approach provides a suboptimal solution to the original problem. Nevertheless, our

solution has a reasonable accuracy but significantly fast compared to the global optimal solution

that can be achieved by the brute-force search, as will be further corroborated in the simulations.

Thus far, we considered the IoT network at one snapshot in the time duration [0, T ]. Next, we

analyze the IoT network considering the entire time duration [0, T ] in which the set of active

devices changes. In this case, to maintain the power-efficient and reliable uplink communications

of the devices, the UAVs must update their locations at different update times tn.

IV. UPDATE TIMES AND MOBILITY OF UAVS

Here, we find the optimal update time and trajectory of the UAVs to guarantee the reliable

uplink transmissions of the IoT devices. Clearly, the trajectory of the UAVs, as well their update

time depend on the activation process of the IoT devices. Furthermore, to move along the optimal

trajectories, the UAVs must spend a minimum total energy on mobility so as to remain operational

for a longer time. In the considered ground IoT network, the set of active IoT devices changes

over time. Consequently, the UAVs must frequently update their locations accordingly. Note that,

the UAVs do not continuously move as they must stop, serve the devices, and then update their

locations. Furthermore, the mobility of the UAVs is also limited due to their energy constraints.

Hence, the UAVs update their locations only at some specific times. In this case, during time

interval [0, T ], we need to find update times tn, 1 ≤ n ≤ N with N updates, and a framework for
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optimizing the mobility of the UAVs at different update times. Here, for tractability, we assume

that the devices are synchronized at t = 0. In this case, the synchronization process needs to be

done only once during the entire activation period [0, T ]. Note that, our optimization problems

for jointly finding the optimal UAVs’ locations, the device association, and devices’ transmit

power at each update time do not depend on this synchronization assumption.

A. Update Time Analysis

First, we propose a framework to find the update times of the UAVs. As discussed in Section II,

each UAV’s trajectory consists of multiple stop locations (determined in update times) at which

each UAV serves its associated ground devices. Clearly, the update times depend on the activation

of the IoT devices during the given time period [0, T ]. Indeed, the number of update times, N ,

impacts the optimal location and trajectory of the UAVs as well as the power consumption of the

IoT devices. A higher number of updates leads to a shorter time interval between the consecutive

updates. Hence, a lower number of devices will be active during the shorter time interval. In

such a case, the active devices experience lower interference from each other while transmitting

their data to the UAVs. Therefore, the IoT devices can use lower transmit power to meet their

SINR constraint. However, a higher number of updates requires more mobility and higher energy

consumption for the UAVs. Next, we provide insightful analysis on the update time based on

the probabilistic and periodic activation models of the IoT devices.

1) Periodic IoT activation: In some applications such as weather monitoring, smart grids

(e.g. smart meters), and home automation, the IoT devices can report their data periodically.

Therefore, the devices are activated periodically. Let τi be the activation period of device i

during [0, T ]. Without loss of generality, assume τ1 ≤ τ2 ≤ ... ≤ τL. Due to the periodic nature

of devices’ activation, we can find the exact number of active devices at each update time tn.

Proposition 2. The exact number of active IoT devices at update time tn is given by:

bn =
L∑
i=1

1

(⌊
tn
−

τi

⌋
>

⌊
tn−1

τi

⌋)
, n > 1, (42)

b1 = arg max
i
{t1 > τi} , (43)

where 1(.) is the indicator function which can only be equal to 1 or 0, and tn− = lim
ε→0+

(tn− ε).
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Proof: User i becomes active during [tn−1, tn) if there exists q ∈ N such that tn−1 ≤ qτi < tn.

Thus, the number of activations of device i before tn must be greater than the one until tn−1.

Considering the fact that the number of activations before tn is
⌊
tn−

τi

⌋
, and until tn−1 is

⌊
tn−1

τi

⌋
,

we must have: ⌊
tn
−

τi

⌋
>

⌊
tn−1

τi

⌋
. (44)

Hence, the total number of active devices which need to be served at tn is equal to:

bn =
L∑
i=1

1

(⌊
tn
−

τi

⌋
>

⌊
tn−1

τi

⌋)
. (45)

Finally, considering t0 = 0, we can write b1 as: b1 = arg max
i
{t1 > τi}.

