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Abstract—In this paper, the problem of proactive deployment
of cache-enabled unmanned aerial vehicles (UAVs) for optimizing
the quality-of-experience (QoE) of wireless devices in a cloud
radio access network (CRAN) is studied. In the considered model,
the network can leverage human-centric information such as
users’ visited locations, requested contents, gender, job, and de-
vice type to predict the content request distribution and mobility
pattern of each user. Then, given these behavior predictions, the
proposed approach seeks to find the user-UAV associations, the
optimal UAVs’ locations, and the contents to cache at UAVs. This
problem is formulated as an optimization problem whose goal is
to maximize the users’ QoE while minimizing the transmit power
used by the UAVs. To solve this problem, a novel algorithm based
on the machine learning framework of conceptor-based echo
state networks (ESNs) is proposed. Using ESNs, the network can
effectively predict each user’s content request distribution and its
mobility pattern when limited information on the states of users
and the network is available. Based on the predictions of the
users’ content request distribution and their mobility patterns,
we derive the optimal locations of UAVs as well as the content to
cache at UAVs. Simulation results using real pedestrian mobility
patterns from BUPT and actual content transmission data from
Youku show that the proposed algorithm can yield 33.3% and
59.6% gains, respectively, in terms of the average transmit power
and the percentage of the users with satisfied QoE compared to a
benchmark algorithm without caching and a benchmark solution
without UAVs.

I. INTRODUCTION

The next-generation of cellular systems is expected to be
largely user centric and, as such, it must be cognizant of
human-related information such as users’ behavior, mobility
patterns, and quality-of-experience (QoE) expectations [1].
One promising approach to introduce such wireless network
designs with human-in-the-loop is through the use of cloud ra-
dio access networks (CRANs) [2]. In CRANs, a central cloud
processor can parse through the massive users’ data to learn
the users’ information such as content request distribution and
mobility patterns, then, determine how to manage resources in
the network. However, an effective exploration of human-in-
the-loop features in a CRAN faces many challenges that range
from effective predictions to user behavior tracking, effective
caching, and optimized resource management.
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A. Related Works

The existing literature has studied a number of problems
related to caching in CRANs and heterogeneous networks
with human-in-the-loop such as [3]–[9]. In [3], the authors
exploited the instantaneous demands of wireless users to
estimate the content popularity and devise an optimal random
caching strategy. The authors in [4] proposed an echo state
network to predict the users’ content request distribution and
mobility patterns in CRANs. The work in [5] proposed a
caching-based milimiter wave (mmWave) framework, in which
base stations pre-store video contents and service users with
a high data rate. In [6], a caching framework aimed at
fully exploiting the potential of such CRAN systems through
cooperative hierarchical caching is proposed. The authors in
[7] investigated the fully cooperative caching case during
which a centralizer helps all base stations to make caching
decisions. The work in [8] studied the use of cache-enabled
small base stations to alleviate the load of backhaul. In [9],
a content caching strategy is proposed to jointly minimize
the cell average outage probability and fronthaul usage in
CRANs. However, most of these existing caching works [3]–
[9] were typically restricted to static networks without mobility
and ultra dense users. Note that, in these contributions [3]–
[9], the cached content is stored at the terrestrial static base
stations. However, in an area with ultra dense users and high
rise buildings (i.e. stadium or hotspots), the static ground
base stations with caching may not be able to meet high
capacity demands of the users. Moreover, caching at ground
base stations may not be effective in serving the mobile users
once they move outside the coverage range of the ground
base stations. For instance, whenever a mobile user moves
to a new cell, its requested content may not be available at
the new base station and, consequently, the users cannot be
serviced properly. In such case, to effectively serve mobile
user, the requested content needs to be cached at multiple
base stations which may not be efficient. Therefore, there is a
need to introduce a more flexible base station that can boost the
capacity and track the users’ mobility patterns so as to improve
the caching efficiency. To this end, unmanned aerial vehicles
(UAVs) can be used as flying base stations to dynamically
cache the popular contents, track the mobility pattern of the
corresponding users then, effectively serve them. In this case,
due to the high altitude and flexible deployment of the UAVs,



they can establish reliable communication links to the users
by mitigating the blockage effect.

The use of UAVs for enhancing wireless communications
in cellular and ad hoc networks was studied in [10]–[17].
However, this existing literature [10]–[17] was focused on
performance analysis and did not consider prediction of user-
centric behavioral patterns such as mobility nor it study the
use of UAVs for caching purposes. The prediction of the users’
mobility patterns can enable the UAVs to effectively move and
provide service for the ground users. Moreover, when UAVs
are considered within a CRAN system, the network must take
into account the fact that the fronthaul links that connect the
UAVs to the cloud will be capacity-limited. This is due to the
fact that the bandwidth of the UAVs fronthaul links is limited.
To overcome this limited-fronthaul capacity challenge, one can
use content caching techniques to proactively download and
cache content at the UAVs during off peak hours or when the
UAVs are back at their docking stations. The use of caching
enables the UAVs directly transmit the content to its requested
user, thus reducing the fronthaul traffic load.

Some recent works such as in [4] and [18]–[23] have
studied a number of ideas related to the predictions of human
behavior in wireless networking scenarios. In [18] and [19],
the authors proposed a prediction algorithm for the users’
mobility patterns based on a deep learning algorithm and a
semi-Markov process. In [20], a type of user-initiated network
is proposed for cellular users to trade data plans by leveraging
personal hotspots with users’ smartphones. The work in [21]
investigated the predictable degree of users’ mobility patterns.
Nevertheless, the mobility prediction works in [18]–[21] fo-
cused only on the prediction phase and did not study how the
users’ mobility patterns can be used to optimize the wireless
performance using user-centric caching and resource allocation
techniques. The authors in [22] developed a data extraction
method using the Hadoop platform to predict content popular-
ity. The work in [23] proposed a fast threshold spread model to
predict the future access patterns of multimedia content based
on social information. However, the works in [22] and [23]
do not consider the complexity of using the users’ traffic data
while predicting the users’ content popularity. In particular,
in a dense network with high traffic demands, the proposed
approaches in [22] and [23] are not practical as they require
each base station to store all users’ traffic data to predict the
users’ content popularity. In contrast, our proposed conceptor
based ESN algorithm can record the users’ historical traffic
data and, consequently, use them to predict the users’ behavior.
In this case, the complexity of the learning algorithm will be
significantly lower compared to the algorithms without ability
of recording historical data. The most related work here is
our work [4] in which we exploit the echo state network to
predict the content request distribution. However, in [4], the
ESN-based algorithm can only predict one non-linear system.
Here, we proposed an conceptor-based ESN algorithm which
can separate the users’ behavior into different patterns and
learn these patterns independently, thus leading to a significant
improvement in the accuracy of predictions. For example, in
order to predict the user’s mobility patterns, the ESN algorithm
in [4] will collect all users’ mobility data from Monday to
Sunday to train the ESN as a prediction system. However, the

conceptor-based ESN algorithm can separate the data from
Monday to Sunday into seven patterns and use the data of
seven patterns to train the conceptor-based ESN as seven
independent prediction systems. In this case, the conceptor-
based ESN can use seven independent prediction system to
predict the user’s mobility during each day. Since in reality
the user’s mobility pattern in each day will be different, the
conceptor-based ESN algorithm can improve the accuracy of
the prediction.

