
HAL Id: hal-01781318
https://centralesupelec.hal.science/hal-01781318

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability Analysis of Systems with Delay-Dependent
Coefficients: an Overview

Chi Jin, Keqin Gu, Silviu Iulian Niculescu, Islam Boussaada

To cite this version:
Chi Jin, Keqin Gu, Silviu Iulian Niculescu, Islam Boussaada. Stability Analysis of Systems with Delay-
Dependent Coefficients: an Overview. IEEE Access, 2018, pp.1. �10.1109/ACCESS.2018.2828871�.
�hal-01781318�

https://centralesupelec.hal.science/hal-01781318
https://hal.archives-ouvertes.fr


SPECIAL SECTION ON ANALYSIS AND SYNTHESIS OF TIME-DELAY SYSTEMS

Received March 4, 2018, accepted April 2, 2018, date of publication April 26, 2018, date of current version June 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2828871

INVITED PAPER

Stability Analysis of Systems With
Delay-Dependent Coefficients: An Overview
CHI JIN 1, KEQIN GU2, (Senior Member), SILVIU-IULIAN NICULESCU 3, (Fellow, IEEE),
AND ISLAM BOUSSAADA1,4
1IPSA & Laboratoire des Signaux et Systèmes CentraleSupélec-CNRS-Université Paris Sud, 91192 Gif-sur-Yvette cedex, France
2Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
3Laboratoire des Signaux et Systèmes, CentraleSupélec-CNRS-Université Paris Sud, 91192 Gif-sur-Yvette cedex, France
4Dynamical Interconnected Systems in COmplex Environments team, Inria, 91120 Saclay, France

Corresponding author: Chi Jin (chi.jin@l2s.centralesupelec.fr)

The work of C. Jin was supported by IPSA, Paris. This work was supported by the INRIA DISCO, by a grant from Hubert Curien
BRANCUSI 2017, under Grant 38390ZL, and in part by the grant from Hubert Curien BALATON 2018, under Grant 40502NM.

ABSTRACT This paper gives an overview of the stability analysis of systems with delay-dependent
coefficients. Such systems are frequently encountered in various scientific and engineering applications.
Most such analyses are generalization of those on systems with delay-independent coefficients. Therefore
an introduction on systems with delay-independent coefficients is also given, with an emphasis on the
τ -decomposition approach. Methods for two key ingredients of this approach are discussed, namely the
identification of imaginary characteristic roots with the corresponding delays, and local behavior analysis of
these roots as the delay increases through these critical values. For systems with delay-dependent
coefficients, we review the methods of analysis for systems with a single delay and commensurate delays,
their application to output feedback control and a geometric perspective that establishes a link between
systems with and without delay-dependent coefficients. We provide the main ideas of various stability
analysis methods and their advantages and limitations. We also present our perspectives on future directions
of research on this interesting topic.

INDEX TERMS Delay systems, stability analysis, stability criteria.

I. INTRODUCTION
Systems with time delays are present in a broad spec-
trum of scientific and engineering disciplines, ranging from
biology [44], [69], [92], chemistry [37], economy [119] to
physics [129], engineering [31], [98], [117] and control sys-
tems [72], [114]. The presence of time delay is often caused
by the time needed to transmit material, energy and informa-
tion between different parts of a system.

The stability analysis of time delay system has been an
active field in the control community since time delay can
considerably change the performance and stability of a con-
trol system. Examples include sampled-data control sys-
tems [10], [40], networked control systems, [33], data transfer
in high-speed networks [96], design of PID or Proportional-
Integral-Retard controllers [100], [107], [108], [124], con-
sensus seeking in multi-agent systems [86], [101], supply
chain systems [111], traffic flow [118], and neural networks
[25], [91], [133], just to name a few.

The vigorous research efforts have produced a rich
collection of literature on the stability analysis of time

delay systems. The readers are referred to the [50], [51], [74],
[88], [93], [123] for a summary of recent progress. Most
stability analyses are based on the Lyapunov approach or the
spectrum approach.

The Lyapunov-based methods consist in constructing a
Lyapunov function or functional to prove stability, by invok-
ing the Razumikhin theorem or the Lyapunov-Krasovskii
theorem, respectively [57]. This approach applies to general
time delay systems with possibly nonlinear and time varying
dynamics and is able to handle uncertainty. However, the con-
struction of Lyapunov functionals is often a challenging
task. The methods based on simple Lyapunov-Krasovskii
functionals require a low computation load, but the results
are in general conservative. For linear systems, computa-
tional tools are available leading to computer-aided numerical
constructions. By restricting to a piecewise linear kernel,
Gu [46] and [47] developed a discretized Lyapunov func-
tional approach for stability analysis, which is guaranteed to
find a Lyapunov functional for a large class of asymptotically
stable linear systems if the gridding is sufficiently fine [53].
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Various techniques for constructing Lyapunov functionals
can be found in [39], [50], [73], [78], [112], and [113].
Recently, some different functional approximation approa-
ches have been proposed using polynomial bases,
Wirtinger inequalities and/or SOS techniques [102]–[104],
[120]–[122]. An explicit inverse of the Lyapunov operators
was obtained, and thus opens the way to full-state feed-
back for LTI delay systems via convex optimization [84].
Nevertheless, the computation burden grows very rapidly
as the number of decision variables increases. Moreover,
the optimization based approach does not always provide
insight into the link between system structures and stability.
The spectrum approach is based on the fact that the stability

of LTI time delay systems is determined by the roots of the
associated characteristic equation. A system is asymptotically
stable if and only if all the roots of the associated characteris-
tic equation are located on the left half complex plane with a
finite distance to the imaginary axis. Since the characteristic
equation of time delay systems are quasi-polynomials, com-
puting the right most characteristic root is a challenging prob-
lem,which is known to beN-P hard [126]. Several approaches
for numerically computing the rightmost characteristic roots
exist [88]–[90], [125], but the intensive computation involved
limits their application. There exist several software packages
devoted to delay characteristic equation, as, for example,
DDE-BIFTOOL [38], TRACE-DDE [11], QPmR [127].

As in the finite-dimensional case, one of the important
problems is the characterization of the spectrum behavior as
a function of the variation of parameters (including delays).
In this context, the continuity property of the spectrum with
respect to the parameters is essential (see, for instance, [88]
and the references therein). Two particular methods have
been largely addressed and discussed in the literature mainly
in the case when the number of parameters is small:
D-decomposition method and τ -decomposition method. The
D-decomposition method is an effective means of determin-
ing the number of characteristic roots on the right half com-
plex plane for a given parameter domain without knowing
the exact locations of characteristic roots [43], [128]. The
main idea of D-decomposition method is to separate the
parameter space into disjoint regions. In the interior of each
region, the number of unstable roots is constant. On the
boundary of these regions, the characteristic equation has at
least one imaginary root. By analyzing the behaviors of these
imaginary characteristic roots with respect to small variation
of parameters, the system stability can be determined for
different regions in the parameter space.

The τ -decomposition method can be viewed as a special
case of the D-decomposition method when the parameter
involved in this case is the delay τ . The underlying idea
may be traced back to at least the 1960s (see [76] and the
references therein), and a large number of related results can
be found in the literature, see [50], [88], [99], [128]. The
τ -decomposition methods roughly proceed as follows: start-
ing with one value of delay τ l for which one knowns the
number of characteristic roots in the right half complex plane

(usually τ l = 0), one sweeps through an delay interval of
interest (τ l, τ u) and identify all delays τk , k = 1, 2, · · · ,
N − 1 for which there exist characteristic roots on the imagi-
nary axis. These delay values are referred to as critical delays
and the frequency of the corresponding imaginary roots are
called crossing frequencies. By identifying the direction these
roots cross the imaginary axis, one may determine the change
of the number of right half complex plane roots as τ goes
through each τk . Thus, one may divide (τ0, τN ) into subinter-
vals (τk−1, τk ), and the number of right half plane roots within
each subinterval is constant and can be explicitly determined.
Especially, the subintervals of delay for the systems to be
stable can be computed.