Proposition 2 gives the exact number of devices that must be served by UAVs at each update

time. In this case, the update times can be adjusted according to the number of devices that

can be served by the UAVs. Indeed, knowing the exact number of active devices enables us to

determine the update times in a deterministic and efficient way based on system requirements.

2) Probabilistic IoT activation: Certain IoT devices can have probabilistic activations in

applications such as health monitoring, and smart traffic control. In this case, each IoT device

becomes active at time t ∈ [0, T ] following the beta distribution as given in (4). For this scenario,

we will next derive the specific update times as a function of the average number of active devices.

Theorem 2. The update times during which, on the average, a total of an devices must be

served by the UAVs, are given by:

tn = T × I−1
(an
L

+ I tn−1
T

(κ, ω) , κ, ω
)
, n > 1, (46)

t1 = T × I−1
(a1

L
, κ, ω

)
, (47)

where Ix(.) is the regularized incomplete beta function and I−1(.) is its inverse function. L is the

total number of IoT devices, and [0, T ] is the time interval during which the devices can be active.

Proof: First, we find the probability that each device becomes active in order to send its

data to a UAV at update time tn. As discussed in the system model, a device needs to transmit at

time tn if it becomes active during time [tn−1, tn). Thus, the probability that each device needs

to be served at tn is:

pn =

∫ tn

tn−1

tκ−1(T − t)ω−1

T κ+ω−1B(κ, ω)
dt =

∫ tn
T

tn−1
T

tκ−1(1− t)ω−1

B(κ, ω)
dt,



22

=
B tn

T
(κ, ω)−B tn−1

T

(κ, ω)

B(κ, ω)
= I tn

T
(κ, ω)− I tn−1

T

(κ, ω), (48)

where Bx(κ, ω) =
∫ x

0
yκ−1(1− y)ω−1dy is the incomplete beta function with parameters κ and

ω, and Ix(.) is the regularized incomplete beta function.

Now, the average number of active devices at tn is given by:

an =
L∑
k=1

(
L

k

)
pn

k(1− pn)L−k = Lpn

L∑
k=1

(L− 1)!

(k − 1)! (L− k)!
pn

k−1(1− pn)L−k,

=
L′∑
k′=0

(L′)!

(k′)! (L′ − k′)!
pn

k′−1(1− pn)L
′−k′ = Lpn, (49)

where in (a), we used L′ = L− 1 and k′ = k− 1. Note that, (49) corresponds to the mean of a

binomial distribution. Then we have:

L
[
I tn
T

(κ, ω)− I tn−1
T

(κ, ω)
]

= an. (50)

This leads to:

tn = T × I−1
(an
L

+ I tn−1
T

(κ, ω) , κ, ω
)
. (51)

Finally, considering I0(.) = 0, we find t1 = T × I−1
(
a1
L
, κ, ω

)
.

Clearly, the update times need to be determined based on the IoT devices’ activation patterns.

In fact, tn depends on the number of IoT devices, and their activation distribution. Furthermore,

according to (46), each tn depends also on the previous update time, tn−1. This is due to the

fact that, the number of active devices that need to be served at tn, depends on the update time

difference tn − tn−1. Using Theorem 2, the update times of the UAVs can be set based on the

average number of active devices. Typically, at each update time, the number of devices which

need to be served by the UAVs should not be high in order to avoid high interference. However,

considering the number of available resources (orthogonal channels and UAVs), it is preferable to

serve a maximum number of active devices at each update time. Hence, in this case, the number

of active devices at each update time must not be relatively low.Therefore, considering system

requirements and different parameters such as mutual interference between devices, acceptable

delay for serving the devices, and number of available channels, an appropriate tn must be

adopted. For instance, using Theorem 2, the update times can be set such that the average number

of active devices be lower than the number of channels, R, to avoid interference between the

devices. Next, we investigate the UAVs’ mobility during the update times.
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B. UAVs’ Mobility

Thus far, we have determined the update times as well as the stop locations at each update

time. Here, we investigate how the UAVs should move between the stop locations at different

update times. In this case, considering the energy limitation of the UAVs, Emax, we find the

optimal trajectory of each UAV to guarantee reliable and energy-efficient uplink transmissions of

active IoT devices. The UAVs update their locations according to the activity of the IoT devices.