B. Contributions

The main contribution of this paper is to develop a novel
framework that leverages user-centric information, such as
content request distribution and mobility patterns, to effec-
tively deploy cache-enabled UAVs while maximizing the
users’ QoE using a minimum total transmit power of the
UAVs. The adopted QoE metric captures human-in-the-loop
features such as transmission delay and the users’ perceptions
on the rate requirement, depending on their device type. In
the proposed framework, the cloud can accurately predict the
content request distribution and mobility patterns of each user.
These predictions of user’s behavior can then be used to find
the optimal locations and content caching strategies for the
UAVs. Unlike previous studies such as [18]–[23] that predict
the users’ behavior using only one non-linear system, we pro-
pose a conceptor-based echo state network (ESN) approach to
perform users’ behavior prediction. Such an ESN model with
conceptors enables the cloud to separate the users’ behaviors
into different patterns and learn these patterns independently,
thus leading to a significant improvement in the accuracy of
predictions. Moreover, unlike previous studies such as [10]–
[16] that consider the deployment of the UAVs assuming static
users, we study the deployment of cache-enabled UAVs in
CRANs with mobile users. In the proposed CRANs model,
we derive the user-UAV association, the optimal locations of
the UAVs as well as the content to cache at the UAVs. To
our best knowledge, this work is the first to analyze the use
of caching at the level of UAVs, given ESN-based predictions
on the users’ behavior. To evaluate the performance of the
proposed approach, we use real data from Youku for content
requests as well as realistic measured mobility data from
the Beijing University of Posts and Telecommunications for
mobility simulations. Simulation results show that the pro-
posed algorithm can yield 33.3% gain in terms of the average
transmit power of the UAVs compared to a baseline algorithm
without cache. Moreover, the proposed algorithm can also
yield 59.6% gain in terms of the percentage of the users
with satisfied QoE compared to a benchmark scenario without
UAVs. In summary, the main contributions of the paper are as
follows:

1) We propose a novel cache-enabled UAV framework in
CRANs that can meet the mobile user’s QoE requirement
while minimizing the transmit power of the UAVs. In this
framework, the capacity of the links from the BBUs to
the UAVs is limited and the transmission from the UAVs
to the users is over mmWave. To our best knowledge, this
is the first work that considers the limited capacity links
from the BBUs to the UAVs.



User Content server

BBUs

RRH

MmWave link Cellular link DSL link

UAV Cache

Fig. 1. A CRAN with cache-enabled UAVs.
2) We analyze the use of caching at the level of UAVs. Here,

caching is used to store the most popular contents that
the users may request. Caching with UAVs can reduce the
transmission delay and hence, reduce the transmit power
of the UAVs. This is the first work that considers caching
with UAVs.

3) We develop an effective approach for leveraging the
cache-enabled UAVs to service mobile wireless users.
The users have their own mobility patterns which are
measured from the realistic students. The cache-enabled
UAVs will service the users that the RRHs cannot meet
the users’ rate requirement.

4) We introduce a new conceptor-based ESN learning al-
gorithm to predict the users’ content request distribution
and mobility patterns with users’ contexts. The context
represents the users’ information related to the users’
behavior such as mobility pattern. Such an ESN model
with conceptors enables the cloud to separate the users’
behavior into different patterns and learn these patterns
independently, thus leading to a significant improvement
in the accuracy of predictions.

5) We perform fundamental analysis on the user-UAV as-
sociation, optimal locations of the UAVs as well as the
content to cache at UAVs.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section
II. The conceptor ESN for content request distribution and
mobility patterns predictions is proposed in Section III. The
proposed approach for user-UAV association, content caching,
and optimal location of each UAV is presented in Section IV.
In Section V, we provide numerical and simulation results.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a CRAN system servicing a set
U of U mobile users via a set R of R remote radio heads
(RRHs) acting as distributed antennas. The RRHs are grouped
into E clusters using K-mean clustering approach [24] so
that zero-forcing beamforming (ZFBF) [25] can be used to
service the users. In this system, a set K of K UAVs equipped
with cache storage units can be deployed to act as flying
cache-enabled RRHs to serve the ground users along with the
terrestrial RRHs. For the UAV-to-users communication links,
since the high altitude of the UAVs can significantly reduce
the blocking effect due to obstacles, we consider air-to-ground

UAV transmissions using the millimeter wave (mmWave)
frequency spectrum. Meanwhile, the terrestrial RRHs transmit
over the cellular band and are connected to the cloud’s
pool of the baseband units (BBUs) via capacity-constrained,
digital subscriber line (DSL) fronthaul links. Further, the cloud
connects to the content servers via fiber backhaul links. The
transmissions from the cloud to the UAVs occurs over wireless
fronthaul links using the licensed cellular band. Consequently,
the UAVs’ wireless fronthaul links may interfere with the
transmission links from the RRHs to the users when the user’s
requested content needs to be transmitted from the content
server.

In our model, the content server stores a set N of all N
contents required by all users. The contents are of equal size L.
Caching at the UAVs, referred to as “UAV cache” hereinafter,
will be used to store the popular content that the users request.
By caching predicted content, the transmission delay from the
content server to the UAVs can be significantly reduced as
each UAV can directly transmit its stored content to the users.
Different from caching at the RRHs or BBUs, caching at UAVs
allows servicing mobile users when their QoE requirement
cannot be satisfied by the RRHs. We denote the set of C
cached contents in the storage units of UAV k by Ck, where
C ≤ N and k ∈ K. For simplicity, we assume that each user
can request at most one content during each specified time
slot τ . We also let ∆τ be the duration of time slot τ that also
represents the maximum transmission duration of each content.
The maximum transmission duration ∆τ is determined by the
proposed algorithm in Section IV. We assume that the content
stored at the UAV cache will be refreshed every period that
consists of T time slots and this UAVs caching is performed
at off peak hours when the UAVs return to their cloud-based
docking stations for purposes such as battery charge. Table I
provides a summary of the notations used in this paper.

A. Mobility Model

In our system, we assume that the users can move continu-
ously. In this case, we consider a realistic model for periodic,
daily, and pedestrian mobility patterns according to which
each user will regularly visit a certain location of interest.
For example, certain users will often go to the same office
for work at the same time during weekdays. The locations
of each user are collected by the BBUs once every H time
slots. Here, the duration of H time slots is considered a period
of one hour for each user. In addition, we assume that each
user moves between two collected locations at a constant
speed. The mobility pattern for each user will then be used
to determine the content that must be cached as well as the
optimal location of each UAV which will naturally impact the
QoE of each user.

In this model, the associations of the mobile users with
the UAVs or the RRHs can change depending on the QoE
requirement. Since the users are moving continuously, the
locations of the UAVs must change accordingly so as to serve
the users effectively. However, for tractability, we assume that
the UAVs will remain static during each content transmission.
In essence, the UAVs will update their locations according to
the mobility of the users after each content transmission is
complete at a current location.



TABLE I
LIST OF NOTATIONS

Notation Description Notation Description
U Number of users C Number of contents stored at UAV cache
K Number of UAVs F Number of intervals in each time slot
R Number of RRHs H Number of time slots to collect user mobility
PR Transmit power of RRHs Pt,ki Transmitted power of UAV or RRH
N Number of contents τ , ∆τ Time slot index, Time slot duration
lt,ki Path loss of UAVs-users dt,ki Distance between RRHs or UAVs and users

xτ,k, yτ,k, hτ,k Coordinates of UAVs δSi,n Rate requirement of device type
LFS Free space path loss d0 Free-space reference distance
fc Carrier frequency lFt,ki Path loss of fronthaul links

µLoS, µNLoS Path loss exponents χσLoS , χσNLoS Shadowing random variable
γV
t,ki, γ

H
t,ki SINR of user i LLoS

t,k , LNLoS
t,k LoS/NLoS path loss from the BBUs to UAV k

t,∆t Small interval, interval duration lLoS
t,k , lNLoS

t,k LoS/NLoS path loss from UAV k to users
c Speed of light ht,ki Channel gains between RRHs k and user i

D̄τ,i,n Delay CFτ,ki Fronthaul rate of UAV or RRH k

CV
τ,ki Rate of UAV-user link CH

τ,qi Rate of RRH-user link
Qτ,i,n QoE of each user i T Number of time slots for caching update
xt,i, yt,i Coordinates of users PB Transmit power of the BBUs

B. Transmission Model
Next, we introduce the models for transmission links be-

tween BBUs and UAVs, UAVs and users, and RRHs and users.
For ease of exposition, a time slot τ is discretized into F
equally spaced time intervals ∆t, i.e., ∆τ = F∆t. The time
interval ∆t is chosen to be sufficiently small so that each user’s
location can be considered constant during t as in [11].

