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Abstract—Massive MIMO provides great improvements in
spectral efficiency, by coherent combining over a large antenna
array and by spatial multiplexing of many users. Since its in-
ception, the coherent interference caused by pilot contamination
has been believed to be an impairment that does not vanish,
even with an unlimited number of antennas. In this work, we
show that this belief is incorrect and it is basically an artifact
from using simplistic channel models and combining schemes.
We prove that with multi-cell MMSE combining, the spectral
efficiency grows without bound as the number of antennas
increases, even under pilot contamination, under a condition of
linear independence between the channel covariance matrices.
This condition is generally satisfied, except in special cases which
can be hardly found in practice.

I. INTRODUCTION

Massive MIMO (multiple-input multiple-output) is consid-
ered a key technology for the next generation of cellular net-
works [1]–[3], in particular, to improve the spectral efficiency
(SE) and to enable spatial multiplexing of a large number of
user equipments (UEs) per cell. The key difference between
massive MIMO and classical multi-user MIMO is the large
number of antennas, M , at each base station (BS) whose
signals are processed by individual radio-frequency chains. By
coherent combining, the uplink signal power of a desired UE
is reinforced by a factor M , while the power of the noise
and independent interference remain fixed. The same holds
in the downlink. However, the pilot-based channel estimates
of desired UEs are correlated with the channels to UEs that
reuse the same pilots—this is known as pilot contamination.
Marzetta showed in his seminal paper [1] that the interference
from these UEs is also reinforced by a factor M , under
the assumptions of maximum ratio combining (MRC) and
independent Rayleigh fading channels. This means that pilot
contamination causes the SE to have a finite limit as M →∞.

The large-antenna limit has also been studied for other
combining schemes, such as the minimum mean squared
error (MMSE) detector. Single-cell MMSE (S-MMSE) was
considered in [4], while multi-cell MMSE (M-MMSE) was
considered in [5], [6]. The difference between the M-MMSE
and S-MMSE schemes is that the former makes use of channel
estimates of the UEs in all cells while the latter only relies on
channel estimates of the UEs in the current cell. In both cases,
the SE was proved to have a finite limit as M →∞, under the
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assumption of independent Rayleigh fading channels. There
are special cases of spatially correlated fading that give rise
to sparse channel covariance matrices. If the UEs’ covariance
matrices have orthogonal support, then the pilot contamination
goes away and the SE grows without bound. For example, the
one-ring covariance model for uniform linear arrays (ULAs),
which was studied in [7], [8], gives sparse covariance matrices
with orthogonal support if the channels have non-overlapping
angular support. However, the ULA measurements in [9] show
that such conditions are unlikely to arise in practice. This has
lead us to believe that pilot contamination is a fundamental
property that generally manifests a finite SE limit.

In this paper, we show that this is basically a misunder-
standing, spurred by the popularity of analyzing independent
Rayleigh fading channels and suboptimal combining schemes,
such as MRC and S-MMSE. When using the M-MMSE
combining scheme, we prove that the SE grows without bound
in the presence of pilot contamination, if a simple condition of
linearly independent covariance matrices is satisfied. A small
amount of randomness in the covariance matrices (e.g., large-
scale fading variations over the array) is sufficient to satisfy
the linear independence, which makes the cases when it is not
satisfied special cases rather than the general ones. We first
prove this result for a simple two-user scenario in Section II
and then show numerically in Section III that the result also
holds for general multi-cell scenarios.

Notation: The Frobenius and spectral norms of a matrix
X are denoted by ‖X‖F and ‖X‖2, respectively. The super-
scripts T, ∗ and H denote transpose, conjugate and Hermitian
transpose. We use , to denote definitions, whereas NC(x,R)
denotes the circularly symmetric complex Gaussian distribu-
tion with mean x and covariance matrix R. The N×N identity
matrix is denoted by IN , while 0N is an N×N all-zero matrix.
We use the shorthand an � bn to denote an − bn →n→∞ 0
almost surely (a.s.) for two infinite sequences of random
variables an, bn.

