
HAL Id: hal-01778781
https://centralesupelec.hal.science/hal-01778781

Submitted on 12 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking the Economic Barrier of Caching in Cellular
Networks: Incentives and Contracts

Kenza Hamidouche, Walid Saad, Merouane Debbah

To cite this version:
Kenza Hamidouche, Walid Saad, Merouane Debbah. Breaking the Economic Barrier of Caching in
Cellular Networks: Incentives and Contracts. GLOBECOM 2016 - 2016 IEEE Global Communications
Conference, Dec 2016, Washington, United States. �10.1109/GLOCOM.2016.7841641�. �hal-01778781�

https://centralesupelec.hal.science/hal-01778781
https://hal.archives-ouvertes.fr


Breaking the Economic Barrier of Caching in
Cellular Networks: Incentives and Contracts

Kenza Hamidouche1,2, Walid Saad2, and Mérouane Debbah1,3
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Abstract—In this paper, a novel approach for providing incen-
tives for caching in small cell networks (SCNs) is proposed based
on the economics framework of contract theory. In this model,
a mobile network operator (MNO) designs contracts that will be
offered to a number of content providers (CPs) to motivate them
to cache their content at the MNO’s small base stations (SBSs). A
practical model in which information about the traffic generated
by the CPs’ users is not known to the MNO is considered. Under
such asymmetric information, the incentive contract between the
MNO and each CP is properly designed so as to determine the
amount of allocated storage to the CP and the charged price by
the MNO. The contracts are derived by the MNO in a way to
maximize the global benefit of the CPs and prevent them from
using their private information to manipulate the outcome of
the caching process. For this interdependent contract model, the
closed-form expressions of the price and the allocated storage
space to each CP are derived. This proposed mechanism is shown
to satisfy the sufficient and necessary conditions for the feasibility
of a contract. Moreover, it is shown that the proposed pricing
model is budget balanced, enabling the MNO to cover all the
caching expenses via the prices charged to the CPs. Simulation
results show that none of the CPs will have an incentive to choose
a contract designed for CPs with different traffic loads.

I. INTRODUCTION

The capacity limitations of the backhaul links that connect
small base stations (SBSs) to the core network in a small
cell network (SCN), make it difficult for the mobile network
operators (MNOs) and content providers (CPs) to ensure the
required data rates for emerging, bandwidth intensive users’
applications especially during peak hours [1]. To overcome
these backhaul limitations and meet users’ requirements in
terms of quality-of-service (QoS), distributed caching at the
network edge has been recently proposed as a new promising
solution [2–5].

Caching typically relies on storing the most popular files
at the levels of SBSs and devices, to reduce backhaul traffic
[2]. To successfully deploy SCN caching solutions, MNOs
require the cooperation of the CPs by sharing their content
and providing this content’s global [6]. However, although CPs
can improve the QoS of their users by caching, they might be
reluctant to share their content with the MNOs. This can be
due to reasons such as privacy since, once the content cached
at the SBSs, the MNOs can get access to all the CP’s files
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as well as the traffic dynamics of the users subscribed to the
CP [6]. Thus, the MNOs must provide incentives to the CPs
to share their data and cache it at the SBSs by introducing
suitable economic arrangements that can be beneficial for both
the MNO and the CPs [6, 7].

Most of the existing literature on caching [2–5] has focused
on determining the optimal caching policy under various
network scenarios. In [2], the authors proposed a caching
policy that optimizes the overall energy consumption of the
SBSs while accounting for the multicast opportunities. The
authors in [3] proposed a caching policy that accounts for
the geographical position of the SBSs and users. The work
in [4] formulated the cache placement problem as a multi
armed-bandit problem in which the SBSs do not know the
popularity of the files. The authors in [5] proposed a coded
caching strategy for wireless device-to-device (D2D) networks.

Remarkably, none of these works have addressed the eco-
nomic aspect of caching. Recently, the works in [7] and [8]
provides some insights on the economics of caching using
game-theoretic solutions. However, these works typically as-
sume that the players are honest and have perfect knowledge
of the cellular network information, which is not a reasonable
assumption in practice. In fact, the CPs can modify the outcome
of the incentive mechanism in their favor by attempting to
manipulate the MNO’s agreements. For example, some CPs
can declare inaccurate information about their traffic load so
as to mislead the MNO into charging them much lower prices.
Such possibilities can therefore incentivize some of the CPs to
not share their truthful private information in which case the
results in [7] and [8] no longer hold.