1) UAVs-Users Links: The mmWave propagation channel
of the UAVs-user link is modeled using the standard log-
normal shadowing model of [26]. The standard log-normal
shadowing model can be used to model the line-of-sight
(LoS) and non-line-of-sight (NLoS) links by choosing specific
channel parameters. Therefore, the LoS and NLoS path loss
of UAV k located at (xτ,k, yτ,k, hτ,k) transmitting a content
to user i at interval t of time slot τ is [27] (in dB):

lLoS
t,ki (wτ,t,k,wτ,t,i) =

LFS (d0) + 10µLoS log (dt,ki (wτ,t,k,wτ,t,i)) + χσLoS , (1)

lNLoS
t,ki (wτ,t,k,wτ,t,i)=

LFS (d0)+10µNLoS log (dt,ki (wτ,t,k,wτ,t,i))+χσNLoS , (2)

where wτ,t,k = [xτ,k, yτ,k, hτ,k] is the coordinate of UAV
k during time slot τ with hτ,k being the altitude of UAV
k at time slot τ . Also, wτ,t,k = [xt,i, yt,i] is the time-
varying coordinate of user i at interval t. LFS (d0) is the
free space path loss given by 20 log (d0fc4π/c) with d0 being
the free-space reference distance, fc being the carrier fre-
quency and c being the speed of light. dt,ki (wτ,t,k,wτ,t,i) =√

(xt,i − xτ,k)
2

+ (yt,i − yτ,k)
2

+ h2
τ,k is the distance be-

tween user i and UAV k. µLoS and µNLoS are the path
loss exponents for LoS and NLoS links. χσLoS and χσNLoS

are the shadowing random variables which are, respectively,
represented as the Gaussian random variables in dB with zero
mean and σLoS, σNLoS dB standard deviations.

In our model, the probability of LoS connection depends on
the environment, density and height of buildings, the locations
of the user and the UAV, and the elevation angle between the
user and UAV. The LoS probability is given by [10] and [13]:

Pr
(
lLoS
t,ki

)
= (1 +X exp (−Y [φt −X]))

−1
, (3)

where X and Y are constants which depend on the
environment (rural, urban, dense urban, or others) and

φt = sin−1 (hτ,k/dt,ki (wτ,t,k,wτ,t,i)) is the elevation angle.
Clearly, the average path loss from the UAV k to user i at
interval t is [13]:

l̄t,ki (wτ,t,k,wτ,t,i) = Pr
(
lLoS
t,ki

)
× lLoS

t,ki + Pr
(
lNLoS
t,ki

)
× lNLoS

t,ki , (4)

where Pr
(
lNLoS
t,ki

)
= 1 − Pr

(
lLoS
t,ki

)
. Based on the path loss,

the average signal-to-noise ratio (SNR) of user i located at
wτ,t,i from the associated UAV k at interval t is given by:

γV
t,ki =

Pt,ki

10l̄t,ki(wτ,t,k,wτ,t,i)/10σ2
, (5)

where Pt,ki is the transmit power of UAV k to user i at
time t, and σ2 is the variance of the Gaussian noise. We
assume that the total bandwidth available for each UAV is
BV which is equally divided among the associated users. The
channel capacity between UAV k and user i for each content

transmission will be CV
τ,ki = 1

Fτ,i

Fτ,i∑
t=1

BV
Uk

log2

(
1 + γV

t,ki

)
,

where Uk is the number of the users associated with UAV
k and Fτ,i is the number of the intervals that user i uses to
receive a content during time slot τ .

2) BBUs-UAVs Ground-to-Air Links: For the BBUs-UAVs
(ground-to-air) link, we consider probabilistic LoS and NLoS
links over the licensed band. Since the distance of the UAVs
fronthaul link may be larger compared to the distance of
the UAV-user link, the cellular band can provide a more
reliable transmission and a smaller path loss compared to the
mmWave channel. In such a model, NLoS links experience
higher attenuations than LoS links due to the shadowing and
diffraction loss. The LoS and NLoS path loss from the BBUs
to UAV k at time t of time slot τ can be given by [10]:

LLoS
t,k = dt,ki (wτ,t,k,wτ,t,B)

−β
, (6)

LNLoS
t,k = ηdt,ki(wτ,t,k,wτ,t,B)

−β
, (7)

where wτ,t,B = [xB , yB ] is the location of the BBUs, and β
is the path loss exponent. The LoS connection probability and
the average SNR of the link between the BBUs and UAV k
can be calculated using (3)-(5).

3) RRHs-Users Links: In our model, RRHs are grouped
into E clusters. Then, the RRHs in each cluster use ZFBF
to improve the users’ rates. The received signals of the users



associated with RRHs cluster q at interval t is:
bt,q =

√
PRHt,qF t,qat,q + n, (8)

where Ht,q ∈ RUq×Rq is the path loss matrix with Uq
being the number of users associated with RRH cluster
q, and Rq is the number of RRHs’ antennas. PR is the
transmit power of each RRH which is assumed to be equal
for all RRHs. at,q ∈ RUq×1 is the transmitted content at
interval t and nt,q ∈ RUq×1 is the noise power. Also,

F t,q = HH
t,q

(
Ht,qH

H
t,q

)−1

∈ RRq×Uq is the beamforming
matrix [28]. We also assume that the bandwidth of each user
associated wth the RRHs is B. Then, the received signal-to-
interference-plus-noise-ratio (SINR) of user i in cluster Mq

at interval t will be:

γH
t,qi =

PR
∥∥ht,qif t,qi∥∥2

E∑
j=1,j 6=q

∑
u∈Uj

PR
∥∥ht,jif t,ju∥∥2

︸ ︷︷ ︸
other cluster RRHs interference

+ PBgt,Bid
−β
t,Bi︸ ︷︷ ︸

wireless fronthaul interference

+σ2

,

where Mj is the set of the RRHs in group j, Uj is the
set of the users associated with the RRHs in group j,
ht,qi ∈ R1×Rq is the channel gain between the RRHs in
cluster Mq and user i with ht,ki = gt,kidt,ki (xi, yi)

−β ,
gt,ki is the Rayleigh fading parameter at interval t, and

dt,ki (xi, yi) =
√

(xt,k − xt,i)2
+ (yt,k − yt,i)2 is the distance

between RRH k and user i at interval t. f t,qi ∈ RRq×1 is the
beamforming vector. Given (9), the channel capacity between
RRH cluster Mq and user i for each content transmission is:

CH
τ,qi =

1

Fτ,i

Fτ,i∑
t=1

Blog2

(
1 + γH

t,qi

)
. (9)

C. Quality-of-Experience Model

Given the proposed models in the previous subsections,
here, we present the QoE model for each user. The quality-
of-experience of each user is formally defined as a concrete
human-in-the-loop metric that captures each user’s data rate,
delay, and device type.

1) Delay: In the considered CRAN system, contents can
be transmitted to the users via three types of links: (a) content
server-BBUs-RRHs-user, (b) content server-BBUs-UAV-user,
and (c) UAV cache-user. The backhaul link connecting the
cloud to the core network is assumed to be fiber and, therefore,
its delay is neglected. We assume that the capacity of the wired
fronthaul links between the BBUs and the RRHs is limited to a
maximum rate of vF for all users. Consequently, the fronthaul
rate for each user receiving a content from the RRHs will be
vFU = vF /NFR with NFR being the number of the users
receive contents from the RRHs. Thus, the delay of a user i
receiving content n over the three types of links at each time
slot τ can be written as:

Dτ,i,n =


L
vFU

+ L
CH
τ,qi

, link (a) ,
L
CFτ,k

+ L
CV
τ,ki

, link (b) ,
L

CV
τ,ki

, link (c) ,

(10)

where CFτ,k is the rate of content transmission from the BBUs
to UAV k which is calculated analogously to (II-B3) and (9).

Next, we derive the lower bound on the delay that each user
can tolerate for each content transmission.

Proposition 1. The lower bound of the delay for each user i
receiving content n are given by:

min

{
L

vF
,

L

Cmax
K

}
≤ Dτ,i,n, (11)

where Cmax
K =BV log2

(
1+ Pmax

10(LFS(d0)+10µLoSlog(hmin)−4σLoS)/10σ2

)
with Pmax being the maximum transmit power of each UAV,
and hmin being the minimum altitude of the UAV.

Proof. See Appendix A.

