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Abstract

Cellular networks are nowadays considered as a major critical infrastructure.

Resiliency to failure due to disasters, weather based disruptions or malicious

activities is essential. In the case of ring topology, because of delay and avail-

ability requirements, a wireless network connected to an aggregation node must

sometimes be split into several rings. In this paper, we study the availability

optimization in a ring-based network topology for a given number of cellular

sites and a given size of rings. We prove that if each ring includes 3 nodes, the

problem can be solved in a polynomial time, while for bigger rings, the problem

is NP-hard. In this latter case, we provide approximation methods based on

linear programming in order to converge to the solution.
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1. Introduction

The choice of a network technology is mainly a matter of cost, availability

and resiliency. For a given technology, these parameters will also impact the

choice of the topology.

While fiber is capital intensive (cost function of distance) and offers lim-5

ited availability, wireless is highly cost effective and flexible [1]. Besides, fiber

is more expensive in urban areas. The choice of fiber in urban areas may be
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cost-effective for very short distances only. However, this comparison must be

considered cautiously: a large part of capex expenses for fiber is civil engineer-

ing. Civil engineering costs can represent up to 80% of total cost, especially10

in urban areas. In many cases and particularly in developing areas, these civil

engineering expenses must be done anyway for infrastructure investment (road,

rail, pipeline, electricity). Therefore, the relevant parameter which has to be

taken into consideration for the fiber/wireless cost comparison is the additional

cost generated by the fiber.15

Availability is a key parameter which quantifies network performance. This

parameter is closely related to reliability. The difference between these two

concepts is that reliability refers to failure-free operation during an interval,

while availability refers to failure-free operation at a given instant of time [2].

Unavailability is generally defined as the sum of the unavailabilities of the20

network nodes [3]. According to this definition, an unavailability which impacts

a great number of nodes in the network gets a higher ponderation than an

unavailability which impacts a small number of nodes. However, this definition

may lead to unavailabilities greater than 100%. For this reason, in this paper,

we define the unavailability as the percentage of time for which all or part of25

the network is down.

While the availability of an optical fiber connection is all or nothing, line-

of-sight and propagation considerations must be taken into account in wireless

links. Automatic Coding Modulation enables a microwave link to use lower

modulations in degraded conditions. This difference has an impact on the net-30

work resiliency, which is the ability of the network to provide and maintain

an acceptable level of service in the face of faults and challenges to normal

operations [4].

In the case of a radio network, the main parameters which come into account

are propagation factors and infrastructural considerations. The most common35

topologies used in radio backhaul networks are trees and rings or a combination

of both. Since tree topology generally offers shorter paths and lower costs, while

ring topology generally ensures a better availability, a ring-tree combination can

2



be an efficient solution to cumulate the advantages of both technologies [5].

Various causes of a network failure are identified in [4]: unusual traffic load,40

accidents and human mistakes, large-scale disasters, malicious attacks, environ-

mental challenges and failures at a lower layer. A relevant network availability

strategy must reduce as much as possible the failure probability of any link in

the network and add redundancy in order to minimize the impact of a single

link failure on the availability of the network nodes.45

Statistical approaches have been proposed in order to optimize availability

[6], [7] for systems subject to random failures. These approaches are based upon

maintenance considerations for a partially observable system.

Backhaul can be made of fiber or microwave radio. In both cases, the goal

is to connect the base stations (BS) to the core network. In some cases, when50

the gateway to the core is not far, this can be performed in one hop. But in

rural areas or in Ultra Dense Networks, where there are a huge number of small

BS to connect, this can require multiple hops. In this paper, we consider the

Microwave Radio technology as the medium to perform the backhaul. We as-

sume that we have a large number of BS to be connected to a single aggregation55

node which itself will be connected to the core network. This latter connection

is assumed to be wired and therefore out of the scope of this paper. Making a

single large ring raises serious delay issues since the Backhaul for a BS might

require several hops. In addition, it might raise serious availability issues since

the disconnection of two links can affect a large number of BS. Therefore, it60

could be preferable to split the network into several rings.