Therefore, the UAVs move from their initial locations at tn−1 to a new optimal locations at tn.

This mobility should be done in such a way that the UAVs spend a minimum total energy on the

mobility so as to remain operational for a longer time. In fact, given the optimal sets of UAVs’

locations at tn−1 and tn obtained from Section III, we determine how to move the UAVs between

the initial and the new sets of locations in order to minimize total mobility of the UAVs.

Now, let In−1 and In be two sets comprising the UAVs’ locations at two consecutive update

times tn−1 and tn. Our goal is to find the optimal mapping between these two sets in a way that

the energy used for transportations (between two sets) is minimized. Not that, in our model, the

total energy which each UAV can use for the mobility during [0, T ] is limited to Emax. Clearly, in

the multiple updates (mobilities) during [0, T ], the maximum energy consumption of each UAV

at each update is equal to the remaining energy of the UAV. Let Γn,k be the remaining energy

of the UAV at the location having index k ∈ In−1 at time tn. Then, we can write the following

UAVs’ mobility optimization problem:

min
Z

∑
l∈In

∑
k∈In−1

EklZkl, (52)

s.t.
∑
l∈In

Zkl = 1,
∑

k∈In−1

Zkl = 1, (53)

Elk ≤ Γn,k , Zkl ∈ {0, 1}, ∀k ∈ In−1, ∀l ∈ In, (54)

where In−1 and In, are the initial and new sets of UAVs’ locations at times tn−1 and tn. Z

is the |In| × |In| assignment matrix with each element Zkl being 1 if UAV k is assigned to

location l, and 0 otherwise. Ekl is the energy used for moving a UAV from its initial location

with index k ∈ In−1 to a new location with index l ∈ In. Also, Γn,k is the remaining energy

for the UAVs at time tn. Note that, (54) guarantees that UAVs remain operational until the end

of the period T . The total energy consumption of the rotary wing UAV while moving between
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two stop locations can be computed as done in [30]:

E =
D

v
(PV + PH) , (55)

where D is the distance between two stop locations, D/v is the flight duration, PV is the power

consumption for vertical movement, and PH is the power consumption for horizontal movement.

Clearly, if the altitude difference between two stop locations is ∆h, the effective vertical and

horizontal velocities will be vv = v sinφ and vh = v cosφ, with φ = sin−1
(

∆h
D

)
. According to

[31] and [32], PH is composed of parasitic power and induced power needed for overcoming the

parasitic drag and the lift-induced drag. The parasitic power, based on [32, equations (13.32),

(13.27), and (11.3)], can be given by:

PP =
1

2
ρCDoAev

3
h +

π

4
NbcbρCDoω

3R4

(
1 + 3

( vh
ωR

)2
)
, (56)

where vh is the effective horizontal velocity, CDo is the drag coefficient, ρ is the air density, cb

is the blade chord, Nb is the number of blades, and Ae is the reference area (frontal area of the

UAV) [31] and [32]. We note that the second term in (56) represents the blade power profile.

Using [32, equations (13.19), (13.13), and (12.2)], the induced power (assuming zero tilt angle)

can be computed by:
PI = ωRW × λ, (57)

where R is the rotor disk radius, W is the weight of the UAV, and ω is the angular velocity.

Also, given [32, (13.18), (13.13), and (12.1)], we can find λ by solving the following equation:

g (λ) = 2ρπω2R4λ

√
v2
h

ω2R2
+ λ2 −W = 0. (58)

The power consumption due to the vertical climbing and descending (assuming rapid descent)

can be given by [32, equations (12.35), (12.47), (12.50)]:

PV =


W
2
vv + W

2

√
vv2 + 2W

ρπR2 , climbing,

W
2
vv − W

2

√
vv2 − 2W

ρπR2 , descending (in windmill state),
(59)

where vv is the effective vertical velocity. Finally, the total mobility energy consumption is

computed using (55)-(59).