II. PILOT CONTAMINATION IN TWO-USER SCENARIO

In this section, we prove our main result for a two-user
uplink scenario, where a BS equipped with M antennas
receives data from UE 1 and pilot-contaminated interference
from UE 2. This setup is sufficient to demonstrate why multi-
cell MMSE combining removes pilot contamination. Denote



by hk ∈ CM the channel from UE k to the BS. We consider
a Rayleigh block fading model with

hk ∼ NC (0,Rk) , k = 1, 2 (1)

where Rk ∈ CM×M is the channel covariance matrix, which
is assumed to be known at the BS. The Gaussian distribution
models the small-scale fading whereas the covariance matrix
Rk describes the macroscopic effects. The normalized trace of
the covariance matrix βk = 1

M tr (Rk) determines the average
pathloss from UE k to the BS, while the eigenstructure
of Rk describes the spatial channel correlation. Indepen-
dent and identically distributed (i.i.d.) Rayleigh fading with
Rk = βkIM is a special case that is convenient for analysis
and it is also an accurate model in isotropic fading. How-
ever, the covariance matrix has in general spatial correlation
represented by non-identical diagonal elements and non-zero
off-diagonal elements.

A. Channel Estimation

We assume that the BS and UEs are perfectly synchronized
and operate according to a protocol wherein the uplink data
transmission phase is preceded by a pilot phase for channel
estimation. Both UEs use the same τp-length pilot sequence
φ ∈ Cτp with elements such that ‖φ‖2 = φHφ = 1. The
received uplink signal Yp ∈ CN×τp at the BS is given by

Yp =
√
ρtrh1φ

T +
√
ρtrh2φ

T + Np (2)

where ρtr is the pilot signal-to-noise ratio (SNR) and Np ∈
CN×τp is the normalized independent receiver noise with
all elements distributed as NC(0, 1). The vector Yp is the
observation that the BS utilizes to estimate the channels
{h1,h2}. We assume that channel estimation is performed
according to the MMSE estimator as given in the next lemma.

Lemma 1. The MMSE estimator of hk for k = 1, 2, based
on the observation Yp at the BS, is

ĥk =
1√
ρtr

RkQ
−1Ypφ∗ (3)

with Q = E{Ypφ?(Ypφ?)H}/ρtr being the normalized
covariance matrix of the observation after correlating with
the pilot sequence:

Q = R1 + R2 +
1

ρtr
IM . (4)

The estimate ĥk and the estimation error h̃k = hk − ĥk are
independent random vectors distributed as ĥk ∼ NC(0,Φk)
and h̃k ∼ NC(0,Rk −Φk) with Φk = RkQ

−1Rk.

Proof: The proof relies on standard computations from
estimation theory [10] and is omitted for space limitations.

The estimates ĥ1 and ĥ2 are computed in an almost identical
way: the same matrix Q is inverted and multiplied with the
same observation Ypφ?/

√
ρtr. The only difference is that for

ĥk there is a multiplication with the covariance matrix Rk in
(3), for k = 1, 2. The channel estimates are correlated as

Υ12 = E{ĥ1ĥ
H

2} = R1Q
−1R2. (5)

If R1 is invertible, then we can also write the relation between
the estimates as ĥ2 = R2R

−1
1 ĥ1. In the extreme case of

i.i.d. channels with R1 = β1IM and R2 = β2IM , the
two channel estimates are parallel vectors that only differ in
scaling. This is an unwanted property caused by the inability
of the BS to separate UEs that have transmitted the same
pilot sequence over identically distributed channels. In the
alternative extreme case of R1R2 = 0M , the two UE channels
are located in completely separated subspaces, which leads to
zero correlation: Υ12 = 0M . Consequently, it is theoretically
possible to let two UEs share a pilot sequence without causing
pilot contamination, if their covariance matrices satisfy the
orthogonality condition R1R2 = 0M . In general, none of
these extreme cases applies and we will investigate how to
treat the partial correlation caused by pilot contamination.

We stress the fact that the MMSE estimator utilizes the
(deterministic) channel statistics. In particular, the BS can
only compute the MMSE estimates ĥk in Lemma 1 if it
knows Rk and also the sum of the two covariance matrices,
i.e., R1 + R2. In practice, Rk can be estimated by the
sample covariance matrix, given sample realizations of hk over
multiple resource blocks (e.g., different times and frequencies)
where this channel is observed only in noise. Only around
M samples are needed to benefit from spatial correlation in
channel estimation [11].