In this paper, we will study the question of topology optimization from the

point of view of availability maximization. Given an aggregation node and

n cellular sites, what is the best topology based on rings, each one of them

including the aggregation node, which maximizes availability?65
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Figure 1: Backhaul network. The aggregation node handles all the traffic produced by and to

nodes M1, M2, M3.

The paper is organized as follows: we first build a simplified model in Sec-

tion 2 which provides a basic understanding regarding the relation between ring

size and availability. In Section 3, we use existing results from graph theory

in order to discuss the general model. Approximation methods based on lin-

ear programming are proposed in Section 4. Concluding remarks are given in70

Section 5.

2. Simplified model

In a first step, we build a simplified model, based on the following five as-

sumptions. Though the last two assumptions of this model are not realistic, this

simplified approach will enable us to draw basic conclusions regarding backhaul75

network topologies.

Assumptions:

• the network includes n cellular sites (in addition to the aggregation node);

• the network topology is made of k rings;

• for 1 ≤ i ≤ k ring i includes ni cellular sites and the aggregation node;80

n1 ≥ n2 ≥ · · · ≥ nk ≥ 2;
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• same failure probability for all links: p;

• failure events are uncorrelated.

n and ni are related by the following equation:

n =

k∑
i=1

ni (1)

Availability: the condition for availability is that all cellular sites are con-85

nected to the aggregation node. This condition is fulfilled if there is no more

than one failure in each ring.

A =

k∏
i=1

(
(1− p)ni+1 + (ni + 1)p(1− p)ni

)
(2)

If p � 1, this expression can be approximated by its second-order Taylor

development:

A = 1− np
2

2
− p2

2

k∑
i=1

ni
2 + o(p2) (3)

Therefore,90

A = 1− np
2

2
− p2

2

(
kV (ni) +

n2

k

)
+ o(p2) (4)

where V (ni) is the empirical variance of the ni distribution:

V (ni) =
1

k

k∑
i=1

(
ni −

n

k

)2
=

1

k

k∑
i=1

ni
2 −

(n
k

)2
(5)

Therefore, increasing the number of rings reduces the maximum path length

and unavailability. On the other hand, it requires more antennas. In any case,

given the number of rings, it is preferable that the empirical variance of the ring

size distribution be as small as possible.95

For a given number of rings k, the maximum availability is obtained when

the empirical variance is minimized, which means when the numbers of cellular
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sites in the rings are as close as possible to n
k . Let q and r be the quotient and

the remainder of the Euclidean division of n by k:

n = qk + r; 0 ≤ r ≤ k − 1 (6)

Then, n1 = · · · = nr = q + 1 and nr+1 = · · · = nk = q.100

Therefore, the best availability is:

Ak,p =
(
(1− p)q+2 + (q + 2)p(1− p)q+1)r((1− p)q+1 + (q + 1)p(1− p)q

)k−r
(7)

Ak,p = 1− np
2

2
− p2

2

(
r(q + 1)2 + (k − r)q2

)
+ o(p2) (8)

Ak,p = 1− p2

2
(n+ kq2 + 2rq + r) + o(p2) (9)

Ak,p is an increasing function of k and a decreasing function of p. Of course,

since the total number of antennas is 2n+ 2k, increasing k increases the cost.

The results above are illustrated with the following numerical application:

p = 0.01105

n = 100

2 ≤ k ≤ 50

The cost and the availability are growing functions of the number of rings

k. This defines a curve of feasible. According to the price the operator is ready

to pay for a given level of availability, it is possible to define an acceptable set.110

Any point of the feasible curve which is inside the acceptable set is a relevant

choice for the operator (Fig. 2).
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Figure 2: Cost-Availability balance.