The main contribution of this paper is to introduce a novel
incentive mechanism for facilitating the deployment of caching
in SCNs. We consider a model in which an MNO proposes
agreements to the CPs to incite them to cache their content.
We consider a practical scenario with asymmetric information
within which the CPs can be of different, private types that
are unknown to the MNO. This private information pertains
to the level of generated CP traffic which corresponds to the
popularity of its content. The proposed approach, based on
contract theory [9], allows the MNO to define a contract for
each CP in the presence of asymmetric information, by fixing a
price for the allocated storage space to the CP. The goal of the
MNO is to maximize the global reward of the CPs and cover
the expenses of the caching process. Unlike classical contract-
theoretic models [10–12], we show that the proposed model



exhibits strategic interdependence between the CPs. Conse-
quently, for this interdependent contract model, we derive the
closed-form expression of the price and prove that the resulting
mechanism satisfies the feasibility constraints of a contract.
The designed mechanism is then shown to be budget balanced
as it allows the MNO to offload its backhaul while covering
the cost of caching the CPs’ content. Simulation results show
the performance advantage of the proposed scheme as well as
its ability to incite truthfulness on the CPs.

II. SYSTEM MODEL

Consider a SCN composed of a setM of macro base stations
(MBSs) and a set S of SBSs deployed by an MNO. The SBSs
are connected to the MBSs via capacity-limited backhaul links
and serve a set of users U that are subscribed to multiple
CPs from a set C. The SBSs can cache content to offload
the MNO’s backhaul. However, the MNOs needs the CPs’
cooperation to cache their content. To motivate the CPs to
participate in the caching, the MNO must offer contracts that
present significantly improved QoS for the CPs’ users. The
contract terms between an MNO and a CP determine the price
charged to the CP by the MNO and the amount of storage
space offered.

We consider heterogeneous CPs with different traffic loads
and content popularity. Based on this traffic load, the CPs have
different incentive levels towards sharing their content with the
MNOs. Naturally, there is an information asymmetry between
the MNO and the CPs. The CP is aware of its users’ traffic
as well as its preferences while the MNO may not have that
information. Consequently, the CPs may have an incentive to
not reveal their correct types so as to pay lower prices to the
MNO. To overcome this challenge, the MNO must specify a
suitable performance-reward bundle contract (π, ρ), where π
is the monetary reward that is paid by the CP, and ρ is the
storage space allocated to the CP.

The goal of each CP k ∈ C is to maximize the performance
of its users which depends on the amount of content that other
CPs in the set C\k will be willing to cache at the SBSs. In fact,
the higher the traffic load of the CPs in C\k, more storage space
is allocated to cache their content. Thus, less storage space can
be made available for the CP k. This will negatively impact the
data rate of CP k’s users as more requests need to be served
via the capacity-limited backhaul. Moreover, by introducing
caching, the traffic load of each SBS increases when caching
highly popular files. Thus, more power is required at the SBS
to serve all the requests for a highly popular file. Consequently,
other CPs’ users might experience large interference level from
the SBSs that cache the files of CPs having a higher traffic load.

A. Transmission Data Rate

The performance rk of a CP k that results from caching
its contents is measured by the transmission rate that its users
experience from the serving MBS or SBS. When an SBS i
serves a user j, the data rate will be:

αij(ρ(θ),θ) = Et
[
wij log

(
1 +

pij(ρ, θi)|hij |2

σ2 + I(ρ,θ)

)]
, (1)

where I(ρ,θ) =
∑
k∈S\i pkj(ρ,θ)|hkj |2 is the interference

experienced by user j from all the other SBSs. wij is the
channel bandwidth, pij(ρ,θ) is the transmit power from SBS
i to user j, |hij |2 is the channel gain between SBS i and user
j, and σ2 is the variance of the Gaussian noise. The vector
θ = [θ1, ..., θC ] represents the traffic load of the CPs. Thus, the
higher the traffic load of the CPs, the higher is the interference
experienced by the users served from the neighboring SBSs.
Since caching is done during off-peak periods, the transmit
power is averaged over the considered time period.