Clearly, the optimization problem in (52) is an integer linear programming (ILP). Following the

similar approach we used for solving (15), we transform problem (52) to a standard assignment

problem which can be solved using the Hungarian method in a polynomial time with a complexity
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Table I: Simulation parameters.
Parameter Description Value

Pmax Maximum transmit power of each device 200 mW

α Path loss exponent for LoS links 2

σ2 Noise power -130 dBm

γ SINR threshold 5 dB

L Total number of IoT devices 500

η1 Additional path loss to free space for LoS 3 dB

η2 Additional path loss to free space for NLoS 23 dB

of O(|In|3). To this end, we need to remove constraint (54) by considering Elk = +∞ when

the constraint is not satisfied. To determine when (54) is not satisfied, we use In−1 and In to

compute Elk, and compare it with the remaining energy of the UAVs, Γn,k. Then, in the objective

function (52), we replace each Elk corresponding to the unsatisfied constraint with Elk = +∞.

Consequently, (52) is transformed into a standard assignment problem. The result of solving (52)

will be the assignment matrix, Z, that optimally assigns the UAVs to the destinations. Therefore,

the locations of the UAVs are updated according to the new destinations. Then, having the desti-

nations of each UAV at different update times, we can find the optimal trajectory of the UAVs.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, the IoT devices are deployed within a geographical area of size 1 km×

1 km. In this case, we consider a total number of 500 IoT devices which are uniformly distributed

on the area. Furthermore, we consider UAV-based communications in an urban environment with

ψ = 11.95 and β = 0.14 at 2 GHz carrier frequency [8]. Table I lists the simulation parameters.

Here, we analyze the transmit power of the IoT devices, the energy consumption of UAVs

on their mobility, and the update times. In our update time analysis, unless otherwise stated,

we consider the probabilistic activation model for the IoT devices with the beta distribution

parameters κ = 3, and ω = 4 [20]. When applicable, we compare our results with pre-deployed

stationary aerial base stations (UAVs) scenario while adopting the optimal device association

and power control technique of Subsection III-A. In the stationary case, the locations of UAVs

are assumed to be fixed over the target area and they are not updated according to the devices’

locations. All statistical results are averaged over a large number of independent runs.

Note that, in the given IoT network, serving all the active devices may not be possible due to

the limitations on the number of UAVs and the maximum transmit power of the devices. Thus,
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Fig. 4: Reliability comparison between the proposed approach and stationary aerial base stations using 5 UAVs.

in Fig. 4, we show the achieved system reliability which, here, is defined as the probability that

all the active devices can be served by the UAVs. Clearly, the reliability depends on the locations

and transmit powers of the devices as well as the number of UAVs.

Fig. 4 shows the reliability as the maximum transmit power of the devices, Pmax, varies. In

this case, 5 UAVs are deployed to serve 100 active IoT devices. Clearly, as Pmax increases, the

reliability also increases. In fact, for higher Pmax values, the devices have higher a chance to

successfully connect to UAVs. From Fig. 4, we can see that, our proposed approach leads to a

significantly improved reliability compared to the case in which stationary aerial base stations are

used. In particular, the difference between the reliability of the stationary case and our proposed

approach is significant for lower Pmax. Indeed, a higher reliability is achieved by dynamically

optimizing the UAVs’ locations based on the locations of the IoT devices. As shown in Fig.

4, by increasing Pmax from 40 mW to 100 W, the reliability increases from 0.3 to 0.72 for the

stationary case, while it increases from 0.58 to 0.82 in our proposed approach. Furthermore, the

proposed approach yields a maximum of 28% improvement in the system reliability.

Fig. 5 shows a snapshot of the UAVs’ locations and their associated IoT devices (indicated

by the same color) resulting from the proposed approach. In this figure, 5 UAVs are efficiently

deployed to serve 100 active IoT devices which are uniformly distributed on the area. In this

case, all the devices are able to send their data to the associated UAVs by using a minimum

total transmit power. Here, the 3D locations of the UAVs as well as the device association are

determined based on the locations of the ground IoT devices and their transmit power.

In Fig. 6, we show the total transmit power needed by the IoT devices for reliable uplink

communications, versus the number of UAVs in the interference scenario. Clearly, the total

transmit power of the IoT devices can be reduced by deploying more UAVs. For instance,
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Fig. 5: UAVs’ locations and associations for one illustrative snapshot.
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Fig. 6: Total transmit power of devices vs. number of

UAVs in the presence of interference.
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Fig. 7: Total transmit power of devices vs. number of

UAVs in the interference-free scenario.

considering 100 active devices and 20 available channels, using our proposed approach, the total

transmit power decreases from 2.4 W to 0.2 W by increasing the number UAVs from 5 to 10.