From Proposition 1, we can see that the minimum delay
of each user depends on the rate of the fronthaul links and
the maximum transmit power of the UAVs. Therefore, we can
improve the QoE of each user by adjusting the UAV’s transmit
power. In particular, as the number of users increases and
the rate of fronthaul links decreases, the QoE requirement of
users can be satisfied by adjusting the UAVs’ transmit power.
Note that, the upper bound of the delay ∆τ is set by the
system requirement. Using the results of Proposition 1, we can
categorize the sensitivity to the delay into five groups using
the popular mean opinion score (MOS) model [29] which is
often used to measure the QoE of a wireless user. The mapping
between delay and MOS model [29] is given by:

D̄τ,i,n =
∆τ −Dτ,i,n

∆τ −min
{
L
vF
, L
Cmax
K

} , (12)

which is shown in Table II.
2) Device Type: The screen size of each device type of the

user will also affect the QoE perception of the user, especially
for video-oriented applications. Indeed, users who own devices
that have larger screens (such as tablets) will be more sensitive
to QoE compared to those who own smaller devices (such
as small smartphones). We capture the impact of the screen
size of each user i using a parameter Si that reflects the
diameter length of the user’s device. Typically, devices with a
larger screen size, can display content at a higher resolution
thus requiring a higher data rate. We assume that the rate
requirement of user i with device Si receiving a content n at
interval t is δSi,n = SiĈn, where Ĉn is the rate requirement
of each user receiving content n. The mapping from the rate
requirement of user device to the MOS model is:

Vt,i =

{
1, j ≥ δSi,n,
0, j < δSi,n,

(13)

where j ∈
{
CV
t,ki, C

H
t,qi

}
. Here, Vt,i = 1 indicates that the

user’s data rate satisfies the requirement of its device type and
0 represents the user’s data rate cannot satisfy the requirement.
In this case, the rate requirement of of a user’s device is
mapped to the MOS. The QoE of each user i receiving content
n at time slot τ can be given by [29]:

Qτ,i,n = ζ1D̄τ,i,n +
ζ2
Fτ,i

Fτ,i∑
t=1

Vt,i, (14)

where q1 and q2 are weighting parameters with ζ1 + ζ2 = 1.



TABLE II
MEAN OPINION SCORE MODEL [29]

QoE Poor Fair Good Very Good Excellent
Interval scale 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

D. Problem Formulation

Here, we first find the minimum rate required to meet the
QoE requirement of each user associated with the UAVs. Next,
we determine the minimum transmit power of each UAV
required to meet the QoE threshold of the associated users.
Finally, we formulate the minimization problem. From Table
II, we can see that, for 0.8 ≤ D̄τ,i,n ≤ 1, the MOS of delay
will be “Excellent”, which means that the delay is minimized.
In this case, D̄min = 0.8 is the minimum value that maximizes
the delay component of user i’s QoE, during the transmission
of a given content n. We define the rate that achieves the
optimal delay as the delay requirement and also, define the
rate that meets the rate requirement of device as the device
rate requirement. Consider the transmission between a UAV k
located at wτ,t,k and a user i located at coordinates wτ,t,i.
From (10), the delay requirement for UAV k transmitting
content n to user i at time slot τ is:

CRτ,ki,n =


L(

∆τ−D̄min

(
∆τ−min

{
L
vF
, L
Cmax
k

})
− L

CF
τ,k

) , n /∈ Ck,

L(
∆τ−D̄min

(
∆τ−min

{
L
vF
, L
Cmax
k

})) , n ∈ Ck.

(15)
From (15), we can see that, by storing content n at cache of
UAV k, the delay requirement for minimizing delay decreases.

Let δSi,n be the device rate requirement of user i associated
with a UAV. Clearly, the QoE is maximized when CV

t,ki ≥
max

{
CRτ,ki,n, δSi,n

}
. Hence, the minimum rate required to

maximize the user’s QoE is δRi,n = max
{
CRτ,ki,n, δSi,n

}
.

Based on (5), the minimum transmit power needed to guar-
antee the QoE requirement of user i receiving content n at
interval t is:

Pmin
t,ki

(
wτ,t,k, δ

R
i,n, n

)
=
(

2δ
R
i,nUk/BV−1

)
σ210l̄t,ki(wτ,t,k,wτ,t,i)/10.

(16)
From (16), we can see that the minimum transmit power of
UAV k transmitting content n to user i depends on the UAV’s
location, the rate needed to satisfy the QoE requirement of
user i, and the transmitted content n.

Given this system model, our goal is to find an effective
deployment of cache-enabled UAVs to enhance the QoE
of each user while minimizing the transmit power of the
UAVs. This problem involves predicting the content request
distribution and periodic locations for each user, finding the
optimal contents to cache at the UAVs, determining the users’
associations and adjusting the locations∗, and transmit power
of the UAVs. This problem can be formulated as follows:

min
Ck,Uτ,k,wτ,t,k

T∑
τ=1

∑
k∈K

∑
i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki

(
wτ,t,k, δ

R
i,n, nτ,i

)
,

(17)

∗Typically, the speed of a UAV can reach up to 30 m/s while the average
speed of each pedestrian ground user is less than 2 m/s. Therefore, in our
model, we ignore the time duration that each UAV uses to change its location.

s. t. hmin ≤ hτ,k, k ∈ K, (17a)
m 6= j,m, j ∈ Ck, Ck ⊆ N , k ∈ K, (17b)
0 < Pmin

τ,t,ki ≤ Pmax, i ∈ U , k ∈ K, (17c)

where Pmin
τ,t,ki is the minimum transmit power of UAV k to

user i at interval t during time slot τ . nτ,i is the content that
user i requests at time slot τ , Uτ,k is the set of the users
that are associated with UAV k at time slot τ . hmin is the
minimum altitude that each UAV can reach at time slot τ .
Here, (17b) captures the fact that each cache storage unit at
the UAV stores a single, unique content, and (17c) indicates
that the transmit power of the UAVs should be minimized.
Since the problem as per (17) is to satisfy the rate needed
for meeting each user’s QoE requirement during the next
time period T , the predictions of users behavior will directly
impact the solution. From (17), we can see that the prediction
of the users’ mobility patterns enable the BBUs to find the
optimal locations of the UAVs. Moreover, by predicting the
users’ content request distribution the BBUs can determine
the most popular content to cache at the UAVs. In addition,
since the content transmission link affects the transmit power
that the UAV must use to satisfy the user’s QoE requirement,
the problem of minimizing the transmit powers of the UAVs
in (17) inherently incorporates the caching constraints.

III. CONCEPTOR ECHO STATE NETWORKS FOR CONTENT
AND MOBILITY PREDICTIONS

In this section, we propose a prediction algorithm using
the framework of ESN with conceptors, to find the users’
content request distributions and their mobility patterns. The
predictions of the users’ content request distribution and their
mobility patterns will then be used in Section IV to find
the user-UAV association, optimal locations of the UAVs and
content caching at the UAVs. Echo state networks are a special
type of recurrent neural networks designed for performing
non-linear systems forecasting [30]. The ESN architecture
is based on a randomly connected recurrent neural network,
called reservoir, which is driven by a temporal input. The state
of the reservoir is a rich representation of the history of the
inputs so that a simple linear combination of the reservoir
units is a good predictor of the future inputs. In our model,
the reservoir will be combined with the input to store the
users’ context information and will also be combined with
the trained output matrix to output the predictions of the
users’ content request distribution and mobility patterns. Here,
a user’s context is defined as the current state and attribute
of a user including time, week, gender, occupation, age, and
device type (e.g., tablet or smartphone). Therefore, an ESN-
based approach can use the users’ context to predict the
corresponding behavior such as content request and mobility.

Compared to traditional neural network and deep learning
approaches such as in [18], an ESN-based approach can
quickly learn the mobility pattern and content request distribu-
tion without requiring significant training data due to the use
of the echo state property. However, traditional ESN-based
prediction algorithms such as in [4] can be trained to predict
only one mobility pattern for each user. In particular, to predict
the weekly mobility pattern of each user using the traditional
ESN approach, the users’ context information for an entire



week need to be used as input of the ESNs that act as one
non-linear system. In this conventional ESN approach, it is not
possible to separate the users’ contexts in a week into several
days and train the ESNs to predict the user’s mobility in each
day with one specific non-linear system. To enable the ESN
algorithm to predict the user’s mobility pattern and content
request distribution with various non-linear systems, the notion
of a conceptor as defined in [31], is an effective solution that
allows characterizing the ESN’s reservoir. Conceptors enable
an ESN to perform a large number of mobility and content
request patterns predictions. Moreover, new patterns can be
added to the reservoir of the ESN without interfering with
previously acquired ones. For each ESN algorithm, an ESN
can record a limited number of history input data due to the
echo state property of each ESN. Consequently, the learned
pattern will be removed as the recorded input data is updated.
Here, we call the ability of recording a limited number of
history input data as the memory of the ESN’s reservoir. The
idea of a conceptor can be used to allocate any free memory of
an ESN’s reservoir to the new learned patterns of the mobility
and content request distribution.