It should be noted that this conclusion cannot be generalized to n rings,

each one of them including one cellular node: in this case, the network topology

would be a star topology and a cellular site would be unavailable in case of115

single failure. The availability of a star topology network including n cellular

sites is:

A = (1− p)n = 1− np+ o(p) (10)

As a consequence, availability is maximized when all the rings include 2

nodes, in addition to the aggregation node. Assuming that n is even, then

k = n
2 and120

A =
(
(1− p)3 + 3p(1− p)2

)n
2 = (1− 3p2 + 2p3)

n
2 = 1− 3

2
np2 + o(p2) (11)

3. General model

We now assume that links may have various failure probabilities. The net-

work includes one aggregation node (O) and n cellular sites M1,M2,...,Mn.
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Let pi be the failure probability of the link OMi and pij the failure proba-

bility of the link MiMj .125

Assuming that each ring includes the aggregation node, a ring may be defined

by an ordered sequence of cellular sites.

Let us define:

V = {M1,M2, ...,Mn}.

R: the set of rings including the aggregation node and cellular sites of V .130

A ring r of R can be defined with an m-tuple (Mi1 ,Mi2 , ...,Mim), made

from the ordered list of the nodes of r starting from the agregation node but

not including it.

The availability of r is:

A(r) = (1−pi1)(1−pim)

m−1∏
l=1

(1−pilil+1
)+pi1(1−pim)

m−1∏
l=1

(1−pilil+1
)+pim(1−pi1)

m−1∏
l=1

(1−pilil+1
)

+ (1− pi1)(1− pim)

m−1∏
l=1

(1− pilil+1
)

m−1∑
j=1

pijij+1

1− pijij+1

(12)

For a given s ≤ n, we try to maximize the following expression:

max
r1∪...∪rs=V
ri∩rj=∅

k∏
i=1

A(ri)

Particular case. n
2 rings, each one including the aggregation node and two cel-

lular sites135

In this section, we assume the following:

• n is an even number;

• the network includes n
2 rings, each one including the aggregation node and

2 cellular sites;

• for 1 ≤ i ≤ n, pi is the failure probability of the link OMi;140

• for 1 ≤ i, j ≤ n, pij is the failure probability of the link MiMj ;

• failure events are uncorrelated.
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We can calculate the availability of the ring OMiMj .

Aij = 1− pipj − pipij − pjpij + 2pipjpij (13)

We try to maximize the expression:

∏
(O,Mi,Mj)∈R

Aij (14)

which is equivalent to maximize the expression:

∑
(O,Mi,Mj)∈R

logAij (15)

The problem can be regarded as a search of a perfect matching in a weighted145

graph: given G = (V,E,w) an undirected weighted graph, the goal is to compute

a perfect matching (ie a subset of edges E′ ⊆ E such that each node in V has

exactly one incident edge in E′) for a maximum total weight w(E′).

The maximum 2-ring division problem can be solved efficiently (in poly-

nomial time) as followed: given a network as described above, an undirected150

weighted graph G = (V,E) should be constructed where V = {M1,M2, . . . ,Mn}

and E = (Mi,Mj)|1 ≤ i < j ≤ n (a full graph). The weight function w : E → R

is defined as followed: ∀i, j, 1 ≤ i < j ≤ n,w(Mi,Mj) = logAij . Then, due

to [8], finding a maximum 2-ring division in the original network is equiva-

lent to finding a matching M in G such that for each matching M′ in G,155 ∑
(Mi,Mj)∈M w(Mi,Mj) ≥

∑
(Mi,Mj)∈M′ w(Mi,Mj).

This problem is a well-known problem called maximum weighted matching.

In 1964, Jack Edmonds was the first to develop a polynomial time algorithm

to solve this problem [9]. A straight forward implementation of Edmonds’ algo-

rithm will have a running time complexity of O(|V |2|E|), and hence in our prob-160

lem O(|V |4) (because the constructed graph is fully meshed. i.e. E = Θ(|V |2)).