Furthermore, using the proposed approach, the total transmit power of the devices decreases by

45% (on the average) compared to the stationary case. Clearly, for a lower number of UAVs, the

proposed approach leads to higher power reduction compare to the stationary case. In other words,

intelligently optimizing the locations of UAVs provides more power reduction gains when the

number of UAVs is low. In fact, for very dense networks with a high number of UAVs, updating

the UAVs’ locations is obviously no longer necessary compared to a case with a low number of

UAVs. For instance, as we can see from Fig. 6, the power reduction gain achieved by deploying

5 UAVs is around 7 times larger than the case with 10 UAVs.

Fig. 7 shows the total transmit power of the IoT devices as a function of the number of

UAVs in an interference-free scenario. Compared to the interference scenario, the devices can

obviously use a lower transmit power for sending their data to the UAVs. For instance, by

efficiently deploying only 5 UAVs, the devices can establish reliable uplink communications

with a total transmit power of 70 mW. Furthermore, Fig. 7 shows that, our proposed approach
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Fig. 8: Total transmit power of devices vs. number of orthogonal channels.

leads to an average of 80% power reduction compared to the stationary case.

Fig. 8 shows the total transmit power of devices used for meeting the SINR requirement as

the number of available channels varies. The result in Fig. 8 corresponds to a case with 100

active devices which are served by 5 UAVs. Clearly, the total transmit power decreases as the

number of channels increases. This is due to the fact that, when more orthogonal resources

are available, the interference between the devices will decrease. As a result, each device can

reduce its transmit power while connecting to the serving UAV. From Fig. 8, we can see that,

by increasing the number of channels from 25 to 50, the total transmit power of devices can be

reduced by 68% in the proposed approach. In fact, the average number of interfering devices

decreases from 4 to 2 when we increase the number of channels from 25 to 50. Consequently,

less interference is generated by the devices while transmitting to the UAVs.

In Fig. 9, we show the average number of active devices that must be served by UAVs at

different update times tn which are normalized by T . Clearly, the number of active devices at

each update time depends the activation process of the devices and the number of update times

that indicates how frequently the UAVs serve the devices. In Fig. 9, due to the beta distribution-

based activation pattern of the IoT devices, the number of active devices decreases when tn

exceeds 0.5 for N = 10. From Fig. 9, we can see that, for a higher number of update times

or equivalently shorter time period between consecutive updates, the average number of devices

that need to transmit their data decreases. For instance, considering tn = 0.6, the average number

of active devices decreases from 180 to 80 when the number of updates increases from 5 to 10.

We also note that, while a lower number of active devices leads to a lower interference between

the devices, it requires more updates and mobility for the UAVs. Fig. 9 also verifies that the

analytical results in Theorem 2 match the simulations. Furthermore, in Fig. 10, we show the
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Fig. 9: Average number of active devices at update times for the probabilistic activation.
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Fig. 10: Exact number of active devices at different update times for the periodic activation.

exact number of active devices for the periodic activation case obtained from Proposition 2. In

this case, each device becomes active with a certain activation period, τi. As expected, for a

higher number of updates, a lower number of active devices will need to be served by the UAVs.

For instance, by increasing the number of updates from 10 to 30, on the average, the number of

active devices decreases by 58%. Moreover, Fig. 10 shows that the maximum number of active

devices for 10 updates is about two times larger than the case with 30 updates. Therefore, in

order to avoid the interference between the devices, the number of orthogonal channels must be

increased by a two-fold factor when the number of updates decreases from 30 to 10.

Fig. 11 presents a direct result of Theorem 2 that computes the update times based on the

average number of active devices. Fig. 11 shows how to set update times in order to ensure that

the number of devices (which needs to be served) at each update time does not exceed a specified

number, a. As we can see from Fig. 11, to achieve a lower value of a, updates must occur more

frequently to reduce the time interval between the consecutive updates. For example, as can be

seen from this figure, to meet a = 100, 75, and 50, the 5th update must occur at tn = 0.41,

0.55, and 1. Moreover, Fig. 11 shows that, the number of updates increases as a decreases. For

example, in this case, to reduce a from 100 to 50, the number of updates needs to be doubled.