If the file is cached at the SBSs, then the users will
experience a relatively high data rate as the content is closer
to them. However, if the data is not available at the associated
SBS to serving a certain user, then the SBS must fetch the user
content from the MBS over the capacity-limited and congested
backhaul, yielding higher delays. The data rate of a user j
requesting file f from its associated SBS i can be given by:

rij(θ) = (1− βif (ρ(θ),θ))min {αij(ρ(θ),θ), α′mi}
+ βif (ρ(θ),θ)αij(ρ(θ),θ), (2)

where β ∈ {0, 1}S×Fk is the outcome of the MNO’s storage
allocation ρ and Fk is the cardinality of the set of files Fk
provided by a CP k. β depends on the caching policy ρ and
the traffic load of the CPs. For instance, when a CP k has
highly popular files or its willingness level to cache its content
is high, it will impact the storage allocation to the other CPs
C \k. The larger the number of files that CP k wants to cache,
the lower is the storage space that will be allocated to other
CPs C \ k and vice versa. Each entry βif is a binary variable
that equals 1 if file f is cached at SBS i and 0 otherwise. α′mi
is the data rate from the MBS m to SBS i and is given by:

α′mi = Et
[
wmi log

(
1 +

pmi|hmi|2

σ2 + I ′

)]
, (3)

where I ′ =
∑
l∈M\m pli|hli|2 is the interference experienced

by SBS i from all the other transmitting MBSs.
Thus, the total rate of the users of CP k can be given by:

rk(ρ(θ), θk) =
∑
i∈S

∑
j∈Uki

rij(θ), (4)

where Uki ⊆ Uk is the set of users that request at least one file
from CP k by using SBS i, and Uk is the set of users requesting
files of CP k. Here, we note that, in our model, each CP will
have private information that is modeled as a type of CP as
discussed next.

B. Content Provider Type

We define the CP’s type to be a representation of its traffic
load and content popularity. In fact, when the MNO offers a
contract, it must account for the generated traffic by the CPs.
For example, by caching the contents of CPs with a high traffic,
the MNO can serve more requests locally, thus decreasing its
backhaul load considerably. Here, we consider that the number
of CP types belongs to a discrete, finite space and grouped as
follows:



Definition 1. There are C CPs that generate traffic over an
MNO’s network. The CPs’ types are sorted in an ascending
order and classified into K types θ1, ..., θK with K ≤ C. Each
type includes properties such as the willingness to cache and
the global popularity of the CPs files. The types are ordered
as follows: θ1 < ... < θk < ... < θK , k ∈ {1, ...,K}.

Since the types are not known by the MNO, the CPs can
announce wrong information about their types so that they
improve the performance of their users. For example, by
claiming that its content popularity is higher than it actually is,
a CP k can mislead the MNO to allocate more storage space.
In such a case, the CP can end up paying lower prices while
also lowering the interference experienced by its users. Indeed,
the truthful popularity information is necessary for the MNO
to define the contracts that optimize the benefit of the CPs and
cover the implementation costs of caching. Such cost includes
the expenses of deploying storage devices and the required
power to download the content and refresh the storage units.
Here, our goal is to design contracts that incentivize the CPs
to reveal the true values of their types θ to the MNO. To this
end, the contracts will be designed such that no CP can profit
by choosing a contract that is designed for other types.

C. Content Provider Model

The utility function of a CP k of type θk that decides to
cache a set of files Fk at the operator’s network is:

uk(θ) = rk(ρk(θ), θk)− πk(θ), (5)

where rk(ρ) is defined in (4) and represents the valuation
function regarding the rewards, which is a strictly increasing
concave function of ρk, with r(0) = 0 and r′(ρk) > 0,
r′′(ρ) < 0 for all ρk. πk represents the price charged by the
MNO for a storage allocation ρk.