Unfortunately, these methods are not sufficient for a com-
plete stability analysis when the system coefficients also
depend on the delay. Delay systems of this type are encoun-
tered in, for instance, population dynamics with age struc-
ture [8], [69], [70], the blowfly model [29], the hematopoi-
etic models [27] as well as the stellar dynamo [129].
Systems of this type may also arise in the analysis of sys-
tems that do not contain delay-dependent coefficients. Exam-
ples include the analysis of partial differential equations
using the method of characteristics [42], stability and con-
vergence analysis of control systems based on delayed feed-
back [66], [94]. Detailed descriptions of such examples will
be given in Section II.

Systems with delay-dependent coefficients received much
less coverage in the literature. In [70] comprehensive results
are obtained for a particular biological model, which cannot
be applied to systems in general forms. To the authors’ best
knowledge, the first general method for stability analysis is
proposed [7], which generalizes an earlier work of Cooke
and Driessche on systems with delay-independent coeffi-
cients [28]. Some restrictive assumptions in [7] are relaxed
in [54] to cover a larger set of systems. Both [7] and [54]
only consider systems with a single delay of the form

D(λ, τ ) = P(λ, τ )+ Q(λ, τ )e−λτ = 0. (1)

Moreover, the stability analysis methods developed
in [7] and [54] do not apply when the characteristic equation
has multiple imaginary roots.

Generalization of [54] to address quasi-polynomials with
commensurate delays of the form

D(λ, τ ) =
N∑
i=0

Pi(λ, τ )e−iλτ = 0, (2)

is pursued in [63]. By using a generalized Schur-Cohn
lemma [131], Young proposed a method to detect cross-
ing frequencies and critical delays, and to analyze the local
behavior of simple characteristic roots on the imaginary axis.
The two-parameter insight provided in [65] not only gives
an intuitive interpretation of the results in [54], but also
facilitating the development of more general analysis appli-
cable also to the case with multiple imaginary characteristic
roots. In [66], it is shown that delayed output signal can be
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used to approximate the first-order derivative of the output
signals for the purpose of feedback control, resulting in a
closed-loop system with delay-dependent coefficients. For
these systems, the method developed in [54] is applied to find
the delay intervals that guarantee a pre-specified exponential
convergence rate of closed-loop trajectories. Approximation
of higher-order derivatives of the outputs can be made by
using commensurate delays and interpolating polynomials as
detailed in [62], where the detailed procedure of finding the
appropriate values of the delay parameter is also given.

The remaining part of this article is organized as follows.
We first review how systems with delay-dependent coeffi-
cients arise in Section II. As the analysis of delay-dependent
coefficients may be considered as a generalization of one
with delay-independent coefficients, we devote Section III
to the τ -decomposition related methods for stability analysis
of systems with delay-independent coefficients. The analysis
of systems with delay-dependent coefficients is presented in
Section IV. Section V concludes this paper with our perspec-
tives on this interesting topic of research.

A preliminary version of this paper has appeared in [64].
This article extends [64] in the following two aspects. First,
additional examples are presented to show the diversity of
applications involving systems with delay-dependent coeffi-
cients. Second, more detailed and extensive literature review
is contained.

In the sequel, we will refer to (jω∗, τ ∗) as a critical pair,
where ω∗ is a crossing frequency, τ ∗ a critical delay, if
λ = jω∗, ω∗ ≥ 0 is an imaginary root of the charac-
teristic equation corresponding to τ ∗. Due to the symmetry
of the characteristic roots about the real axis, the critical
pairs only include positive crossing frequencies. We use ∂x to
denote partial differentiation w.r.t argument x. For instance,
∂xF(x, y) =

∂F(x,y)
∂x . For any complex number c, <(c), =(c)

and c denote its real part, imaginary part and complex con-
jugate, respectively. R stands for the set of real numbers, R+
for non-negative reals, and C for complex numbers. D and
∂D stand for the unit disk and the unit circle centered at the
origin in the complex plane, respectively.

II. SYSTEMS WITH DELAY-DEPENDENT COEFFICIENTS
In this section we introduce several situations where systems
with delay-dependent coefficients arise. In some applications,
themathematical modeling of a physical or biological process
directly leads to this type of systems. Take the stellar dynamo
given in [129] for example. Its dynamics is described by the
following equations

Ḃφ(t) = c1e−c2T0A(t − T0)− c2Bφ(t),

Ȧ(t) = c3e−c2T1Bφ(t − T1)− c2A(t),

where Bφ is the strength of toroidal field, and A is the strength
of poloidal field, and c1, c2, c3, T0, T1 are positive constants.
The delay parameters that appear in the exponential terms in
the system coefficients reflect the dissipation of energy over
time. The characteristic equation of the above system can be

easily obtained as

λ2 + 2c2λ+ c22 − c1c3e
−c2τ e−τλ = 0, (3)

where τ = T0+T1. It is clear that the delay-dependent terms
in the coefficients of a differential equation carry over to the
associated characteristic equation.

There are various reasons for system coefficients to be
delay-dependent. As the information, substance or energy
is transmitted, their quantity or magnitude may in general
decrease over time due to dissipation, causing their influence
to be delay-correlated. As discussed in [7], for population
dynamics, the need to incorporate time delay is often the
result of the existence of some stage structure [70]. It is
easy to conceive that these models will involve some delay-
dependent parameters since the through-stage survival rate is
often a function of the time delay. Consider the second model
with time delay and stage structure introduced by Bence
and Nisbet [8] for a population of sessile invertebrates. This
model is a two-stage model in which population is divided
into adult and juvenile populations. Themodel takes the form:

J̇ (t) = s[F(t)− e−mJ τF(t − τ )]− mJ J (t),
Ȧ(t) = se−mJ τF(t − τ )− mAA(t),
F(t) = max{0, 1− aJ J (t)− aAA(t)},

(4)

where sF(t) represents the newly settled juveniles and
se−mJ τF(t−τ ) the ones that become adults. The correspond-
ing characteristic equation is

λ2 + aλ+ c+ (b(τ )λ+ d(τ ))e−λτ = 0 (5)

Characteristic equations with delay-dependent coefficients
may also arise during the analysis of other type of systems.
For instance, the model of hematopoietic stem cell dynam-
ics given in [27] is nonlinear with delay-free coefficients,
and possesses two equilibria. The linearized equation in the
neighborhood of the nonzero equilibrium has the following
characteristic equation

λ+ A(τ )− B(τ )e−λτ = 0,

where A, B are continuous functions of τ . In this case,
the delay-dependent coefficients are caused by the fact that
for a nonlinear systems the positions of the equilibria may
depend explicitly on the delay.

time delay systems with persistent repeated roots are typi-
cal examples of systems that may be constructed using delay-
dependent coefficients. As a matter of fact, consider the
simple scalar equation

ẋ(t) = ax(t)+ bx(t − τ ).