Fig. 12 shows the impact of the number of updates on the amount of energy that the UAVs use
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Fig. 11: Update times for different average number of active devices.

to move. For our simulations, we have considered v = 10 m/s, ρ = 1.225 kg/m−3, ω = 20 rad/s,

R = 0.5 m, cb = 10 cm, Nb = 4, and W = 50 N [32]. Intuitively, a higher number of updates

requires more mobility of the UAVs. Therefore, by increasing the number of updates, the total

energy consumption of the UAVs will also increase. As we can see from Fig. 12, by increasing

the number of updates from 3 to 6, the energy consumption of UAVs increases by a factor of

2.1 when the target area size is 1 km× 1 km. Note that, the mobility of the UAVs also depends

on the size of geographical area in which the devices are distributed. Clearly, on average, the

UAVs need to move further for covering a larger area.

Interestingly, there is an inherent tradeoff between the number of updates, mobility of the

UAVs, and transmit power of the IoT devices. In fact, considering Fig. 12, a higher number of

updates leads to a higher energy consumption of the UAVs due to the higher mobility. In addition,

as shown in Fig. 9, as the number of updates increases, a lower number of the IoT devices will

be active at each update time, and, hence, there will be lower interference between the devices.

As a result, the transmit power of the devices that is needed for satisfying the SINR requirement,

can be reduced. Note that, as we showed in Fig. 8, the devices’ transmit power decreases as the

interference decreases (by increasing the number of orthogonal channels). Hence, while a higher

number of updates leads to a lower devices’ transmit power, it requires more UAVs’ mobility.

Fig. 13 shows the overall convergence of the proposed power minimization algorithm that

is used for solving the original problem (5) considering 5 UAVs. As we can see from the

figure, in this case, the total transmit power of the IoT devices converges after 5 iterations.

In Fig. 13, each iteration corresponds to a joint solution to the device association and UAVs’

locations optimization problems. Clearly, after several iterations, updating the device association



31

2 4 6 8 10
0

100

200

300

400

500

Number of updates

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
of

 U
A

V
s 

(k
J)

 

 
Area size= 0.7km × 0.7km
Area size= 1km × 1km

Fig. 12: Total UAV energy consumption vs. number of updates.

1 2 3 4 5 6 7
0

1

2

3

4

Number of iterations

T
ot

al
 tr

an
sm

it 
po

w
er

 (
W

)

Fig. 13: Overall convergence of the algorithm.

10 12 14 16 18
0

5

10

15

20

25

Number of active devices

O
pt

im
al

ity
 g

ap
 (

%
)

10 12 14 16 18
0

200

400

600

800

1000

R
el

at
iv

e 
co

m
pu

ta
tio

na
l t

im
e

Fig. 14: Proposed approach vs. optimal solution.

and UAVs’ locations will no longer improve the solution.

In Fig. 14, we show an example to compare the accuracy and time complexity of our proposed

approach with the optimal solution obtained by an exhaustive search. Here, to perform an

exhaustive search over the continuous space, we have discretized the space with a resolution of

0.1 m. In this case, two UAVs are deployed to serve the devices. Clearly, the average gap between

the proposed solution and the optimal solution is around 11%. However, in this example, the

proposed solution is around 500 times, on the average, faster than the optimal solution.

VI. CONCLUSION

In this paper, we have proposed a novel framework for efficiently deploying and moving UAVs

to collect data in the uplink from ground IoT devices. In particular, we have determined the

jointly optimal UAVs’ locations, device association, and uplink power control of the IoT devices

such that the total transmit power of the devices under their SINR constraints is minimized. In

addition, we have investigated the effective movement of the UAVs to collect the IoT data in a

time-varying IoT network. For this case, based on the devices activation process, we have derived

the update time instances at which the UAVs must update their locations. Furthermore, we have

obtained the optimal trajectories that are used by the UAVs to dynamically serve the IoT devices

with a minimum energy consumption. The results have shown that by intelligently moving and
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deploying the UAVs, the total transmit power of the devices significantly decreases compared

to the case with pre-deployed stationary aerial base stations. Moreover, there is a fundamental

tradeoff between the number of updates, the UAVs’ mobility, and the devices’ transmit power.
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