Over the years, several variants, implementations and improvements of Ed-

monds’ idea where suggested, some of them in [8], [10], [11]. Overall, the best

know algorithm for a full graph has a running time complexity of O(|V |3) [10],

[11], [12].165
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Now, solving the maximum 2-ring division problem is done in 2 phases:

1. Computing logAij for each i,j, 1 ≤ i < j ≤ n and constructing an undi-

rected weighted full graph G, as described earlier.

2. Solving the weighted maximum matching problem on G.

The running time complexity of phase 1 is
(
n
2

)
Θ(1) + Θ(n2) = Θ(n2). The170

running time complexity of phase 2 is O(n3). Therefore, the running time

complexity of the proposed algorithm for solving the maximum 2-ring division

problem is O(n3). Hence, the decision problem corresponding to the maximum

2-ring division problem is in P.

Conclusion: it is possible to connect an even number n of cellular sites with175

n/2 rings, each of one including 2 cellular sites and the aggregation node. The

running time is O(n3).

General case. n
k rings, each one including the aggregation node and k cellular

sites; k ≥ 3

In this section, we assume the following:180

• n is a multiple of k;

• the network includes n
k rings, each one including the aggregation node and

k cellular sites;

• for 1 ≤ i ≤ n, pi is the failure probability of the link OMi;

• for 1 ≤ i, j ≤ n, pij is the failure probability of the link MiMj ;185

• failure events are uncorrelated.

At first, we investigate the relation between the general maximum k-ring

division problem and an NP-Complete problem.

Let Pk(n) be the set of k-combinations of {1, 2, . . . , n}. Given a family of

sets F ⊆ Pk(n) for k ≥ 3, a k-set packing of {1, 2, . . . , n} is a set S ⊆ F such190

that ∀s1, s2 ∈ S, s1 ∩ s2 = ∅. The maximum k-set packing problem (MSP) is

to find a k-set packing S of {1, 2, . . . , n} such that for each k-set packing S′ of
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{1, 2, . . . , n}, |S| ≥ |S′|. The corresponding decision problem (d −MSP ) is a

well-known NP-Complete problem [13], [14].

We define the maximum production [0, 1) weighted k-set packing (MPWSP)195

as followed: given a family F = Pk(n) where n = mk for some m ∈ N and a

weight function w : F → [0, 1), the MPWSP problem is to find a k-set packing S

of {1, 2, . . . , n} such that for each k-set packing S′ of F ,
∏
u∈S w(u) ≥

∏
u∈S′ w(u).

Let d −MPWSP denote the corresponding decision problem to MPWSP.

d−MSP is a particular case of d−MPWSP with:200

• w(X) = 1 for X ∈ F

• w(X) = 0 for X /∈ F

Therefore, d−MPWSP is as least as hard as d−MSP . Thus, d-MPWSP

is NP-Hard (and in fact, d-MPWSP is NP-Complete).

Given an algorithm to solve the MPWSP problem, it can be used to solve

the general maximum k-ring division problem as followed: let Amaxi1i2...ik
be the

highest availability of all the rings including the k nodes i1, i2,..., ik and the

aggregation node:

Amaxi1i2...ik
= max(Aj1j2...jk |j1j2 . . . jk is a permutation of i1i2 . . . ik) (16)

and

ci1i2...ik = log(Amaxi1i2...ik
) (17)

An instance of MPWSP could be constructed by defining a family of sets205

F = Pk(n) and a weight function w(i1, i2, , ik) = Amaxi1i2...ik
. Clearly, a solution

to the constructed MPWSP instance yields a solution to the original maximum

k-ring division problem.
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Reciprocally, let us consider the following particular case:

V = U1 ∪ ... ∪ Uk

|U1| = ... = |Uk| =
n

k

∀u ∈ U1, pu = 0

∀u ∈ U2 ∪ ... ∪ Uk, pu = 1

∀ui ∈ Ui,∀uj ∈ Uj , |j − i| 6= 1→ pij = 1

∀ui ∈ Ui,∀uj ∈ Uj , |j − i| = 1→ pij ∈ [0, 1]

Figure 3: Particular case of k-ring division.