The corresponding characteristic equation is

λ− be−τλ − a = 0. (6)

It was shown in [17] that the maximal multiplicity that a
spectral value of (6) can have is two. Indeed, let λ0 be a
repeated root of (6) for some given τ , it must hold that
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λ0 = a − 1
τ
and b = 1

τ
eλ0τ . Substitute the expression of

b into (6), we arrive at

λ−
1
τ
eaτ−1e−τλ − a = 0, (7)

which is a system with delay-dependent coefficients.
A birkhoff approach in characterizing multiple spectral val-
ues is proposed in [17]. The dominancy of multiple spectral
values is further explored in [18] and [19] and analytically
shown in the case of second-order systems, and a rightmost
root assignment based design using delayed state feedback is
proposed where its applicability in damping active vibrations
for a piezo-actuated beam is demonstrated.

time delay systems with delay-dependent coefficients also
find their applications in the analysis of models described by
partial differential equations. In [85], the dynamics of age-
structured hematopoietic stem cells is described by:

∂t r̃(t, a)+ ∂ar̃(t, a) = −(δ̃ + β̃(C(t)))r̃(t, a),
for a > 0, t > 0,

∂t p̃(t, a)+ ∂ap̃(t, a) = −γ̃ p̃(t, a),
for 0 < a < τ̃, t > 0,

∂tr(t, a)+ ∂ar(t, a) = −(δ + β(C(t)))r(t, a),
for a > 0, t > 0,

∂tp(t, a)+ ∂ap(t, a) = −γ p(t, a),
for 0 < a < τ, t > 0,

where r(t, a) is the density of resting healthy cells at time
t and age a, r̃(t, a) denotes the density of resting unhealthy
cells, p(t, a) the density of proliferating healthy cells and
p̃(t, a) the density of proliferating unhealthy cells. The bound-
ary condition for all t > 0 is given by

r̃(t, 0) = 2(1− K̃ )p̃(t, r̃),
p̃(t, 0) = β̃(C(t))x̃(t)+ 2K̃ p̃(t, τ̃ ),
r(t, 0) = 2p(t, τ ),
p(t, 0) = β(C(t))x(t).

Using the method of characteristics [42] and following simi-
lar arguments as those in [4] and [42], the partial differential
equation can be reduced to a delay-difference equation with
delay-dependent coefficients [36]:

˙̃x(t) = −[δ̃ + β̃(x(t)+ x̃(t))]x̃(t)+ 2(1− K̃ )e−γ̃ τ̃

×ũ(t − τ ),
ũ(t) = β̃(x(t)+ x̃(t))x̃(t)+ 2K̃ e−γ̃ τ̃ ũ(t − τ̃ ),
ẋ(t) = −[δ + β(x(t)+ x̃(t))]x(t)+ 2e−γ τβ(x(t − τ )

+ x̃(t − τ ))x(t − τ ).

(8)

The model of cell density in a generic compartment in [42]
is described by a different set of PDEs, and it can also be
reduced to a system with delay-dependent coefficients using
the method of characteristics.

In control practice, it is often difficult to measure the
entire system state for feedback control, therefore output
feedback is a common scenario. To improve control per-
formance, in many control schemes, including the popular

PID control [3], [55] and the internal model control [71],
the time derivative of the output y(t) is used for feedback.
In a PID control schem, a delay difference can be used to
approximate ẏ(t) :

ẏ(t) ≈
y(t)− y(t − τ )

τ
, (9)

where τ is a positive delay value. If the plant transfer function
is rational, then the characteristic equation of the closed-
loop system has delay-dependent coefficients and may be
written as:

G0(λ)+ G1(λ)
1− e−λτ

τ
= 0, (10)

where G0(λ) and G1(λ) are polynomials. To estimate higher-
order derivatives of the output, it is possible to generalize
the finite-difference scheme described above using multiple
commensurate delays. This idea is exploited in [94], where
the output signal over a past period of time is interpolated
with a polynomial function and the higher-order derivatives
of the output can be approximated using the derivatives of
the interpolation polynomial. Similar to the single delay case,
the commensurate-delay based controller in [94] also leads
to a closed-loop system with the delay parameter appearing
in the coefficients. By exploiting the particular structure of a
chain of integrators, it is shown there that a rescaling tech-
nique can be applied to transform the system in such a way
that the coefficients become delay-independent. For general
systems, however, this technique can not be applied.

Finally, consider a system with characteristic equation

P(λ)+ Q(λ)e−λτ = 0 (11)

It is often desirable to make sure the system is not only stable
but also converges exponentially to the origin with a rate
no less than α, with α being a positive number. This can
be achieved by making a substitution λ − α → λ in (11),
resulting in

P(λ− α)+ Q(λ− α)e−ατ e−λτ = 0. (12)

Thus the problem is transformed to the stability problem of
the system represented by (12). Obviously, the coefficients
polynomialQ(λ−α)e−ατ depends on the delay τ even though
no coefficient polynomial in (11) depends on the delay.

III. STABILITY ANALYSIS OF SYSTEMS WITH
DELAY-INDEPENDENT COEFFICIENTS
In this section, we review some techniques pertaining to the
τ -decomposition approach for systems with delay-
independent coefficients. We focus on those results that have
been, or can potentially be extended to systems with delay-
dependent coefficients.

A. CHARACTERISTIC EQUATIONS
Consider linear time-invariant time delay systems with the
following characteristic equation:

D(λ, τ ) =
N∑
i=0

Pi(λ)e−iλτ = 0, (13)
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where Pi(λ), i = 0, 1, · · · ,N are a polynomials of the
Laplace variable λ, and τ is the delay parameter. In the
simplest case of N = 1, the characteristic equation (13)
becomes

D(λ, τ ) = P(λ)+ Q(λ)e−λτ = 0. (14)

It is worth mentioning that the characteristic equation (13)
can be derived from functional differential equations of both
the retarded and neutral type. The linearized dynamics of the
retarded type equations can be written as

ẋ(t) = A0x(t)+
m∑
i=1

Aix(t − iτ ), (15)

and that of the neutral type as

d
dt

(
x(t)+

m∑
k=1

Hkx(t − kτ )

)
= A0x(t)+

m∑
i=1

Aix(t − iτ ).

(16)

In (15) and (16), x(t) denotes the state variables at time t
and Hk , k = 1, · · · ,m, Ai, i = 0, · · · ,m are matrices of
appropriate dimensions. Then the characteristic equation is
given by:

D(λ, τ ) = det

(
λI − A0 −

m∑
i=1

Aie−λτi
)

(17)

for the retarded type system (15) and

D(λ, τ )=det

(
λ(I+

m∑
k=1

Hke−λτk )−A0−
m∑
i=1

Aie−λτi
)

(18)

for the neutral type system (16). An expansion of the deter-
minant in (17) or (18) yields (13). It should be pointed out
that even if m = 1 in (15) or (16), we may still have N > 1
in general in the characteristic equation in (13).

time delay systems may also be alternatively modeled
using differential equations on abstract space [6] or over rings
of operators [67], although the most common description
of time delay systems is functional differential equations.
A number of monographs covering different aspects of gen-
eral time delay systems as well as functional differential
equations are available, see e.g. [9], [56], [57], [75].

B. THE τ -DECOMPOSITION APPROACH
The τ -decomposition approach outlined in the introduction
section provides a convenient method for determining stabil-
ity of time delay system by avoiding computing the rightmost
characteristic root. A crucial premise of the τ -decomposition
approach is that characteristic roots in a vicinity of the imag-
inary axis and the right half complex plane must vary contin-
uously with respect to τ . While this always holds for retarded
type systems, extra conditions are needed to guarantee such
continuity for the neutral type systems with multiple delays.
Furthermore, it is also possible that a system is unstable even

though all the characteristic roots are in the strict left half-
plane (see, e.g., [52], [88]), if there exists a sequence of
characteristic roots that approach the imaginary axis.

There are two key ingredients of the τ -decomposition
approach. The first one is the detection of all critical pairs,
namely imaginary characteristic roots and the corresponding
critical delays. The second is the local behavior analysis of
imaginary characteristic roots, that is, to determine whether
these critical imaginary characteristic roots will become sta-
ble or unstable as τ increases through these critical values.
Various methods for solving these two problems will be
reviewed in this section. For the sake of brevity, we only
discuss systems with a single delay or commensurate delays.
For more general time delay systems, such as systems with
multiple independent delays [34], [116] or with distributed
delays [5], [30], see, e.g., the survey papers [51], [105],
the monograph [88] and the references therein.

C. DETECTION OF CRITICAL PAIRS
To illustrate the basic idea, consider first systemswith a single
delay represented by the characteristic equation (14). When λ
lies on the imaginary axis, i.e., λ = jω for some ω ∈ R, e−λτ
lies on the unit circle ∂D of the complex plane. This is an
important property exploited in most techniques that identify
imaginary characteristic roots.