B. Data Detection

During uplink data transmission, the received baseband
signal at the BS is y ∈ CM , given by

y =
√
ρh1x1 +

√
ρh2x2 + n (6)

where xk is the information-bearing signal transmitted by
UE k, n ∼ NC(0, IM ) is the independent receiver noise, and
ρ is the SNR. The BS detects the signal from UE 1 by using
a receive combining vector v1 ∈ CM to obtain the scalar
observation vH

1 y. Using a standard technique (see, e.g., [4]),
the ergodic capacity of UE 1 is lower bounded by

SE1 = E {log2 (1 + γ1)} [bit/s/Hz] (7)

where the expectation is with respect to the channel estimates.
We refer to SE1 as a spectral efficiency. The instantaneous
signal-to-interference-plus-noise ratio (SINR) γ1 is given as

γ1 =
|vH

1 ĥ1|2

E
{
|vH

1 h̃1|2 + |vH
1 h2|2 + 1

ρvH
1 v1

∣∣∣ĥ1, ĥ2

}
=

|vH
1 ĥ1|2

vH
1

(
ĥ2ĥH

2 + Z
)

v1

(8)

with

Z =

2∑
k=1

(Rk −Φk) +
1

ρ
IM . (9)



Since γ1 is a generalized Rayleigh quotient, it is straightfor-
ward to prove that

v1 =

(
2∑
k=1

ĥkĥ
H

k + Z

)−1

ĥ1 (10)

maximizes the SINR [5], [6]. This is called MMSE combining
since (10) not only maximizes the instantaneous SINR γ1, but
also minimizes E{|x1 − vH

1 y|2 |ĥ1, ĥ2} which is the mean
squared error (MSE) in the data detection. Plugging (10) into
(8) leads to

γ1 = ĥH

1

(
ĥ2ĥ

H

2 + Z
)−1

ĥ1. (11)

We will analyze how γ1 behaves in the regime where the
number of antennas, M , grows without bound, i.e., M →∞.
To this end, we make the following two technical assumptions:

Assumption 1. For k = 1, 2,

lim inf
M

1

M
tr(Rk) > 0 (12)

lim sup
M

‖Rk‖2 <∞. (13)

Assumption 2. Uniformly on λ ∈ R,

lim inf
M

1

M
tr
(
Q−1

(
R1 − λR2

)
Z−1

(
R1 − λR2

))
> 0. (14)

The first assumption is a common way to model that the
array gathers energy from many spatial dimensions as M
grows [4], while we elaborate on the second assumption below.

The following main result is now obtained:

Theorem 1. If MMSE combining is used, then under Assump-
tions 1 and 2 the SINR γk grows a.s. unboundedly as M →∞.

Proof: The proof is given in Appendix B.
This theorem shows that, under certain conditions, the

SE grows without bound M → ∞, since a.s. γ1 → ∞.
Observe that if the matrices R1 and R2 are linearly dependent,
such that R1 = ηR2, then Assumption 2 does not hold
(and δ = 0 in Appendix B). Under these circumstances, it
is straightforward to show that γ1 � η2, meaning that γ1

converges to a finite quantity as M → ∞. Next, we will
elaborate on the condition that is necessary for Theorem 1.

C. Interpretation and Generality

To gain an intuitive interpretation of Assumption 2, we next
provide an alternative expression that is a sufficient (but not
necessary) condition for Assumption 2.

Corollary 1. Assumption 2 holds if uniformly on λ ∈ R,

lim inf
M

1

M
‖R1 − λR2‖2F > 0. (15)

Proof: The proof is given in Appendix C.
The sufficient condition in Corollary 1 requires R1 and R2

to be asymptotically linearly independent, in the sense that
the difference between them grows with M . This implies that
ĥ1 and ĥ2 are linearly independent. As shown in Fig. 1, it is

ĥ1

ĥ2

Orthogonal 
only to       ĥ2

v1

Fig. 1. If the pilot-contaminated channel estimates are linearly independent
(i.e., not parallel), there exists a combining vector v1 that rejects the pilot-
contaminated interference from UE 2 while vH

1 ĥ1 6= 0.

then possible to find a combining vector that is orthogonal to
ĥ2, while still being partially aligned with ĥ1. This is what
MMSE combining exploits to reject the pilot contamination
and still achieve an array gain that grows with M .

Let us examine the condition in Corollary 1 with the help
of the following two examples.

Example 1. Consider the simple scenario

R1 =

[
2IN 0
0 IM−N

]
R2 = IM (16)

where the covariance matrices are only different in the first N
dimensions. Note that both matrices have full rank. We obtain

1

M
‖R1 − λR2‖2F =

N(2−λ)2+(M−N)(1−λ)2

M

≥ (M −N)N

M2
(17)

where the inequality follows from minimizing with respect to
any λ ∈ R. Note that (17) vanishes as M → ∞ if N is
constant, while it has the non-zero limit (1−α)α if N = αM ,
for some α satisfying 0 < α < 1. In the latter case, the
matrices {R1,R2} satisfy (15) for all λ and thus Assumption 2
holds. Interestingly, both covariance matrices are diagonal in
this example, but they are still linearly independent and the
subspace where they are different has rank min(N,M −N),
which is proportional to M .