In this particular case, the aggregation node is connected to all the nodes

of U1 and no other node. Every connection between the aggregation node and210

anyone of the nodes of U1 is assumed to be free of failure-risk. A node in a

given subset Ui can be connected only to the nodes belonging to the adjacent

sets Ui−1 and Ui+1.

Then, the maximization of ci1i2...ik is a k-dimensional matching problem,

which is known to be NP hard [15] for k ≥ 3. Therefore, the general problem is215

NP hard for k ≥ 3.

4. Approximation methods

Since the general maximum k-ring division problem is NP-hard for k ≥ 3, we

propose hereafter approximation methods in order to converge to the solution.
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4.1. Formalization as an Integer Linear Programming Problem220

We can present the k-ring division problem as an ILP: the idea is to define

binary variables which correspond to a k-ring.

P = max
∑

{i1,i2,...,ik}∈Pk(n)

ci1i2...ikxi1i2...ik (18)

subject to

∑
{i1,i2,...,ik}∈Pk(n)
j∈{i1,i2,...,ik}

xi1i2...ik = 1,∀j ∈ {1, 2, . . . , n} (19)

xi1i2...ik ∈ {0, 1},∀{i1, i2, . . . , ik} ∈ Pk(n) (20)

The purpose of this method is to characterize the network topology by binary

values: xi1i2...ik = 1 if the nodes i1, i2, . . . , ik, together with the aggregation225

node, form a ring, and xi1i2...ik = 0 else.

Constraints (19) and (20) forces each node j to be in exactly one k-ring.

General ILP is known to be NP-Hard [12]. However, linear programming

can be solved in polynomial time. By replacing constraint (20) in (18) with the

constraint:230

xi1i2...ik ≥ 0,∀{i1, i2, . . . , ik} ∈ Pk(n) (21)

(also known as LP relaxation) we get a polynomial-time solvable linear pro-

gram.

Without loss of generality, we can assume that ci1i2...ik > 0 for each

{i1, i2, . . . , ik} ∈ Pk(n), since we can always add any constant to all the coeffi-

cients ci1i2...ik . Doing that does not change the set of vectors that maximizes the235

problem, because due to the constraints, each feasible vector contains exactly

n
k ones and

(
n
k

)
− n

k zeros. Therefore, adding K to all the coefficients ci1i2...ik is

equivalent to adding the constant K n
k to the original objective function.
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Lemma 4.1. Assuming ci1i2...ik > 0 for each {i1, i2, . . . , ik} ∈ Pk(n), a vector

x which maximizes the system

P ′ = max
∑

{i1,i2,...,ik}∈Pk(n)

ci1i2...ikxi1i2...ik (22)

subject to

∑
{i1,i2,...,ik}∈Pk(n)
j∈{i1,i2,...,ik}

xi1i2...ik ≤ 1,∀j ∈ {1, 2, . . . , n} (23)

xi1i2...ik ∈ {0, 1},∀{i1, i2, . . . , ik} ∈ Pk(n) (24)

is feasible to (18).240

Proof. All we need to show is that
∑
{i1,i2,...,ik}∈Pk(n)
j∈{i1,i2,...,ik}

xi1i2...ik = 1,∀j ∈ {1, 2, . . . , n}.

Assume by contradiction that there is a j for which
∑
{i1,i2,...,ik}∈Pk(n)
j∈{i1,i2,...,ik}

xi1i2...ik = 0

(there is no other possibility since x satisfies constraint (24); this means that

there is a node j that is not in any k-ring). Since n is a multiplier of k, there

are k − 1 other nodes that are not in any k-ring, therefore, a new ring can be245

added to the sum contradicting the fact that x maximizes P ′.