The following polynomial is introduced in [28] for this
purpose:

F(ω) = P(jω)P(−jω)− Q(jω)Q(−jω). (19)

Noticing that e−jωτ ∈ ∂D in (14) implies |P(jω)| = |Q(jω)|.
Therefore, if ω is a real root of F(ω), then λ = jω must be
an imaginary characteristic root of (14). Let ω1 < ω2 < · · ·

< ωH be the non-negative solution of

F(ω) = 0, (20)

then each ωk , 1 ≤ k ≤ H is a crossing frequency. Suppose
(jω∗, τ ∗) is a critical pair, it follows from (14) that

−
P(jωk )
Q(jωk )

= ejτkmωk . (21)

It can be deduced from the equation above that corresponding
to each crossing frequency ωk , there is a sequence of critical
delays τkm, m = 0, 1, 2, · · · , that satisfy

τkm =
1
ωk
6

(
−
P(jωk )
Q(jωk )

)
+

2πm
ωk

, (22)

where 6 (·) is the phase angle of a complex number.
As an example, consider the following characteristic

equation of neutral type:

2λ+ 1+ (λ+ 2)e−λτ = 0. (23)

Then

F(ω) = |2 jω + 1|2 − |jω + 2|2

= 3ω2
− 3.
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The only positive solution of (20) for the above F(ω) is
ω1 = 1. According to (22), all the critical delays correspond-
ing to the imaginary characteristic root jω1 can be expressed
as

τ1m = τ0 + 2πm,

where τ0 ≈ 2.4981. It is easy to see that, in this case, when
the delay increases, the characteristic roots will cross the
imaginary axis towards the right half complex plane at each
τ1m > 0.

Next, for systems with commensurate delays, the simple
magnitude condition |P(jω)| = |Q(jω)| at some crossing
frequency ω is no longer available. Nevertheless, the gen-
eralized Schur-Cohn lemma given in [131] suggests that it
is still possible to define a polynomial F(ω) for detecting
all crossing frequencies. To construct this polynomial, first
associate (13) with the following function:

D̂(λ, x) =
N∑
k=0

Pk (λ)xk , (24)

where x can be a scalar or a matrix. Let H be the Schur’s
hermitian form associated with (13) defined as

H(λ,X ) =
N∑
k=1

|P0xk + P1xk+1 + . . .+ PN−kxN |2

−

N∑
k=1

|PN xk + PN−1xk+1 + . . .+ PkxN |2 (25)

where X = col(x1, x2, . . . , xN ) ∈ CN . The hermitian formH
can be expressed as

H(λ) = XHH(λ)X (26)

where XH is the conjugate transpose of X , and

H(λ) = Q̂(λ, S)H Q̂(λ, S)

−D̂(λ, S)H D̂(λ, S),

Q̂(λ, S) =
N∑
k=0

PkSN−k , (27)

and

S =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · 1
0 0 0 · · · 0


is an N × N shift matrix. Then the function F for the
commensurate-delay systems (13) can be defined as

F(ω) = − det (H(jω)). (28)

The following equality is known as the generalized
Schur-Cohn lemma (see for instance [131]):

F(ω) = −|PN (jω)|2N
N∏

i,k=1

(1− zizk ), (29)

where zi, i = 1, 2, . . . ,N are the roots of the polynomial
D̂(jω, x) in x for fixed ω.
The equations (13) and (24) imply that a necessary and

sufficient condition for jω∗ to be an imaginary characteristic
root is that D̂(jω∗, x) has a root in x on the unit circle ∂D.
Therefore, jω∗ being an imaginary characteristic root implies
that F(ω∗) = 0 with F(ω) given in (29). However, the con-
verse is not necessarily true. It is possible that none of the zi’s
lies on ∂Dwhen ω = ω∗ but we still have F(ω∗) = 0 because
there may exist some zk , zl such that z1zk = 1. In other words,
if λ = jω is an imaginary characteristic root of (13), then the
following must hold:

F(ω) = 0. (30)

The polynomial F(ω) defined in (28) was first introduced
in [21] for identifying crossing frequencies. Once the imagi-
nary characteristic roots are known, the critical delay values
can be easily computed.

The critical pairs can also be identified using bilinear
transformations [50]. This method is known as the pseudo
delay technique or the Rekasius substitution [106]. The idea
is to replace the term ejωτ in (13) with 1−jωT

1+jωT , which leads to

DT (ω) =
N∑
i=0

pi(jω)
(
1− jωT
1+ jωT

)i
= 0. (31)

Then ω∗ ≥ 0 is a crossing frequency if and only if the
above equation is satisfied with ω = ω∗. The equation above
can be written as {

<(DT (ω)) = 0,
=(DT (ω)) = 0.

To obtain a polynomial equation of ω only, the variable
T can be eliminated from the above equations using the resul-
tant theory (see, e.g., [32], [109]), or the other elimination
techniques.

The aforementioned methods consist in first identifying all
crossing frequencies and then computing the corresponding
critical delays. Finally, an alternative approach is first to
detect all z ∈ ∂D such that

N∑
i=0

Pi(jω)zi = 0. (32)

Suppose z = z∗ is such a solution, then after replacing
z with z∗ in (32) one obtains a polynomial equation in ω.
By solving this polynomial equation for real ω, all crossing
frequencies corresponding to z∗ can be obtained. The matrix
pencil methods embody this idea and directly work on the
state-space formulation. Consider for example the retarded
type system (15), let n be the number of the state variables,
define the matrix pencil as:

3(z) = zW + U ,
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where z ∈ C and W ,U ∈ R(2mn2)×(2mn2) are given by:

W =


In2 0 · · · 0 0
0 In2 · · · 0 0

· · ·

0 0 · · · In2 0
0 0 · · · 0 Bm

,

U =


0 −In2 0 · · · 0
0 0 −In2 · · · 0

· · ·

0 0 0 · · · In2
B−m B−m+1 · · · Bm−2 Bm−1

.
and B−k , k = 1, · · · ,m are defined as:

B−k = In ⊗ ATk , Bi = Ai ⊗ In, B0 = A0 ⊕ AT0 . (33)

The operators ⊗ and ⊕ are the Kronecker product and sum,
(see, e.g., [77]).

It is shown in [95] that λ = jω∗ is an imaginary charac-
teristic root if and only if there exists some complex number
z∗ ∈ ∂D such that

det(3(z∗)) = 0, (34)

and

det(A0 +
m∑
i=1

Aiz∗i − jω∗I ) = 0 (35)

are both satisfied. One first solve (34) to obtain all solutions
in z∗ on the unit circle, then solve (35) for all the crossing
frequencies ω∗ corresponding to each given z∗. It is worth
mentioning that not all z∗ ∈ ∂D generate crossing frequen-
cies (see, for instances, [97]). Once z∗ and ω∗ are obtained,
the critical delays can be easily computed from the equality
e−jω

∗τ
= z∗.

D. BEHAVIOR ANALYSIS OF IMAGINARY ROOTS
Given a critical pair (jω∗, τ ∗). If λ = jω∗ is a simple root of
D(λ, τ ), or equivalently ∂λD(λ, τ )|(jω∗,τ∗) 6= 0, then by the
implicit function theorem [2], [68], the characteristic root λ
is a function of τ denoted here as λ(τ ) in a neighborhood of
(jω∗, τ ∗). The first-order derivative of the characteristic roots
with respect to the delay can be computed as

dλ(τ ∗)
dτ

= −
∂τD(λ, τ )
∂λD(λ, τ )

∣∣∣∣
(jω∗,τ∗)

. (36)

If sgn(<( ddτ λ(τ
∗))) = 1, the characteristic root crosses the

imaginary axis from C− to C+ as τ increases through τ ∗.
If it is −1 instead, the characteristic root moves from C+ to
C− and becomes stable. Return to the example (23). At the
critical delay τ ∗ ≈ 2.4981, the characteristic equation has
a pair of imaginary roots λ = ±j. Consider the root with
positive frequency, straightforward computation yields

dλ(τ ∗)
dτ

≈ 0.0905− 0.3790j. (37)

Since the real part of this derivative is positive, this pair of
characteristic roots move into the right half complex plane
and thus become unstable as τ increases from τ ∗.