Next, we first introduce the components of a conceptor
ESN-based prediction algorithm. Then, we formulate the con-
ceptor ESN algorithm to predict the content request distribu-
tion and mobility patterns of the users.

A. Conceptor ESN Components
The conceptor ESN-based prediction approach consists of

five components: a) agents, b) input, c) output, d) ESN model,
and e) conceptor. Since the content request and mobility
pattern are user-specific, we design the specific components for
the algorithms of the content request distribution and mobility
pattern predictions, separately.

1) Content request distribution prediction: The content
request distribution prediction algorithm has the following
components:
• Agent: The agent in our ESNs is the cloud. Since each

ESN scheme typically performs a content request distribution
prediction for just one user, the cloud’s BBUs must implement
U conceptor ESN algorithms.
• Input: The conceptor ESN takes input as a vector xt,j =

[xtj1, · · · , xtjNx ]
T that represents the context of user j at

time t which includes gender, occupation, age, and device
type (e.g., tablet or smartphone). Here, Nx is the number of
properties that constitute the context information of user j.
The vector xt,j is then used to determine the content request
distribution yt,j for user j. Note that, the input of the ESNs is
the information related to the users’ content requests. Our goal
is to predict the content request distribution using the context
of each user.
• Output: The output of the content request distribution

prediction ESN at time t is a vector of probabilities yt,j =
[ptj1, ptj2, . . . , ptjN ] that represents the probability distribu-
tion of content request of user j with ptjn being the probability
that user j requests content n at time t.
• ESN Model: An ESN model for each user j can find

the relationship between the input xt,j and output yt,j , thus
building the function between the user’s context and the
content request distribution. Mathematically, the ESN model

consists of the output weight matrix W α,out
j ∈ RN×Nw and

the dynamic reservoir containing the input weight matrix
W α,in

j ∈ RNw×Nx , and the recurrent matrix W α
j ∈ RNw×Nw

with Nw being the number of the dynamic reservoir units.
For each user j, the dynamic reservoir will be combined
with the input xt,j to store the history context of user j.
The output weight matrix W α,out

j with the reservior is trained
to approximate the prediction function. The ESN model of
user j is initially randomly generated following a uniform
distribution. To ensure that the reservoir has the echo state
property, W α

j is defined as a sparse matrix with a spectral
radius less than one [32].
• Conceptors: For content request distribution prediction,

we collect the users’ context information and the correspond-
ing content requests during the same time slots for different
weeks to train one content request distribution. We refer to
each content request distribution as one prediction pattern.
Given a sequence of the reservoir states vij =

[
vi1,j , . . . ,v

i
t,j

]
with vit,j =

[
vit,j1, . . . , v

i
t,jNw

]T
being the reservoir state of

prediction pattern i at time t and the state correlation matrix
Ri
j=E

[
vit,j
(
vit,j
)T]

, the conceptor of prediction pattern i will
be [31]:

M i
j = Ri

j

(
Ri
j + χ−2I

)−1
, (18)

where χ is aperture defined in [31]. The aperture χ needs to
be appropriately set for accurately learning several mobility
patterns. When the aperture is small, the reservoir of the ESN
slightly changes for learning each new pattern. However, for a
large aperture, the reservoir of the ESN changes significantly.

2) Mobility pattern prediction: The components of mobility
pattern prediction algorithm are:
• Agents: The agents in our conceptor ESNs are the BBUs.

Since each ESN scheme typically performs mobility prediction
for only one user, the BBUs must also implement U conceptor
ESN algorithms.
• Input: mt,j = [mtj1, · · · ,mtjNx+1]

T represents the
current location of user j and the context of this user at time
t. Using input mt,j , the future locations of user j can be
predicted.
• Output: st,j = [stj1, · · · , stjNs ]

T represents the predicted
locations of user j in the next time slots, where Ns is the
number of locations in the next Ns time duration H .
• ESN Model: The ESN model of mobility prediction

consists of the output weight matrix W out
j ∈ RNs×Nw ,

the dynamic reservoir containing the input weight matrix
W in

j ∈ RNw×Nx+1, and the recurrent matrix W j ∈ RNw×Nw .
The generation of the mobility prediction ESN model is similar
to the one in the content request distribution prediction case.
• Conceptors: For mobility pattern prediction, we consider

each user’s mobility in each day during one week as one
prediction pattern. The expression of the conceptors is the
same as the one for the content request distribution given in
(18).

B. Conceptor ESN Algorithm for Content and Mobility Pre-
dictions

Here, we present the proposed conceptor ESN algorithm to
predict the content request distribution and mobility. The pro-



posed algorithm consists of two stages: training and prediction
stages.

1) Training Stage: The dynamic reservoir state vit,j of
prediction pattern i for user j at time t which is used to store
the states of user j is given by [32]:

vit,j = f
(
W α

j v
i
t−1,j + W α,in

j xt,j

)
, (19)

where f(x) = ex−e−x
ex+e−x . Note that, we consider the input and

corresponding prediction output as a training data. In this
case, we use Ntr training data that consists of Ntr users’
contexts and the corresponding content request to calculate the
conceptors and train the output weight matrix W α,out

j . Based
on Ntr training data and (19), the reservoir states before update
for each prediction pattern j is viold,j =

[
0,vi1,j , . . . ,v

i
Ntr−1,j

]
and the updated reservoir states are vij =

[
vi1,j , . . . ,v

i
Ntr,j

]
.

The matrix viold,j will be used to train an input simulation
matrix Dj ∈ RNw×Nw and vij will be combined with the
updated reservoir states of other prediction patterns to train
the output weight matrix.

Then, Dj will be combined with output weight matrix
W α,out

j to predict the content request distribution pattern for
each user. For each added learning pattern i of each user j,
the update of Dj will be [31]:

Dj = Dold,j + Di
inc,j , (20)

where Di
inc,j =

((
SST

/
Ntr + χ−2I

)†
STT

/
Ntr
)T

with S =

F i−1
j viold,j and T = W α,in

j xij −Dold,jv
i
old,j . Here, F i−1

j =

¬ ∨
{
M1

j , . . . ,M
i−1
j

}
is the free memory of the reservoir

with ¬ and ∨ being the boolean operators [31], and xij =[
xi1,j , . . . ,x

i
Ntr,j

]
is the input sequences of prediction pattern

i. During the learning of each pattern i of user j, the conceptor
M i

j can be computed using (18).
In our proposed ESN algorithm, the output weight matrix

W α,out
j is trained in an offline manner using ridge regression

[32] to approximate the prediction function which is given by:

W α,out
j = yjv

T
j

(
vT
j vj + λ2I

)−1
, (21)

where vj=
[
v1
j ,v

2
j , . . . ,v

NM
j

]T
with vij =

[
vi1,j , . . . ,v

i
Ntr,j

]
being the reservoir state sequence of prediction pattern i for
user j, λ is the learning rate, and NM being the number of the
prediction patterns of each user’s content request distribution.
In (21), vij can also be used to calculate the conceptor M i

j

for prediction pattern i of user j.
2) Prediction Stage: Based on the learning stage, we can

use the input simulation matrix Dj , conceptors M j =[
M1

j , . . . ,M
NM
j

]
, and output weight matrix W α,out

j to obtain
the corresponding predictions. In the prediction stage, the
reservoir state of pattern i of user j is [31]:

vit,j = Ci
jf
(
W α

j v
i
t−1,j + Djv

i
t−1,j

)
. (22)

From (22), we can see that the conceptor of pattern j, Cj ,
controls the update of the reservoir states. By changing the
conceptor Cj , the ESN can predict different patterns in one
ESN architecture. The prediction of content request distribu-
tion i for user j can be given by:

yt,j = W α,out
j vit,j . (23)

TABLE III
PROPOSED CONCEPTOR ESN PREDICTION ALGORITHM

Inputs: Ntr training data,
Initialize: Wα,in

j , Wα
j , Wα,out

j , yj = 0, Dj = 0.
Training Stage:

for each prediction pattern i do.
if reservoir memory space F i−1

j > 0 do.
(a) BBUs collect the states viold,j and vij to update Dj , using (20).
(b) BBUs use the states vij to calculate the conceptor Ci

j using (18).
else
(c) increase reservoir matrix Wα

j , re-train all prediction patterns.
end if

end for
(d) BBUs collect states for all patterns vj to train Wα,out

j , by (21).
Prediction Stage:

(a) BBUs chooses the conceptor to obtain the corresponding reservoir
state, using (22).