D. Mobile Network Operators Model

By caching the content of the CPs, the MNO will be able
to reduce the traffic load on its backhaul. This benefit depends
on the traffic load of the CPs as dictated by the popularity
of their cached traffic. Thus, the MNO will generally prefer to
cache the most popular files. By doing so, for the same storage
capacity, the load can be reduced more for a CP whose files
have a high popularity compared to other CPs. Thus, the cost
of storage cs at the MNO can be given as a function of the
traffic load of the considered CP as, c(θ) = log (1 + θ). This
storage cost function increases quickly up to a certain threshold
and then increases slowly. It is suitable to model the storage
cost as the MNO must allocate more storage space to serve a
given traffic load, and this cost becomes insignificant when the
traffic load increases as some requests become redundant.

A proper utility function for the MNO can be defined as the
monetary reward that is charged to the CPs minus the cost of
the allocated resources by the MNO, including storage.

vk(θ) = πk(θ)− ck(θ, θk), (6)

where πk is the price that the operator charges CPs of type k.
The total expected utility of the operator can be given by

v =
∑
k∈C

vk(θ). (7)

In the considered model, the MNO is assumed to get the
CP’s types directly from the CPs. Based on this information,
the goal of the MNO is to determine a contract for all possible
CP types that maximizes the global benefit of the CPs. At the
same time, the CP ensures that its utility is nonnegative by
making the prices charged to the CPs to at least cover its cost.
This optimization problem can be defined as follows:

max
(πk,ρk)

∑
k∈C

uk(ρk(θ), θk)

subject to v ≥ 0.

(8)

In this formulation, we do not make any constraint on the
participation of the CPs. Thus, when proposing the contracts
resulting from solving (8), CPs may prefer not to select any of
the contracts or select contracts that are not designed for their
types. To analyze this economic incentive problem, next, we
propose a solution based on the framework of contract theory
for designing feasible contracts [9].

III. PROPOSED INCENTIVE MECHANISM FOR CACHING

The QoS achieved by the CPs’ users depends on the interfer-
ence from the other SBSs as shown in (1) and (3). Moreover,
the allocated storage capacity to a given CP depends on the
number of CPs that have signed contracts with the same MNO.
For instance, the more storage is allocated to a CP k the lower
is the available storage capacity for other CPs. Thus, in the
considered model, there is interdependence between the signed
contracts by the different agents.

Classical contract theory models that are used to model
resource allocation problems in wireless networks such as
in [10–12] cannot be applied for the analysis of caching
incentive problem between CPs and an MNO defined in (8).
In fact, these works assume that the contract selected by a
CP does not impact the utility of other CPs or focus only
on models with one MNO and one CP. Thus, none of the
existing works account for the interactions between the CPs.
Moreover, the revelation of misleading information by a given
CP in a multiple CPs model not only impacts the MNO but
also impacts other CPs, which is not considered in [10–12].

To define the most appropriate contract for the formulated
problem (8), we consider the so-called truthful dominant strat-
egy implementation. Under such contracts, the solution that
maximizes the utility function of the CPs will require those
CPs to reveal their private information which, in our model,
pertains to the real popularity of their content. The goal of
the MNO is to maximize the social welfare which effectively
captures the global QoS that is experienced by the users of all
CPs. Moreover, the MNO ensures that the cost of serving these
users is at least covered by the price charged to the CPs. To
incite the CPs to collaborate with the MNO via caching, the



contract that a CP selects must be feasible in that it satisfies
the following necessary and sufficient constraints:

Definition 2. Ex-post Individual Rationality (IR): The contract
that a CP selects should guarantee that the utility of the CP is
nonnegative for any θ−k declared by the other CPs,
rk(ρk(θk,θ−k), θk) − πk ≥ 0, ∀k ∈ {1, ...,K}. (9)

Definition 3. Incentive Compatibility (IC): A contract satisfies
incentive compatibility constraint if each CP of type θk prefers
to reveal its real type θk rather than another type θ̂k, i.e.,
rk(ρk(θk,θ−k), θk)−πk ≥ rk(ρk(θ̂k,θ−k), θk)−πk. (10)

A. Incentive Mechanism Analysis

The goal of the MNO is to determine a pricing policy that
motivates the CPs to declare their real type and simultaneously
participate in the caching system through a budget balanced
mechanism, i.e., the MNO would not experience a negative
utility and its effort is covered by the price charged to the CPs.
To this end, the CPs need to declare their types for the MNO
that in turn optimizes their utility while accounting for the
necessary conditions for contracts feasibility. The optimization
problem of the MNO can be defined as follows:

max
(πk,ρk)

∑
k∈C

uk(ρk(θ), θk)

subject to (9), (10), v ≥ 0.