It is possible to obtain the crossing direction of simple
imaginary characteristic roots by working directly on the
state-space formulation of the system. In the monograph [88],
the following class of delay systems with parameterized coef-
ficients and delays are discussed:

ẋ = A0(p)x(t)+
m∑
i=1

Ai(p)x(t − τi(p)). (38)

Suppose λ = jω∗ is a simple characteristic root of D(λ, p∗),
and let λ(p) be the trajectory of the characteristic root that
passes through jω∗ as p passes through p∗. Then using the
Jacobi’s formula and some properties of left and right eigen-
values of rank one matrices, the following equation is derived

∂piλ(p) = −
vT0 · ∂piM · u0
vT0 · ∂λM · u0

, (39)

where

M (λ, p) = λI − A0(p)−
m∑
i=1

Aie−λτi(p), (40)

and vT0 and u0 are the left and right eigenvectors of
M (jω∗, p∗), respectively.

It is worth mentioning that the equation (38) can actually
represent a large class of systems with delay-dependent coef-
ficients, although this fact was not mentioned in [88]. For
instance, if one sets p = τ , τi = ip, then (38) represents sys-
tems with commensurate delays. On the other hand, suppose
p = col{p1, · · · , pm} and τi(p) = pi, then (38) represents
systems with m independent delays. Therefore the formula
(39) can indeed be applied to systems with delay-dependent
coefficients.

When the right hand side of (36) or (39) is zero, higher-
order analysis is necessary, which is reported in [41] and
briefly introduced in [88] using the eigenvalue perturbation
technique. The method in [41] apply to systems represented
both by the state-space equations and characteristic equations
of quasi-polynomials.

Although it is quite straightforward to use the formula
(36) or (39) to determine the crossing direction of simple
characteristic roots, these formula do not provide deep insight
into this problem. The right hand side of (36) or (39) rely on
λ and τ in a complicated way, which does not reveal how the
crossing direction may vary for different critical pairs.

In [28], an interesting relationship between the function
F(ω) defined in (19) and the crossing direction of charac-
teristic roots are derived. Let (jω∗, τ ∗) be a critical pair of
the characteristic equation (14), λ(τ ) be the roots of (14) in a
neighborhood of (jω∗, τ ∗), then

sgn
(
<(λ′(τ ∗))

)
= sgn(F ′(ω∗)). (41)

According to the last equation, as τ sweeps through τ ∗ from
left, a pair of imaginary roots ±jω∗ cross the imaginary axis
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toward the right half complex plane ifF ′(ω∗) > 0. Theymove
toward the left half complex plane if F ′(ω∗) < 0.
Two important invariance properties now follow from (22)

and (41). The former shows that the crossing frequency ωk is
invariant with respect to a shift of 2π/ωk in the delay. The
crossing direction of each characteristic root at λ = jωk is
independent of the corresponding delay, as indicated in (41).

This further implies a simple root crossing pattern in the
way characteristic roots with different frequencies cross the
imaginary axis. It is easy to see

sgn(F ′(ωk )) = −sgn(F ′(ωk+1)). (42)

Therefore the crossing direction of each two neighboring
imaginary roots jωk and jωk+1 always have opposite crossing
directions. We note that this pattern of alternating crossing
directions does not necessarily hold for system with com-
mensurate delays. Using this property, it is easy to see that
the roots crossing toward one side of the imaginary axis
more often than toward the other side. If the characteristic
equation (14) admit at most a finite number of roots on the
right half plane, then it can be deduces that the imaginary
roots must cross toward the right more frequently, otherwise
for large delays, the number of characteristic roots lying to
the right of the imaginary axis would fall below zero. It is
then claimed that there exits some positive number T ∗ such
that the system (14) remains unstable for all τ > T ∗ and no
stability switches will occur if τ increases beyond T ∗.

E. REPEATED CHARACTERISTIC ROOTS
For the characterization and analysis of crossing roots with
multiplicity larger than one, several different approaches are
available in the literature, including those based on the pertur-
bation theory and Newton-Puiseux series [81], [82], as well
as the geometrical approach [45], [59].

It is possible that the real part of λ′(τ ) is zero at some
critical pair. In this situation, higher-order derivatives of the
characteristic root with respect to τ needs to be computed in
order to determine the root crossing direction. This type of
analysis has been reported in [41].

The frequency-sweeping framework developed in [82] pro-
vides a general method for comprehensive stability analysis
of multiple roots on the imaginary axis. Recall the character-
istic equation for systems with commensurate delays

D(λ, τ ) =
N∑
i=0

pi(λ)e−iλτ = 0, (43)

where each pi(λ) is a polynomial. Corresponding to the char-
acteristic equation, the following function is also defined:

D̂(λ, z) =
N∑
i=0

pi(λ)zi = 0.

Sweeping through ω ≥ 0, for each λ = jω, suppose the equa-
tion above admits N solutions in z. Denote these solutions as
zi(jω), i = 1, · · · ,N . Then the graph of 0i(ω) = |zi(jω)| is
referred to as a frequency-sweeping curve(FSC).

As τ increases through some critical delay ταk , where ταk
is given in (22), the increase of number of characteristic roots
on the right half complex plane in a small neighborhood of
λα is equal to NFzα (ταk ) defined as follows

NFzα (ταk ) = Nzα (τ + ε)− Nzα (τ − ε), (44)

whereNzα (τ ) is the number of the FSCs: 0i(ω), i = 1, · · · ,N
that satisfy 1) zi(ω) = exp(−λατα), 2) 0i(ω) > 1, and ε is a
sufficiently small positive number. In other words, the char-
acteristic roots crossing the imaginary axis is associated with
the corresponding frequency-sweeping curves crossing the
horizontal line 1. Using this property, it is shown that the
crossing of characteristic roots on the imaginary axis with
multiplicity has similar invariance properties as the systems
with a single delay and simple imaginary characteristic roots.
Furthermore, the system stability can be analyzed completely,
in the sense that the eventual number of unstable characteris-
tic roots as τ →+∞ can be easily determined.
As noted in [81], the idea of frequency-sweeping, consist-

ing in first detecting all potential crossing frequencies when
implementing the τ -decomposition methods, is not new, and
have indeed appeared in earlier work such as [21], [24], [25],
[28], [48], [49], [76], and [115]. However, the frequency-
sweeping idea is used only to detect critical delay pairs in
[25] and [50] for the commensurate delays case and in [35],
[48], [49], and [115] for the incommensurate delay case,
without determining the crossing directions of the imaginary
characteristic roots. In [28] and [76], frequency-sweeping
tests were used for studying the local behavior of imaginary
characteristic roots, but characteristic equations considered
therein are confined to a class of simple quasi-polynomials.