(b) Get the prediction of content request distribution based on (23) .
Output: Prediction yt,j
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Fig. 2. The procedure used for solving the optimization problem in (17).

From (22) and (23), we can see that the conceptor ESN
algorithm exploits an input simulation matrix Dj to control
the memory of ESN reservoir. The conceptor ESN algorithm
for predicting the content request distribution of each user j
is shown in Table III.

As shown in Table III, the proposed conceptor ESN al-
gorithm can learn each prediction pattern by a unique non-
linear system. This property of the proposed algorithm enables
the ESNs to perform the users’ behavior predictions using
different non-linear systems during different time periods.
Furthermore, using the proposed algorithm, one can have the
information of the reservoir memory and extract a specific
prediction pattern from the learned patterns.

IV. OPTIMAL LOCATION AND CONTENT CACHING FOR
UAVS

In this section, we use the content request distribution
and mobility patterns predictions resulting from the proposed
conceptor ESN algorithm in Section III to solve the problem in
(17). In our model, a subset of the users selected by the BBUs
are connected to the RRHs. The remaining users are clustered
into K clusters and each UAV provides service for one cluster.
Based on the associations and predictions, we determine which
contents to cache at each UAV and find the optimal location
of each UAV. Finally, we analyze the implementation and
complexity of the proposed algorithm. Fig. 2 summarizes the
proposed framework that is used to solve the problem in (17).
A. Users-RRH Association

We find the user-RRH association based on the predicted
users’ locations at the next time interval. Clearly, the prediction



accuracy of the users’ locations will directly affects the users
association. A user is associated with RRHs if the following
condition is satisfied:

Theorem 1. Given minimum D̄min and device screen size Si
of each user i, user i will be associated with a cluster k of
RRHs if the following rate requirement is satisfied:

CH
t,qi ≥ max

 L(
∆τ−D̄min

(
∆τ−min

{
L
vF
, L
Cmax
k

})
− L
vFU

) , δSi,n
 .

(24)

Proof. See Appendix B.

From Theorem 1, we can see that the user-RRH association
depends on the fronthaul rate of each user, the delay require-
ment, and the device rate requirement. From (24), we can see
that the fronthaul rate of each user decreases as the number
of the users associated with the RRHs increases. Clearly, the
decrease of the fronthaul rate for each user will improve the
delay requirement. Note that, the energy consumption of the
RRHs is not considered in our optimization problem as the
RRHs can have continuous power supply on the ground while
the UAVs are powered by on-board batteries with limited
energy. Therefore, it is natural to allow the users to first
associate with the RRHs when the RRHs can satisfy the users’
QoE requirements.

B. Optimal Content Caching for UAVs

In our model, the remaining users who are not associated
with RRHs, will be served by the UAVs. In this case, the
users-UAVs associations need to be determined. To this end,
we use K-mean clustering approach [24] in which the users
are clustered into K groups. By implementing the K-mean
clustering approach, the users that are close to each other
will be grouped into one cluster. Thereby, each UAV services
one cluster and the user-UAV association will be determined.
Then, based on the UAV association, we find the optimal
contents to cache at each UAV. The content caching will
reduce the transmission delay and, hence, decrease the delay
requirement. From (15), we can see that, optimal contents
to store at the UAV cache lead to maximum reduction of
the UAV’s transmit power. The reduction of UAV transmit
power is caused by the decrease of the delay requirement.
Let pj,i = [pj,i1, pj,i2, . . . , pj,iN ] be the content request
distribution of user i during period j that consists of H time
slots. The optimal contents that will be stored at each UAV
cache can be determined based on the following theorem.

Theorem 2. The optimal set of contents Ck to cache at each
UAV k during period T is:

Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n), (25)

where ∆Pj,τ,ki,n =Pmin
τ,ki

(
CRτ,ki

)
n/∈Ck
−Pmin

τ,ki

(
CRτ,ki

)
n∈Ck

, CRτ,ki,n/∈Ck≥δSi,n,

Pmin
τ,ki (δSi,n)n/∈Ck−P

min
τ,ki

(
CRτ,ki

)
n∈Ck

, δSi,n > CRτ,ki,n/∈Ck ,

with Pmin
τ,ki

(
wτ,t,k, C

R
τ,ki, n

)
being simplified to Pmin

τ,ki

(
CRτ,ki

)
.

Proof. See Appendix C.

From Theorem 2, we can see that when the fronthaul rates of
all users are the same, the transmit power reduction ∆Pj,τ,ki,n
will be a constant. Subsequently, the optimal content caching

becomes Ck = arg max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

pj,in which corre-

sponds to the result given in [4]. From Theorem 2, we can
see that the content caching depends on the pre-knowledge of
users association as well as the content request distribution of
each user. Therefore, by predicting the mobility pattern and
content request distribution for each user, we can determine
the optimal content to cache.

C. Optimal Locations of UAVs
Here, we determine the optimal UAVs’ locations where

the UAVs can serve their associated users using minimum
transmit power. Once each UAV selects the suitable contents
to cache, the transmission link (BBUs-UAV-user or UAV-user)
for each content and the delay requirement CRτ,ki,n in (15) are
determined. In this case, the rate δRi,n which is used to meet
the QoE requirment of each user is also determined. Next, we
derive a closed-form expression for the optimal location of
UAV k during time slot τ in two special cases.

Theorem 3. To minimize the transmit power of UAV k, the
optimal locations of UAV k during time slot τ for cases: a)
UAV k positioned at low altitudes compared to the size of its
corresponding coverage, h2

τ,k � (xt,i − xτ,k)
2
+(yt,i − yτ,k)

2

and µNLoS = 2, b) UAV k is placed at high altitudes
compared to the size of its corresponding coverage, h2

τ,k �
(xt,i − xτ,k)

2
+ (yt,i − yτ,k)

2, are given by:

xτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

, yτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

, (26)

where ψt,ki =
(

2δ
R
i,n/B−1

)
σ210(LFS(d0)+χσ)/10 with σ ={

σNLoS, for case a) ,
σLoS, for case b) .

Proof. See Appendix D.

Using Theorem 3, we can find the optimal locations of the
UAVs given the users association and altitude hτ,k for the two
special cases. For more generic cases, it is highly challenging
to find the optimal UAVs’ locations using derivation, since
the UAV’s altitude depends on the x and y coordinates of the
UAV. Therefore, we use a learning algorithm given in [33] and
[34] to find a sub-optimal solution. The learning algorithm
can learn the network state and exploit different actions to
adapt the UAV’s location according to the network. After the
learning step, each UAV will find a sub-optimal location to
service the users in a power efficient way.
D. Implementation and Complexity

The complexity of the proposed algorithm pertains to two
components: the conceptor ESN algorithm and the optimiza-
tion algorithm. In the conceptor ESN algorithm, the ESN



needs to be trained and hence, the complexity of the training
depends on the users’ data. The complexity of implementing
the conceptor-based ESN algorithm depends on the number of
users and the number of needed predictions. Since predictions
occur once every H , during a period T , the ESN algorithm
needs to be executed T

H times. Since the ESN needs to predict
the users’ content request distribution and mobility patterns,
the total complexity of the ESN algorithm is O(U×2T/H).