(11)

The solution of this problem consists in the determination
of the components of a contract that consist in the allocated
storage space and the price charged to each CP. The closed-
form of the contract is provided by the following theorem.

Theorem 1. The unique efficient solution of the optimization
problem (11) can be given by:

ρ∗k ∈ argmax
ρk

∑
i

[
ri(ρi(θ̂), θ̂i)− ci(θ̂)

]
, ∀k, (12)

πk(θ̂) =
[
max
ρi

∑
i6=k

ri(ρi(θ̂−k), θ̂i)− ci(θ̂−k)
]

︸ ︷︷ ︸
(a)

−
[∑
i6=k

ri(ρ
∗
i (θ̂), θ̂i)− ci(θ̂)

]
︸ ︷︷ ︸

(b)

, (13)

where (a) represents the maximized social welfare when CP k
is not considered while in (b), CP k is considered. Moreover,
θ̂ represents the revealed type by the CPs while θ is the real
type of the CPs.

Proof. The proof is provided in the Appendix.

This result shows that, in order to determine the terms of a
contract with a CP k, the MNO first, allocates the storage space
to CP k by solving the optimization problem (12). It is clear
that the problem in (12) is NP-hard and thus it is challenging
to find the optimal storage allocation. To solve (12), we use
the framework of matching theory to analyze the assignment of
storage space between the MNO that acts on behalf of its SBSs

and the CPs [13]. Matching theory is a suitable framework
to solve NP-hard assignment problems such as in (12). As
stated before, the allocated storage space to a CP k depends
on the allocated storage to the other CPs which is known
as externalities. We solve the problem using a swap-based
deferred acceptance algorithm which is guaranteed to converge
to a stable outcome [13]. Each CP i starts by requesting
from the MNO, a given storage space ρi that maximizes
ri(ρi(θ̂−k), θ̂i)−ci(θ̂−k). After receiving all the requests from
the CPs and based on the caching policy used by the MNO, it
defines the accepted requests that maximize (12) and rejects the
others. This is defined while accounting for the limited storage
capacity of its SBSs. If the request of a given CP is rejected,
the CP decreases the amount of the storage space it requests
from the MNO. The MNO accepts new requests and rejects
others based on the allocation configuration that maximizes
(12). The procedure is repeated until there does not exist a CP
k that prefers to be assigned a given storage capacity ρk and
this allocation also maximizes (12) at the MNO.

Once the storage space is allocated to the CPs, the price paid
by a CP k is found from (13), which accounts for the impact
of CP k on the utility of other CPs. This price represents the
difference between the global utility achieved by all the CPs
when CP k participates in the caching process, and the global
utility achieved by the CPs when CP k does not participate.
Note that a CP k can impact other CPs utilities in two ways.
The first one is through the allocated storage space. In fact,
when more storage space is allocated to CP k, less storage is
available for other CPs and thus more requests of these CPs are
served via the backhaul. The second is the traffic load of CP
k as the transmit power of the SBSs increases by increasing
the number of served requests for that CP’s files. Thus, we can
deduce that higher traffic load of a CP k and large amounts
of allocated storage to CP k will result in an increase in the
price charged by the MNO. The dependence of the price on
the traffic load of the CPs, i.e., CPs type, is given next.

Corollary 1. When θk ≥ θl then we have πk ≥ πl.

Proof. This results follows directly from the monotonicity
property of the rate function and the structure of (13).

IV. SIMULATION RESULTS

For our simulations, we consider five CPs with different
traffic load levels from 1 to 5 with type 5 being the highest
load. A type-1 CP is chosen with no traffic and is used as a
baseline to compare the performance of our mechanism with
the case in which there is no caching. We consider a set of 100
files whose popularity follows a Zipf distribution of parameter
α = 0.2. The MNO has one MBS that serves all the requests
that cannot be served from the SBSs’ cache. The number of
SBSs is 10 and the total storage capacity of the SBSs is 1 Gbits.
The transmit power of the SBSs is 1 W and the bandwidth
capacity to 100 MHz.