As mentioned in [82], when the critical pair is not regular,
which includes the case of multiple characteristic roots on
the imaginary axis, it is necessary to use the Puiseux series
to analyze the asymptotic behaviors of these roots. Here we
give a very rough idea about how Puiseux series can come
into play. The characteristic equation (13) can be expanded at
each critical pair (λ0, τ0) as

F(1λ,1τ ) = 0,

where 1λ = λ − λ0, 1τ = τ − τ0 and F(1λ,1τ ) is a
series obtained through the Taylor expansion. The critical pair
(λ0, τ0) may not be regular, in the sense that ∂λD(λ0, τ0) =
0 or ∂τD(λ0, τ0) = 0. Let n be the number such that
∂ iλD(λ0, τ0) = 0, for i = 1, . . . , n − 1 and ∂nλD(λ0, τ0) 6= 0.
Also let g be such a number that ∂ iτD(λ0, τ0) = 0, for i =
1, . . . , g−1 and ∂gτD(λ0, τ0) 6= 0. Then there exits a positive
number v such that the sequence F(1λ,1τ ) determines the
following v Puiseux series:

1λ =

∞∑
i=gi

Cki(1τ )
i
nk , k = 1, · · · , v,

and n1 + · · · nv = n. Conversely, we can also express the
increase of τ from τ0 as a series of 1λ, known as the duel

VOLUME 6, 2018 27399



C. Jin et al.: Stability Analysis of Systems With Delay-Dependent Coefficients: Overview

Puiseux series:

1τ =

∞∑
i=vi

Dki(1λ)
i
gk , k = 1, · · · , v,

where g1 + · · · + gv = g. Then it is easy to see that the
curves of (λ(τ ), τ ) in a small neighbourhood of (λ0, τ0) may
have several branches. The local behaviors of these branches
are fully characterized by these Puiseux series. The Puiseux
series can be obtained based on the Newton polygon. A con-
structive algorithm for computing the Puiseux series can be
found in [81]. Further discussion of the invariance properties
can be found in [80]. Finally, strongly related to the newton
diagram, some algorithmic procedure to construct the Weier-
strass polynomial that captures all information corresponding
to multiple roots has been proposed in [83] (see also [20]).
We also note that when there are multiple parameters in the
characteristic equation, it is not possible to locally expand
the trajectory of a repeated characteristic root in the form
of Puiseux series of multiple variables. See [1] for detailed
analysis.

As mentioned in [22] and [23], the interest in charac-
terizing the algebraic/geometric multiplicities corresponding
to characteristic roots on the imaginary axis is emphasized,
since such multiplicities characterize the local behavior of
imaginary characteristic roots. A constructive approach to the
multiplicity of crossing imaginary roots is proposed in [13]
through a class of functional confluent Vandermonde matri-
ces and a sharper bound on the multiplicity of imaginary
characteristic roots is established. For analysis of multiple
roots at the orign, see also [14] and [15].

IV. STABILITY ANALYSIS FOR SYSTEMS WITH DELAY
DEPENDENT COEFFICIENTS
Despite the rich literature on time delay systems, very few
results are available on general stability analysis of systems
with delay-dependent coefficients. In articles focused on the
modeling aspects of this type of systems, stability is usually
investigated through numerical experiments. In [70] compre-
hensive study is conducted on a particular biological model.
To the best knowledge of the authors, the first general method
for stability analysis was proposed in [7], which generalizes
an earlier work of Cooke and van den Driessche on systems
with delay-independent coefficients [28].

In [7], Berreta andKuang analyzed characteristic equations
of the form (1). The same definition of F in (19) is used there,
except that now F(ω, τ ) in general depends on τ :

F(ω, τ ) = |P(jω, τ )|2 − |Q(jω, τ )|2. (45)

The delay is restricted to some delay interval of interest
denoted as I = [τ l, τ u]. It is assumed that the number of
unstable characteristic roots are known for τ = τ l . Each
function P(λ, τ ) and Q(λ, τ ) is polynomial in λ and analytic
in τ . In the sequel, we may use Dτ (λ) and Fτ (λ) instead
of D(λ, τ ), F(λ, τ ) to emphasis them as functions of λ for
each fixed τ . The same convention apply to other functions

parameterized by τ . It is assumed that each positive root of

Fτ (ω) = 0, (46)

denoted as ωk (τ ), k = 1, · · · ,L is defined and differentiable
in I. If for some ω∗ > 0, jω∗ is an imaginary root of Dτ (λ)
for some τ = τ ∗, then there exists some k such that ωk (τ ∗) =
ω∗. Moreover, the following condition must hold at ω = ω∗,
τ = τ ∗:

6 P(jω, τ )− 6 Q(jω, τ ) = −ωτ + π + 2lπ (47)

where l is an integer. The last condition is transformed into
the following equation:

Sk,l(τ ) := τ −
θk (τ )+ 2lπ
ωk (τ )

= 0, (48)

where

θk (τ ) = 6
(
−
P(jωk (τ ), τ )
Q(jωk (τ ), τ )

)
(49)

is a differentiable function under some assumptions. Then the
root crossing direction criteria (41) has to be modified to

<(λ′(τ ))|τ=τ∗=sgn(∂ωF(ωk (τ ∗), τ ∗))sgn(S ′k,n(τ
∗)). (50)

The last equation shows that the invariance properties indi-
cated in [28] no longer hold when the system coefficients
depend on the delay. At any given critical delay τ ∗, the roots
of Dτ∗ (λ) crosses the imaginary axis at ±jωk (τ ∗), which is
in general different for different τ ∗. Since a critical delay τ ∗

must satisfy (48), a series of constant shifts from τ ∗ in general
does not produce a series of critical delays. The invariance
of crossing direction of critical delay does not hold either.
Indeed, comparing (50) with (41), it is clear that the root
crossing direction depends also on an extra factor, namely
sgn(S ′k,n(τ

∗)). Therefore it is possible that the crossing direc-
tions of imaginary roots associated with the frequency func-
tion ωk (τ ) may switch at various critical delays.

The computation required by the method developed in [7]
is fairly modest. Indeed, sweeping τ through the delay inter-
val, one solves the polynomial equation (46) for τ at some
discrete delay points to obtain a series of frequency functions
ωk (τ ), k = 1, · · · ,L, evaluated at these discrete delay points.
Critical delays can be identified according to (48) by track-
ing the graph of each Sk,l(τ ) function. Finally, the crossing
direction of each characteristic root on the imaginary axis can
be easily determined using the condition (50). This method
has been applied to several hematopoietic dynamics model
in [27] and the hopf bifurcation of blood cell production
dynamics in [26].

In [54], some restrictive assumptions in [7] are relaxed and
the stability analysismethod is presented in amore systematic
and general way. The most important relaxation in [54] is that
each positive root ofFτ (ω) is no longer assumed to exist in the
entire interval I. Instead, it is suggested to solve the following
equations {

F(ω, τ ) = 0,
∂ωF(ω, τ ) = 0,

(51)
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for (ω, τ ) ∈ R+ × I. Let τ (1) < · · · < τ (L−1) be all the
τ contained in the solution of the last equation in τ . Define
τ (0) = τ l and τ (L) = τ u, where τ l and τ u are the upper and
lower bounds of I, respectively, i.e., I = [τ l, τ u]. Then I
can be decomposed into subintervals:

I =
L⋃
i=1

I(i), (52)

where I(i)
= [τ (i−1), τ (i)]. It is then proved in [54] that the

number of positive roots of Fτ (ω) is constant in (τ (i−1), τ i)
and these roots are all simple. These functions in any given
interval I(i) are denoted as ω(i)

k (τ ), k = 1, · · · ,m(i). It is
implicitly assumed in [7] that the integer L in (52) is just
1, or equivalently, (51) has no solution in (ω, τ ) ∈ (R+, I).
Such an assumption can easily be violated in practice,
as shown in [54] and [65]. We note that when the system
coefficients are also polynomials of some function g(τ ), then
(51) is a set of polynomial equation in ω, g(τ ). As a result,
all solution pairs (ω, g(τ )) can be detected using the resultant
theory.