Next, we study a scenario where the covariance matrices are
equal except for a random perturbation. This can be interpreted
as large-scale fading variations over the array.

Example 2. Consider the scenario

R1 = IM + DM R2 = IM (18)

where DM = diag(d1, . . . , dM ) contains i.i.d. positive ran-
dom variables. This gives

1

M
‖R1 − λR2‖2F =

M∑
m=1

(dm + 1− λ)2

M

� E{(dm + 1− λ)2} ≥ E{(dm − E{dm})2} (19)

by using the law of large numbers and then the fact that
λ − 1 = E{dm} minimizes the expression. Note that the last
expression is the variance of dm, and since every random
variable has non-zero variance, we conclude that the matrices
{R1,R2} satisfy (15) and thus Assumption 2 holds.

The conclusion from Example 2 is that if we take any
scenario where R1 and R2 are equal (up to a scaling factor)
and then add a random perturbation to one of the matrices, then
Assumption 2 holds. Hence, it is fair to say that the result of
Theorem 1 holds in any non-trivial scenario.



III. PILOT CONTAMINATION IN A MULTI-CELL SCENARIO

In this section, we consider an arbitrary multi-cell scenario
with L cells, each comprising a BS with M antennas and K
UEs. There are τp = K pilot sequences and the kth UE in
each cell uses the same pilot. Following the notation from [4],
the received baseband signal yj ∈ CM at BS j is

yj =

L∑
l=1

K∑
i=1

√
ρhjlixli + nj (20)

where ρ is the transmit power, xli is the unit-power signal from
UE i in cell l, hjli ∼ NC(0,Rjli) is the channel from this
UE to BS j, Rjli ∈ CM×M is the channel covariance matrix,
and nj ∼ NC(0, IM ) is the independent noise at BS j.

Using a total uplink pilot power of ρtr per UE and standard
MMSE estimation techniques [4], BS j obtains the estimate

ĥjli = RjliQ
−1
ji

(
L∑
l′=1

hjl′i +
1√
ρtr

nji

)
∼NC (0,Φjli) (21)

of hjli, where

Qji =

L∑
l′=1

Rjl′i +
1

ρtr
IM , Φjli = RjliQ

−1
li Rjli. (22)

The estimation error h̃jli = hjli− ĥjli ∼ NC (0,Rjli −Φjli)
is independent of ĥjli. However, the estimates ĥj1i, . . . , ĥjLi
of the UEs with the same pilot are correlated as
E{ĥjniĥH

jmi} = RjniQ
−1
li Rjmi.

We denote by vjk ∈ CM the combining vector associated
with UE k in cell j. Using the same technique as in [4], the
ergodic capacity of this channel is lower bounded by

SEjk = E {log2 (1 + γjk)} [bit/s/Hz] (23)

with the instantaneous SINR

γjk =
|vH

jkĥjjk|2

E

{ ∑
(l,i)6=(j,k)

|vH

jkhjli|2 + |vH

jkh̃jjk|2 + 1
ρvH

jkvjk

∣∣∣ĥ(j)

}

=
|vH

jkĥjjk|2

vH

jk

( ∑
(l,i)6=(j,k)

ĥjliĥH

jli + Zj

)
vjk

(24)

where E{·|ĥ(j)} denotes the conditional expectation given the
MMSE channel estimates available at BS j and

Zj =

L∑
l=1

K∑
i=1

(Rjli −Φjli) +
1

ρ
IM . (25)

The following corollary finds the “optimal” receive combining
vector, in the sense of maximizing SEjk in (23).

Corollary 2 (see [5], [6]). The instantaneous SINR in (24) for
UE k in cell j is maximized by the combining vector

vjk =

(
L∑
l=1

K∑
i=1

ĥjliĥ
H

jli + Zj

)−1

ĥjjk. (26)

BS

UE

Interfering UEs

Fig. 2. Multi-cell setup with one cell-edge UE in the center cell and one cell-
edge UE in each of the neighboring cells, all using the same pilot sequence.