Lemma 4.2. Assuming ci1i2...ik > 0 for each {i1, i2, . . . , ik} ∈ Pk(n), a vector

x which maximizes (22) maximizes (18).

Proof. Straight from Lemma (4.1) and from the fact that any feasible vector in

(18) is a feasible vector in (22).250

However, not each solution to the relaxation yields a solution to the original

problem. Consider the following example:

n = 6; k = 3 (25)

c124 = c135 = c236 = c456 = 1; all other cijl = 0 (26)

Then, max
∑
cijlxijl subject to (19), (21) is obtained only for:

x124 = x135 = x236 = x456 =
1

2
; all other xijl = 0 (27)
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4.2. Power method

In order to favour the emergence of a maximum which has exclusively integer

coordinates, we introduce an exponent α. The purpose of this exponent is255

penalize potential non-integer solutions.

For each α > 0 we define:

Pα = max
∑

{i1,i2,...,ik}∈Pk(n)

ci1i2...ikx
α
i1i2...ik

(28)

subject to

∑
{i1,i2,...,ik}∈Pk(n)
j∈{i1,i2,...,ik}

xi1i2...ik ≤ 1,∀j ∈ {1, 2, . . . , n} (29)

xi1i2...ik ≥ 0,∀{i1, i2, . . . , ik} ∈ Pk(n) (30)

We also define xα a vector in R(nk) which maximizes (28) (can be one of

many if there is more than one vector which maximizes Pα).260

Lemma 4.3. If xα ∈ {0, 1}(
n
k), then xα maximizes (22).

Proof. xα is obviously feasible to (22). Assume by contradiction that there is

y which satisfies (23) and (24) for which P ′(y) > P ′(xα). Since all coordinates

of xα and y are 0 or 1, P ′(xα) = Pα(xα) and P ′(y) = Pα(y). Therefore,

Pα(y) > Pα(xα), contradicting the fact that xα maximizes (28).265

Lemma 4.4. limα→∞ Pα(xα)=limα→∞ Pα(bxαc)

Proof.

lim
α→∞

Pα(xα) = lim
α→∞

∑
xi1i2...ik coordinates of xα

ci1i2...ikx
α
i1i2...ik

= lim
α→∞

∑
xi1i2...ik coordinates of xα

ci1i2...ikbxi1i2...ikcα = lim
α→∞

Pα(bxαc) (31)

The second equality derives from the fact that constraints (29) and (30) force

that 0 ≤ xi1i2...ik ≤ 1. Hence:
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• if xi1i2...ik = 1, then ci1i2...ikx
α
i1i2...ik

= ci1i2...ikbxi1i2...ikcα = ci1i2...ik

• if xi1i2...ik < 1, then limα→∞ ci1i2...ikxi1i2...ik
α = 0 and ci1i2...ikbxi1i2...ikcα = 0270

Theorem 4.5. Assuming ci1i2...ik > 0 for each {i1, i2, . . . , ik} ∈ Pk(n), as

α→∞, bxαc maximizes (18).

Proof. From lemma (4.4), we conclude that bxαc maximizes (28). Then, from

lemma (4.3), we conclude that bxαc maximizes (22). Finally, from lemma (4.2),275

we conclude that bxαc maximizes (18).

Theorem (4.5) offers an alternative way to solve (18) for a large α and select

the floor values of the elements in xα.

5. Conclusion

Availability is maximized when the number of rings is high and the ring280

size distribution is regular. In this paper, we show that the partition of a

network including an aggregation node and n cellular sites into n
2 rings, each

one including the aggregation node and 2 cellular sites, can be solved in a

time of O(n3). Regarding a partition with larger rings, the problem is similar

to a k-set partition problem, which is NP-hard for k ≥ 3. We propose an285

approximation method, based on linear programming and use of an exponent

aimed to accelerate the convergence.
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