The phase angle condition in [54] for finding critical delays
and the crossing frequency also takes a different form than
in [7]. In each given subinterval I(i), the phase angle functions
are defined as

θ
(i)
k (τ ) = 6 P(jω(i)

k (τ ), τ )− 6 Q(jω(i)
k (τ ), τ )

+ω
(i)
k (τ )τ + π. (53)

Here 6 (·) is a function that measures the angle of a complex
number and is required to be continuous in I(i). Consequently,
its range is not restricted within any 2π interval. Then ω∗ is a
crossing frequency of any imaginary root of Dτ (λ) for some
τ ∈ I(i) if and only if ω∗ = ω(i)

k (τ ) and the following holds:

θ
(i)
k (τ ) = 2lπ, l integer. (54)

The root crossing criterion is derived as

sgn
(
<

(
dλ(τ ∗)
dτ

))
= sgn

(
∂ωF(ω

(i)
k (τ ∗), τ ∗)

)
×sgn

(
dθ (i)k (τ ∗)

dτ

)
. (55)

Comparing the Sk,l function defined in (48) with the phase
functions defined in (53), several differences can be identified
as follows: in each interval I(i), only one phase function
θ
(i)
k (τ ) is associated with each frequency function ω(i)

k (τ ).
On the other hand, a sequence of functions Sk,l(τ ), l =
0, 1, · · · are associated with each frequency function. More-
over, on the boundary of I(i), the functions Sk,1(τ ) may grow
unbounded if ωk (τ ) approaches zero, while the functions
θ
(i)
k (τ ) are always bounded in I(i). In [7], to ensure Sk,l(τ )
to be well defined, it is assumed that

P(jω, τ )+ Q(jω, τ ) 6= 0, (56)

for (ω, τ ) ∈ R×I. By using the phase angle functions θ (i)k (τ )
instead, this assumption is relaxed in [54] to

|P(jω, τ )| + |Q(jω, τ )| 6= 0, (57)

for (ω, τ ) ∈ R× I.
We illustrate the analysis procedure above with the stellar

dynamos model mentioned in the Introduction. The system
characteristic equation is given in (3). Therefore

P(λ, τ ) = λ2 + 2c2λ+ c22,

Q(λ, τ ) = −c1c3e−c2τ .

The parameters are set as: c1 = −10, c2 = 2, c3 = 3.
Suppose we are concerned with the stability of the system
for some delay interval I including the origin. Assume τ ∈
I = [0, 2]. The function F(ω, τ ) in this case is

F(ω, τ ) = ω4
+ 2c22ω

2
+ c42 − c

2
1c

2
3e
−2c2τ . (58)

Only one pair of parameters (ω, τ ) = (0, τ (1)) simultaneously
satisfies (51), where

τ (1) = −
1
2c2

ln(
c42
c21c

2
3

) ≈ 1.006.

The interval I is thus partitioned into two subintervals
I(1)

= [τ (0), τ (1)], I(2)
= [τ (1), τ (2)], where τ (0) = 0,

τ (2) = 2. There exits one positive real root ω(1)
1 (τ ) of Fτ (ω)

for τ ∈ (0, τ (1)). As τ reaches τ (1), this solution merges with
the negative solution −ω(1)

1 (τ ), and they become complex as
τ enters I(2), and Fτ (ω) does not have any real solution for τ
in I(2). In this case, we have

ω
(1)
1 (τ ) =

√
|c1c3|e−c2τ − c22.

Corresponding to ω = ω
(1)
1 (τ ), θ (1)1 (τ ) is plotted against τ

in the top diagram of Figure 1. It can be seen that the curve
intersects the horizontal line 2π at τ1 ≈ 0.2748 and τ2 ≈
0.5314. Therefore, ω11 = ω

(1)
1 (τ1) ≈ 3.6490, and ω21 =

ω
(1)
1 (τ2) ≈ 2.5228.

FIGURE 1. The stability analysis of the stellar dynamos. The two
intersections between the graph of θ (1)

1 and the black-dashed line located
at 2π corresponds to the two delay values for which the system has a pair
of imaginary roots. Here Nu is the number of unstable roots of the stellar
dynamos.
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It can be easily calculated that

d
dτ
θ
(1)
1 (τ1) > 0,

d
dτ
θ
(1)
1 (τ2) < 0,

which are also obvious from the top diagram in Figure 1.
Therefore, we conclude from (55) that a pair of characteristic
roots crosses the imaginary axis from the left half-plane to
the right half-plane as τ increases through τ1, and this pair of
characteristic roots returns to the left half-plane as τ further
increases through τ2. In other words, Inc(ω11, τ1) = 1, and
Inc(ω21, τ2) = −1. Some simple calculation shows that the
system is asymptotically stable for τ = 0. A plot of N u(τ )
is shown in the bottom diagram of Figure 1, from which we
conclude that the system is stable for τ ∈ [0, τ1) ∪ (τ2, τ (2)];
it is unstable for τ ∈ (τ1, τ2).
There are some limitations of the analysis in both

[7] and [54]. The formula (55) does not give any information
on the crossing direction if ω(i)

k (τ ∗) is a multiple root of

Fτ (ω) or if
dθ (i)k (τ∗)

dτ = 0. It is shown in [54] that if jω∗ is
a repeated imaginary root of Dτ (ω), then ω∗ must also be
a repeated real root of Fτ (ω). Therefore, the root crossing
criterion (55) as well as (50) does not apply to imaginary char-
acteristic roots with multiplicity larger than one. The analysis
in [7] and [54] relies on the differentiability of P(λ, τ ) and
Q(λ, τ ) w.r.t τ . However, in the light of these root crossing
criteria, one may naturally ask whether the derivative of the
phase angle functions can be replaced by its monotonicity at
critical delays.

The analysis in [54] is further extended by the same authors
in [65] to address some of the aforementioned limitation.
It also gives an affirmative answer to the question above. The
two-parameter framework proposed in [65] significantly sim-
plifies the argument of the proofs and allows for an intuitive
geometric interpretation of the root crossing problem. The
geometric perspective is that the characteristic equation (1)
with a single parameter τ can also be parameterized with two
variables subject to some appropriate constraints. Statedmore
precisely, it is equivalent to

Drq(λ) = P(λ, r)+ Q(λ, r)e−λq = 0, (59)

where r, q ∈ I, and r, q are restricted to the 45 degree line
r = q on the r-q plane. Given any r ∈ I, there exists
a sequence of critical delay values denoted by τ̂i(r) ≥ 0,
i = 1, 2, · · · ,∞ such that when q = τ̂i(r), (59) admits
imaginary characteristic roots. The graph of each τ̂i(r) is said
to be a critical delay curve. The r-q parameter space is thus
separated into subregions r-q curves as the boundaries. The
number of unstable characteristic roots is constant as long as
(r, q) remains in the interior of a certain subregion.

This idea can be illustrated with the population dynamics
(5). With the following set of parameters: a = 0.8, b =
2.5, c = 0.12e−mjτ , d = 0.2e−mjτ , mj = 0.1192, the
corresponding critical delay curves are plotted in Figure 2.
The restriction r = q = τ means that the parameter (r, q) =
(τ, τ ) moves along the 45 degree line marked by the green
dashed lines. The green dashed line intersects the critical

FIGURE 2. The critical delay curves of the population model (5). The
characteristic equation admits imaginary roots if and only if the
parameter point (r ,q) is on these curves. Within each region enclosed by
these curves, the number of unstable characteristic roots is a constant.

delay curves at points D and E . The characteristic equation
admits imaginary roots for delay at these two points.

To determine the number of unstable characteristic roots,
it is sufficient to know the number of unstable roots of (59)
for (r, q) in different stability regions. This can be done as
follows: suppose the number of unstable roots is known for
the region R3, and one needs to determine it in the region R4.
First pick a parameter point A = (rA, qA) ∈ R3, fix r = rA
and increases q from qA until the parameter reaches point
B = (rA, qB) ∈ R4. At point C = (rA, qC ) on the critical
delay curve separating R3 and R4, imaginary characteristic
roots appear. The crossing directions of these roots can be
determined using methods for systems with delay-free coef-
ficients as q further increases from qc since the parameter r
inside system coefficients is fixed at rA.

This geometric perspective leads to an intuitive interpreta-
tion of (55), which is elaborated in [54]. Roughly speaking,
the term sgn(∂ωF(jωD, τD)) tells the crossing direction of this
characteristic root if (r, q) moves vertically up entering subre-
gions R2 from R1; the derivative of the phase angle function
reflects whether (r, q) enters R2 from R1 or vise versa as it
sweeps along the 45 degree line. Now it is easy to see that
the crossing direction of a simple imaginary characteristic
root is indeed determined by the product of two factors as
shown in (55).