In Fig. 1a, we show that the amount of content that is served
via the backhaul for every CPs’ users when a CP selects the
contracts designed by the MNO for each type. We account for
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Figure 1: Numerical results for a) the amount of content served via the backhaul with respect to each CP’s type, b) the utility of the CPs as
a function of the CPs’ type and the used storage allocation model, c) the mean utility of a CP with respect to the total number of CPs and
the popularity distribution of the files.

the fact that the price that can be paid by each CP is limited and
the limit increases by increasing the type of the CPs. From Fig.
1a, we can observe that when high type CPs select contracts
that are designed for CPs with lower traffic load, the amount of
content that is served via the backhaul increases until it reaches
the maximum which corresponds to the lowest type contract.
Similarly, when low type CPs select the contracts designed for
higher types, the amount of traffic served from the backhaul
increases. This is due to the high charged price by the MNO
for high type CPs and thus CPs of lower type cannot afford
that which results in a larger amount of served content from
the backhaul. Thus, this result validates the fact the proposed
approach for cache incentive compatible as is forces each CP
to choose the contract designed for its own type.

In Fig. 1b, we compare the case in which all the CPs choose
the contracts defined for their corresponding types by the MNO
and the case in which the storage space is allocated equally by
the MNO for all the CPs. Fig. 1b show that the model of
equal storage allocation outperforms the proposed mechanism
for low type CPs. In this case, the allocated storage space
for the CPs is higher than the required storage by the CPs
which appears through the utilities of type-2 CP and type-
3 CP that are only 2% to 10% higher than their utilities
when following the proposed mechanism. On the other hand,
the proposed mechanism outperforms the equal storage space
allocation model for high type CPs. In fact, the utility of high
level types is higher when selecting the offered contracts by the
MNO for their specific types. The utilities of type-4 and type-5
CPs are 50% to 140% higher than their achievable utilities in
the model of equally allocated storage space. The proposed
mechanism is more beneficial for the CPs as it allows the
MNO to offer to all CPs only the amount of storage space they
need. In contrast, when using the equal allocation approach, the
MNO allocates to the low type CPs more than their storage
requirements and insufficient space for high level type CPs.

In Fig. 1c, we show the variation of the mean utility of the
CPs when increasing the total number of CPs. We consider two
different values for the parameter α, 0.2 which corresponds to
the case in which the files have comparable popularity, and 2
for the case in which some files are very popular while others

have a very low popularity. We can observe that the mean
utility for the CPs decreases by increasing the total number of
CPs in the model. This is due to the data rate function that
depends on the additional interference from the added CPs
and the decrease of the available storage space that can be
allocated to each CP. The achievable utility by a CP is up to
20% larger compared to the cases in which the CPs request
a storage capacity that is larger or lower than the offered one
by the MNO. Moreover, we can see that the popularity of the
files impacts the mean utility of the CPs. In fact, the CPs can
achieve a larger utility when the distribution of the popularity
of the files is steep and thus by caching a file, a large amount
of the requests can be served from the cache of the SBSs.

V. CONCLUSION

In this paper, we have proposed a new incentive framework
to motivate the CPs to cooperate with an MNO and cache
their content at the MNO’s SBSs. Based on contract theory,
we have designed an incentive mechanism that allows the
MNOs to offer a contract for each CP in which it sets the
allocated storage for the CP and the charged price by the
MNO for the caching service. This model accounts for both
asymmetry of information and the interdependence between the
different contracts. We have then derived the optimal pricing
mechanisms and contracts that motivate the CPs to cache their
content and reveal their private information. Simulations have
shown the effectiveness of the proposed approach in inciting
the participation of CPs in caching.

APPENDIX

We prove Theorem 1 by showing the following Lemmas.

Lemma 1. The proposed mechanism is incentive compatible.

Proof. We show this result by contradiction. Suppose that ρ
is an efficient decision rule but (ρ, π) is not dominant strategy
incentive compatible. Then, there exists i,θ, and θ̂ such that:

ri(ρi(θ̂i,θ−i), θi)− πi(θ−i, θ̂i) > ri(ρi(θ), θi)− πi(θ).