The optimization algorithm can be divided into three algo-
rithms: 1) user-UAV association, 2) caching optimization, and
3) optimal location of the UAVs. The complexity of the user-
UAV association is O

(
U2K+1 logU

)
[35]. The complexity

will be significantly decreased since the number of users
that associated with UAVs decreases as the users will first
associate with RRHs. For each UAV k, the complexity of
the caching optimizatation algorithm depends on the num-
ber of the associated users Uk, the number of the contents
N and the number of predictions during a period T , T

H .
Therefore, the complexity of the caching algorithm can be
given as O

(
Uk ×N × T

H

)
. However, in practical scenarios,

only a few contents have high request probabilities. In this
practical case, the complexity of the caching algorithm can be
significantly reduced. Finally, for each UAV k, the complexity
of the optimal UAV algorithm depends on the number of the
associated users Uk and the locations of each associated user
during each time slot. Therefore, the complexity of the optimal
UAV location algorithm is O (Uk × F ).

V. SIMULATION RESULTS

For our simulations, the content request data that the ESN
uses to train and predict content request distribution is obtained
from Youku of China network video index†. Here, one circular
CRAN area with a radius r = 500 m is considered with
U = 70 uniformly distributed users and R = 20 uniformly
distributed RRHs. The detailed parameters are listed in Table
V. Actual pedestrian mobility data is measured from 100
students at the Beijing University of Posts and Telecommuni-
cations. We recorded the daily mobility pattern of each student
and collected their locations every hour during 9:00 am -
12:00 pm in a period of over two months. For comparison
purposes, we investigate: a) optimal algorithm that has a
prior knowledge of the accurate user’s mobility patterns and
content request distribution, b) ESN algorithm in [4] to predict
the content request distribution and mobility pattern, and c)
random caching with ESN algorithm in [4] to predict content
request distribution. All statistical results are averaged over
5000 independent runs. The accuracy of ESN prediction is
measured by normalized root mean square error [31].

Fig. 3 shows how the memory of the conceptor ESN
reservoir changes as the number of the mobility patterns that
were learned by the conceptor ESN varies. Here, one mobility
pattern represents the users’ trajectory in one day and the
colored region represents the memory used by the conceptor
ESN. In Fig. 3, we can see that the memory usage increases
as the number of the learned mobility patterns increases. This
is due to the fact the conceptor ESN uses a limited memory to
learn mobility patterns. From Fig. 3, we can also see that the
conceptor ESN uses less memory for learning mobility pattern

†The data is available at http://index.youku.com/.

TABLE IV
SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value
F 1000 Y 0.13 PB 30 dBm
X 11.9 N 25 PR 20 dBm

χσLoS 5.3 H 10 Pmax 20 W
Ntr 1000 d0 5 m σ2 -95 dBm
Ns 12 λ 0.01 hmin 100 m
Nx 4 β 2 B 1 MHz
µLoS 2 µNLoS 2.4 δSi,n 5 Mbit/s
χ 15 ζ1 0.5 fc 38 GHz

χσNLoS 5.27 η 100 Bv 1 GHz
K 5 C 1 L 1 Mbit
T 120 ζ2 0.5 Nw 1000

2 compared to pattern 6. In fact, mobility pattern 2 is similar
to mobility pattern 1, and, hence, the conceptor ESN requires
only a small amount of memory to learn mobility pattern 2.
However, the conceptor ESN needs to use more memory to
learn mobility pattern 6. Clearly, when a new mobility pattern
needs to be learned, the proposed approach needs to learn the
difference between the learned mobility patterns and the new
one.

In Fig. 4, we show the variations of two content request
probabilities of a selected user during one day. The user is
randomly chosen from the set of users in the network. From
Fig. 4, we can see that, the probability with which this user
requests content 1 decreases during working hours (9:00-11:00
and 14:00-18:00) and increases at all other times. Similarly,
the request probability of content 2 increases during working
hours and decreases during the rest of the time. This is due
to the fact that content 1 is an entertainment content while
content 2 is a work-related content. Fig. 4 also shows that the
sum of the probability with which this user requests content 1
and content 2 exceeds 0.5 during each hour. This is because
the user always requests a small amount of contents during
one day.

Fig. 5 shows how the total transmit power of the UAVs in
a time period changes as the number of the users varies. In
Fig. 5, we can see that the total UAV transmit power of all
algorithms increases as the number of the users increases. This
is due to the fact that the number of the users associated with
the RRHs and the capacity of the wireless fronthaul link of
UAVs are limited. Therefore, the UAVs need to increase their
transmit power to satisfy the QoE requirement of each user.
From Fig. 5(a), we can also see that the proposed approach
can reduce the total transmit power of the UAVs of about
16.7% compared to the ESN algorithm used to predict the
content request and mobility for a network with 70 users.
This is because the conceptor ESN that separates the users’
behavior into multiple patterns and uses the conceptor to
learn these patterns, can predict the users’ behavior more
accurately compared to the ESN algorithm. Fig. 5(b) shows
that the proposed algorithm can yield, respectively, 33.3% and
20% gains with respect to reducing the total transmit power
compared to the proposed algorithm without cache and the
proposed algorithm without optimizing the UAVs’ locations
for a network with 80 users.

Fig. 6 shows the rate needed for satisfying the QoE re-
quirement of each user versus the wireless fronthaul rate of
each user. In this figure, the black and blue lines represent,



Fig. 3. Mobility patterns predictions of Conceptor ESN algorithm. In this figure, the green curve represents the conceptor ESN prediction, the black curve is
the real positions, top rectangle j is the index of the mobility pattern learned by ESN, the legend on the bottom left shows the total reservoir memory used
by ESN and the legend on the bottom right shows the normalized root mean square error of each mobility pattern prediction.
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Fig. 4. Content request probability predictions.

respectively, the rate requirement of a user that receives a
content from the UAV cache and the BBUs. In Fig. 6, we
can see that the rate required to maximize the users QoE of
BBUs-UAV-user link decreases as the wireless fronthaul rate
increases. However, the rate needed to maximize the user’s
QoE of UAV-user link not change when the fronthaul rate
varies. Clearly, the use of caching at the UAVs can significantly
reduce the rate required to reach the QoE threshold of each
user when the wireless fronthaul rate for each user is low.

In Fig. 7, we show how the percentage of users with satisfied
QoE requirement changes as the number of the users varies.
From Fig. 7, we can see that the percentage of the satisfied
users decreases as the number of the users increases. However,
using the proposed approach, the QoE remains maximum for
all number of users when the number of the users increases
from 30 to 70. In particular, the proposed algorithm can yield a
gain of 59.6% gain in terms of the percentage of the users with
satisfied QoE compared to the proposed algorithm without
UAVs for the network with 120 users. This is due to the fact
that the UAVs can maximize the users’ QoE when the RRHs
are not able to satisfy the QoE requirements.

In Fig. 8, we show how the average minimum transmit
power of UAVs changes as the number of the UAVs varies.
From Fig. 8, we can see that the average minimum transmit
power of each UAV decreases as the number of the UAVs
increases. In particular, using the proposed algorithm, the
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Fig. 5. Total transmit power as the number of users varies. (K = 5 and
C = 1.)

average transmit power of the UAVs decreases by 86% when
the number of UAVs increases from 3 to 7. This is due to the
fact that for a higher number of UAVs the number of users
associated with each UAV decreases, and, hence, the average
transmit power per UAV also decreases. As shown in Fig. 8,
the proposed approach becomes closer to the optimal one as
the number of UAVs increases. The reason is that the location
prediction error is higher for a lower number of UAVs (or
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Fig. 8. Average minimum transmit power as the number of UAVs changes
(U = 70 and C = 1).

equivalently the clusters).
Fig. 9 shows the total transmit power of the UAVs as a

function of the number of the contents stored at the UAV
cache. As shown in Fig. 9, the total transmit powers of all
considered algorithms increase as the number of storage units
increases. The reason is that the probability that the requested
contents of the users are stored at the UAV cache increases,
and, consequently, the UAV will directly transmit the requested
contents to the users. Fig. 9 also shows that the ESN approach
that predicts the content request and mobility can yield up
to 49% power reduction compared to the ESN approach that
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Fig. 9. Total transmit power as the number of the contents stored in a UAV
cache varies (U = 70 and K = 5).
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Fig. 10. Average minimum transmit power and average altitude vs. the number
of UAVs.

predicts the mobility with the random caching scheme.
In Fig. 10, we show how the average transmit power

and average altitude of the UAVs change as the number of
UAVs varies. In this case, we compare the result of our
proposed approach with the optimal result obtained by an
exhaustive search method. For the learning algorithm, the
interval of the neighboring action of each coordinate is 3
m. Figs. 10(a) shows that the optimal location of the UAV
approached by Theorem 3 has only 6.4% deviation compared
to the exhaustive search. Furthermore, as shown in Fig. 10(b),
by increasing the number of UAVs from 3 to 7, the average
altitude of the UAVs decreases from 1080 m to 332 m in



the proposed algorithm case. This is due to the fact that for
a higher number of the UAVs, each UAV needs to provide
coverage for a smaller area and, hence, it can be deployed
at a lower altitude. From Figs. 10(a) and 10(b), we can also
see that, as the number of the UAVs increases, the result of
Theorem 3 approaches the optimal solution that is obtained by
the exhaustive search. This is due to the fact that for a higher
number of UAVs, the coverage area of each UAV decreases,
and, hence, the approximation condition in Theorem 3 will
hold with a tighter bound.