The difficulty encountered when analyzing (1) may come
from the fact that if the parameter point (r, q) sweeps exactly
along the line r = q, it can pass through some particular
points where the analysis becomes challenging.With the two-
parameter perspective, to determine the stability of (1) given
any delay τ0, one can find another path in the r-q plane
that connects (0, 0) and (τ0, τ0) while bypassing some ‘‘unfa-
vorable’’ parameter points and thus facilitating root crossing
analysis. In other words, it can be expected that with appro-
priately constructed paths, classical D-decomposition or τ -
decomposition technique may be applied to systems with
delay-dependent coefficients.

By exploiting the idea described above, the fundamen-
tal result developed in [65] only requires a continuous
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dependence of the system coefficients on the delay. The
differentiability w.r.t the delay is no longer required. Several
version of root crossing criteria are proposed there. The most
general version also applies to imaginary characteristic roots
with multiplicity larger than one. For a repeated imaginary
root jω∗ and the corresponding delay τ ∗ ∈ I, several
frequency functions ω(i)

k (τ ) with different index k approach
ω∗ as τ approaches τ ∗. Then the phase angle functions θ (i)τ
approach some 2lπ horizontal line for some integer l as τ
tends to τ ∗. Then it is shown that the crossing directions
are related to the position of these phase angle functions in
relation to 2lπ . We do not state the precise result here since
it requires some additional notations. Interested readers are
referred to [65] for details. By applying such a criterion to a
simple characteristic root, it can be confirmed that the term
sgn(θ (i)k (τ ∗)) in (55) can indeed be replaced by a term that
indicate the monotonicity of θ (i)k (τ ) at τ = τ ∗. Furthermore,
the following higher-order version of (55) is derived for (1)
when the coefficients are sufficiently differentiable:

sgn
(
<

(
d lλ(τ ∗)
dτ l

))
= sgn

(
∂ωF(ω

(i)
k (τ ∗), τ ∗)

)
×sgn

(
d lθ (i)k (τ ∗)

dτ l

)
, (60)

for l = 1, 2, · · · , nd , where τ ∗ is a critical delay in the
interior of I(i), jω(i)

k (τ ∗) is an imaginary root of Dτ∗ (λ), and
nd is the lowest order non-vanishing derivative of θ (i)k (τ ) at
τ = τ ∗. This high-order root crossing criterion is consistent
with the version that makes use of the monotonicity of θ (i)k (τ )
at τ = τ ∗.

The method developed in [54] can be generalized for sys-
tems with both commensurate delays and delay dependent-
coefficients. In [63] (see also [62]), the characteristic equation
with commensurate delays (13) is studied. The definition of
the F(ω, τ ) function in this case is given by

F(ω, τ ) = − det (H(jω, τ )), (61)

where the matrix H is given by (27) except that it now
depends on τ since the system coefficients are delay-
dependent. Using the new definition of F(ω, τ ), the fre-
quency curves ω(i)

k (τ ) and phase curves θ (i)k (τ ) can be defined
in the same way as they are defined for systems with a single
delay.

Let (jω∗, τ ∗) be a critical pair. Let i, k be such numbers
that τ ∗ ∈ I(i) and ω(i)

k (τ ∗) = ω∗. Then (2) defines a simple
characteristic root λ as a differentiable function of τ in a
sufficiently small neighborhood of (jω∗, τ ∗). Let nd be such
a number that ( ddτ )

lθ
(i)
k (τ ∗) = 0, for l = 1, 2, · · · , nd − 1,

then, under some assumptions realistic from an application
point of view (see [65] for details), the following holds:

sgn
(
<

(
( ddτ )

lλ(τ ∗)
))
= (−1)Nx (jω

∗,τ∗)sgn
(
∂ωF(ω∗, τ ∗)

)
×sgn

(
( ddτ )

lθ
(i)
k (τ ∗)

)
, (62)

for l = 1, 2, · · · , nd , where Nx(jω∗, τ ∗) is the number of
roots of D̂jω∗,τ∗ (x) that are outside the unit disk D.

The stability analysis methods in [54] are extended for
control systems subject to delay-difference approximation
in [66]. Let τ u be the maximal possible delay value used in
the delay-difference approximation scheme given by (9), it is
of interest to know all the subintervals contained in (0, τ u]
such that the closed-loop system is exponentially stable with
decay rate α, which is equivalent to the asymptotic stability of

Pα(λ, τ )+ Qα(λ, τ )e−λτ = 0, (63)

where

Pα(λ, τ ) = G0(λ− α)+ G1(λ− α)τ−1,

Qα(λ, τ ) = G1(λ− α)eατ τ−1.

The results in [54] and [65] can not be directly applied
to (63) since the system coefficients become unbounded as
τ → 0+. However, suppose the closed-loop system has no
characteristic root with real part exactly equal to−α, then it is
shown in [66] that there exists τ l > 0 such that no root of (63)
crosses the imaginary axis as τ varies in (0, τ l). Therefore if
τ l is known, one can simply set I = [τ l, τ u] and apply the
results from [54] and [65]. Such a τ l value can be acquired
by solving polynomial equations as shown in [66]. In some
applications, it is necessary to use higher-order derivatives
of the output to construct the feedback. Therefore, it is rea-
sonable to consider higher-order derivatives approximated by
multiple delays. Even for the first-order derivative, approx-
imation using multiple delays and linear regression can be
desirable for its capability of ameliorating the noise in the
measurement. The detailed scheme for the approximation of
higher-order derivatives are given in [62, Ch. 6] using the
technique proposed in [94]. The idea is to interpolate the time
history of the output signal with a polynomial function, then
the derivatives of the output can be replaced by the derivatives
of the interpolation polynomial as an approximation. This
scheme leads to a closed-loop system of the form (2), which
can be analyzed with the method proposed in [65].

V. CONCLUSIONS AND PERSPECTIVES
Systemswith delay dependent coefficients have been encoun-
tered in various scientific and engineering disciplines, includ-
ing biology, physics, social sciences, as well as control
systems. An effective method for stability analysis of such
systems is given in [7], which, following a generalized τ -
decomposition approach, extends earlier work on systems
with delay-independent coefficients. The analysis in [54]
relaxes some restrictive assumptions of [7], and produces
a stability analysis method that can be applied to a larger
class of systems. In [65], some general results concerning
the crossing direction of characteristic roots are presented for
systems with a single delay. When applied to simple charac-
teristic roots, this result leads to a crossing direction criterion
that utilizes higher-order derivatives as well as monotonicity
of phase angle functions as opposed to [7] and [54], where
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only the first-order derivative is taken into account. The
two-parameter framework proposed in [65] suggests that by
choosing an appropriate path in the two-parameter plane,
‘‘classical’’ D-decomposition methods may be applicable
to systems with delay-dependent coefficients. The stability
analysis methods developed in these papers can be used to
determine the number of unstable characteristic roots based
on the graph of some functions. Such a geometric correlation
might be exploitable to solve other challenging problems,
such as the robust stability analysis of systems in which the
coefficients do not only depend on the delay, but also contain
uncertainties.

A lot of work remains to be done for systems with delay-
dependent coefficients. The reported methods in [7], [54],
[62], [63], and [65] are only concerned with systems with
commensurate delays. Extensions to systems with multiple
independent delay parameters and incommensurate delays
remain to be done. Robust stability analysis for systems with
also parameter uncertainties will be useful in practice. The
asymptotic behavior analysis of multiple imaginary char-
acteristic roots have been solved using perturbation meth-
ods [22], [23], [95] and the Puiseux series along with the
frequency-sweeping framework [82] for systems with fixed
coefficients. The extension of these methods to systems with
delay-dependent coefficients would also be an interesting
research topic in the future.
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