From (13), this implies that

ri(ρi(θ̂i,θ−i), θi) − (a) > ri(ρi(θ), θi) − (b),



which is equivalent to

ri(ρi(θ̂i,θ−i), θi)−
∑
j 6=i

rj(ρj(θ̂i,θ−i), θj)− ci(θ̂i,θ−i) >

ri(ρi(θ), θi)−
∑
j 6=i

rj(ρj(θi,θ−i), θj)− ci(θi,θ−i).

This contradicts the efficiency of ρ based on (12) and thus, the
assumption was incorrect.

Lemma 2. Truth telling is a dominant strategy under (13).

Proof. Consider the problem of choosing the best type θ̂i by
a CP i. A best strategy for CP i solves

max
θ̂i

ri(ρi(θ̂), θ̂i)− πi(θ̂).

Substituting the payment function by the proposed mechanism
(12), we get

max
θ̂i

[
ri(ρi(θ̂), θ̂i)−

∑
j 6=i

rj(ρ(θ̂−i), θj)− cj(θj , θ̂−i)︸ ︷︷ ︸
(a)

+
∑
j 6=i

rj(ρj(θ̂), θ̂j)
]
.

Since (a) does not depend on θ̂i, it is sufficient to solve

max
θ̂i

(
ri(ρi(θ̂), θ̂i) +

∑
j 6=i

rj(ρj(θ̂), θ̂j)

)
.

Thus, CP i would pick a declaration θ̂i that will lead the
mechanism to pick a ρ which solves

max
ρ

(
ri(ρi(θ̂), θ̂i) +

∑
j 6=i

rj(ρj(θ̂−i), θ̂j)

)
. (14)

Under the proposed mechanism,

ρ∗ ∈ argmax
ρ

(
ri(ρi(θ̂), θi) +

∑
i 6=j

rj(ρj(θ̂), θ̂j)

)
.

The proposed mechanism (13) will choose ρ in a way that
solves the maximization problem (14) with θ̂i = θi. Thus,
truth-telling is a dominant strategy for CP i.

Lemma 3. The proposed mechanism (13) is ex-post individ-
ually rational.

Proof. At the equilibrium, all the CPs are truthful and declare
their real types. Thus, by replacing (13) in the utility of a CP
i, we have

ui =
∑
i

ri(ρ
∗
i (θ), θi)− ci(θ)−

∑
j 6=i

rj(ρ
∗
j (θ−i), θj)− cj(θ),

(15)

where ρ∗ is the outcome that maximizes the social welfare. The
CPs could have picked ρi(θ−i) instead of ρi(θ) as a solution of
the optimization problem, as it is one of the possible strategies.
This is possible because the set of strategies, i.e., the total
storage capacity of the MNO, is fixed and does not change by
changing the set of participating CPs. Thus,∑

j

rj(ρ
∗
j (θ), θj) ≥

∑
j

rj(ρ
∗
j (θ−i), θj).

Furthermore, we know that the rate of a participating CP cannot
be negative, i.e.,

rj(ρ
∗
j (θ−i), θj) ≥ 0.

Therefore, ∑
i

ri(ρ
∗
i (θ), θi) ≥

∑
j 6=i

rj(ρ
∗
j (θ−i), θj).

Thus, (15) is non-negative and the proposed mechanism is ex-
post individual rational.

Lemma 4. The proposed mechanism (13) is weakly budget-
balanced.

Proof. Since the CPs are truth-telling at the equilibrium then
we have∑

i

πi(θ) =
∑
i

([∑
j 6=i

rj(ρj(θ−i), θj)− cj(θ−i, θj)
]

−
[∑
j 6=i

rj(ρj(θ), θj)− cj(θ, θj)
])
.

Moreover, since the utility of a CP is a decreasing function of
the number of the set of participating CPs, we have that, ∀i,∑
j 6=i

rj(ρj(θ−i), θj)− cj(θ−i, θj) ≥
∑
j 6=i

rj(ρj(θ), θj)− cj(θ, θj).

Thus, the proposed mechanism is weakly budget-balanced.

Next, we prove the provided result in Theorem 1.

Proof. Based on Lemma 1, Lemma 3 and Lemma 4, we can
deduce that all the condition of the optimization problem (11)
are satisfied. Based on Lemma 2, we can deduce that the
proposed mechanism (13) is the unique efficient solution of
the formulated problem (11).
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