VI. CONCLUSIONS

In this paper, we have proposed a novel framework that
uses flying UAVs to provide service for the mobile users in
a CRAN system. First, we have presented an optimization
problem that seeks to guarantee the QoE rquirement of each
user using the minimmum transmit power of the UAVs. Next,
to solve this problem, we have developed a novel algorithm
based on the echo state networks and concepters. The proposed
algorithm allows predicting the content request distribution of
each user with limited information on the network state and
user context. The proposed algorithm also enables the ESNs
separate the users behavior into several patterns and learn these
patterns with various non-linear systems. Simulation results
have shown that the proposed approach yields significant per-
formance gains in terms of minimum transmit power compared
to conventional ESN approaches.

APPENDIX

A. Proof of Proposition 1

From (10), we can see that the delay of link (b) is larger
than that of link (c) and the minimum delay of the link (a)
is L/vF . Hence, we only need to consider the delay values
between L/vFU and L/CV

τ,ki, k ∈ K. To maximize CV
τ,ki, we

consider dt,ki (wτ,t,k,wτ,t,i) = h, and Pt,ki = Pmax. Then,
the rate of the UAV-user link CV

τ,ki is given by:

CV
τ,ki = BV log2

(
1 +

Pt,ki

10l̄t,ki(wτ,t,k,wτ,t,i)/10σ2

)
≤ BV log2

(
1 +

Pmax

10
lLoS
t,ki(wτ,t,k,wτ,t,i)/10

σ2

)
(a)

≤ BV log2

(
1+

Pmax

10(LFS(d0)+10µLoSlog(h)−4σLoS)/10σ2

)
, (27)

where (a) follows from the fact that with a probability close to
one (greater than 99.99%), the Gaussian random variable χσLoS

will have a value larger than −4σLoS. From (27), we can see
that, as h increases, the capacity CV

τ,ki decreases. Therefore,
we set h = hmin. This completes the proof.

B. Proof of Theorem 1

Based on (12) and D̄min, the delay is Dτ,i,n = ∆τ −
D̄min

(
∆τ −min

{
L
vF
, L
Cmax
k

})
, and, hence, the delay re-

quirement for RRH cluster q transmitting content n to user
i during time slot τ will be:

CRτ,qi =
L

∆τ−D̄min

(
∆τ −min

{
L
vF
, L
Cmax
k

})
− L

vFU

. (28)

Therefore, the delay requirement during each interval is equal
to CRτ,qi. Since the device rate requirement is δSi,n, the rate
of RRH cluster q transmitting content n to user i, CH

τ,qi must
satisfy CH

t,qi≥max
{
CRτ,qi, δSi,n

}
. This completes the proof.

C. Proof of Theorem 2

Since the delay requirement CRτ,ki,n depends on the
contents at the UAV cache, it can be written as
δRi,n = max

{
CRτ,ki,n(n∈Ck), C

R
τ,ki,n(n/∈Ck), δSi,n

}
. Let Pmin

τ,ki =
Fτ,i∑
t=1

Pmin
j,τ,t,ki. Then the reduction of UAV transmit power by

content caching during time slot τ of period j will be:

∆Pj,τ,ki,n= Pmin
τ,ki

(
CRτ,ki

)
n/∈Ck
−Pmin

τ,ki

(
CRτ,ki

)
n∈Ck

, CRτ,ki,n/∈Ck≥δSi,n,

Pmin
τ,ki (δSi,n)n/∈Ck−P

min
τ,ki

(
CRτ,ki

)
n∈Ck

, δSi,n > CRτ,ki,n/∈Ck .

Considering the fact that the content request distribution
changes once every H time slots, the power minimization
problem for UAV k during a period that consists of H time
slots is:

min
Ck

T∑
τ=1

∑
i∈Uτ,k

Pmin
τ,ki min

Ck
=

T/H∑
j=1

H∑
τj=1

∑
i∈Uτ,k

Pmin
τj ,ki

= min
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

Pmin
j,τ,ki

(a)⇔max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∆Pj,τ,ki,n,

(b)
= max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n)+
∑
n/∈Ck

(pj,in∆Pj,τ,ki,n)

 ,

= max
Ck

T/H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(pj,in∆Pj,τ,ki,n),

where (a) follows the fact that minimizing the transmit power
of the UAVs is equivalent to maximizing the reduction of the
UAVs’ transmit power caused by caching, and (b) is obtained
by computing the average power reduction using content
request probability distribution of each user. This completes
the proof.

D. Proof of Theorem 3

At very low altitudes, h2
τ,k� (xt,i−xτ,k)

2
+(yt,i − yτ,k)

2,
hτ,k

dt,ki(wτ,t,k,wτ,t,i)
≈ 0 leading to φt = 0◦, and, hence,

Pr
(
lNLoS
t,ki

)
= 1. Thus, we have l̄t,ki (wτ,t,k,wτ,t,i) =

lNLoS
t,ki and (16) can be rewritten as Pmin

τ,t,ki =(
2δ
R
i,n/B−1

)
σ210(LFS(d0)+χσNLoS)/10dt,ki (wτ,t,k,wτ,t,i)

µNLoS .

Now, we find the optimal location (xτ,k, yτ,k) of UAV k

during time slot τ in order to minimize
∑

i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki. In

this case, the derivation of
∑

i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki with respect to



xτ,k is given by:

∂
∑

i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki

∂xτ,k
=

∑
i∈Uτ,k

Fτ,i∑
t=1

∂Pmin
τ,t,ki

∂xτ,k
=

∑
i∈Uτ,k

Fτ,i∑
t=1

µNLoS(xτ,k−xt,i)ψt,ki
(
(xτ,k−xt,i)2+(yτ,k−yt,i)2+h2

τ,k

)µNLoS
2
−1
.

(29)

As µNLoS =2, (29) is simplified to
∑

i∈Uτ,k

Fτ,i∑
t=1

2(xτ,k−xt,i)ψt,ki=

0. As a result, xτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

. Likewise, we can

show that yτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

.

For case b), since h2
τ,k � (xt,i − xτ,k)

2
+ (yt,i − yτ,k)

2,
dt,ki (wτ,t,k,wτ,t,i) ≈ hτ,k and, hence, hτ,k

dt,ki(wτ,t,k,wτ,t,i)
≈

1 → φt = 90◦. Consequently, Pr
(
lLoS
t,ki

)
= 1. Then, we have

l̄t,ki (wτ,t,k,wτ,t,i) = lLoS
t,ki. The derivation of

∑
i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki

will be:

∂
∑

i∈Uτ,k

Fτ,i∑
t=1

Pmin
τ,t,ki

∂xτ,k
=
∑
i∈Uτ,k

Fτ,i∑
t=1

µLoS (xτ,k−xt,i)ψt,ki

×
(
(xτ,k−xt,i)2+(yτ,k−yt,i)2+h2

τ,k

)µLoS
2
−1

≈
∑
i∈Uτ,k

Fτ,i∑
t=1

µLoS (xτ,k−xt,i)ψt,kihµLoS−2
τ,k = 0.

As a result, xτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

and yτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

. This completes the proof.
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