The receive combining scheme provided by Corollary 2 is
called multi-cell MMSE (M-MMSE) combining. The “multi-
cell” notion is used to differentiate it from the single-cell
MMSE (S-MMSE) combining scheme [4], which is widely
used in the literature and is defined as

vjk =

(
K∑
i=1

ĥjjiĥ
H

jji + Z̄j

)−1

ĥjjk

with Z̄j being given by

Z̄j =

Kj∑
i=1

Rjji−Φjji +

L∑
l=1
l6=j

Kl∑
i=1

Rjli +
1

ρ
IM . (27)

The main difference from (26) is that only channel estimates in
the own cell are computed in S-MMSE, while ĥjliĥ

H

jli−Φjli

is replaced with its average (i.e., zero) for l 6= j. The
computational complexity of S-MMSE is thus lower compared
with M-MMSE, but the pilot overhead is identical since the
same pilots are used to estimate both intra-cell and inter-
cell channels. The S-MMSE scheme coincides with M-MMSE
when there is only one isolated cell, but it is generally different
and lacks the ability to suppress interference from strongly
interfering UEs in other cells (e.g., located at the cell edge).

We want to analyze how γjk behaves for different combin-
ing schemes when M → ∞, to show that Theorem 1 can be
generalized to this multi-cell multi-user scenario. Due to the
space limitation, we will only analyze this numerically.

A. Numerical Examples

To illustrate the fact that pilot contamination generally does
not limit the asymptotic SE, we numerically evaluate the multi-
cell scenario in Fig. 2 with K = 1 and L = 7. All UEs
use the same pilot sequence and are at the cell edge near the
center cell. This is a challenging setup with very high pilot
contamination, and it will show our main result very clearly.

We first illustrate the eigenvalue distribution of the channel
covariance matrices produced by different channel covariance
models. Fig. 3 shows the ordered eigenvalues with M = 1000
for a covariance matrix R modeled as:

1) One-ring model for a ULA with half-wavelength spacing
and average pathloss β. For an angle-of-arrival (AoA) θ, the
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Fig. 3. Average eigenvalue distribution with three channel covariance models,
whereof one gives a rank-deficient matrix and the others have full rank.

scatterers are uniformly distributed in [θ −∆, θ + ∆], which
makes the (n,m)th element of R become

[R]m,n =
β

2∆

∫ ∆

−∆

eπı(n−m) sin(θ+δ)dδ. (28)

2) Exponential correlation model for a ULA with correlation
factor r ∈ [0, 1] between adjacent antennas and AoA θ, which
gives

[R]m,n = βr|n−m|eı(n−m)θ. (29)

3) Uncorrelated Rayleigh fading with independent log-
normal large-scale fading over the array, which gives

R = βdiag
(

10f1/10, . . . , 10fM/10
)

(30)

where fm ∼ N (0, σ2) and σ is the standard deviation.
In Fig. 3, we show the eigenvalue spread for β = 1,

∆ = 17◦, r = 0.5, and σ = 1, with θ uniformly distributed
in [−π,+π). All three models create eigenvalue variations,
but there are also substantial differences. The one-ring model
provides sparse covariance matrices, where a large fraction of
the eigenvalues are zero (this fraction is computed in [8]). In
contrast, all eigenvalues with the other models are clearly non-
zero. We consider the latter two models in the remainder to
demonstrate that our main result only requires linear indepen-
dence between covariance matrices, and not sparseness (which
in special can give rise to orthogonal covariance supports [7]).

The asymptotic SE behavior is considered in Fig. 4 using
the exponential correlation model in (29), with M-MMSE,
S-MMSE, and MRC. The average SNR observed at a BS
antenna in the center cell is set equal for the pilot and data
transmission: ρtr(Rjli)/M = ρtrtr(Rjli)/M . It is −7.0 dB
for the desired UE and −8.6 dB for each of the interfering
UEs. Fig. 4 shows that S-MMSE provides slightly higher SE
than MRC, but both converge to an asymptotic limit of around
0.8 bit/s/Hz as the number of antennas grows. In contrast, M-
MMSE provides an SE that clearly grows without bound. The
instantaneous SINR grows linearly with M , in line with our
main result in Theorem 1, as seen from the fact that the SE
grows linearly with a logarithmic horizontal scale.

Next, we consider the uncorrelated Rayleigh fading model
in (30) with independent large-scale fading variations over the
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Fig. 5. SE as a function of the standard deviation of the independent large-
scale fading variations, for covariance matrices modeled by (30).

array. The SE with M = 1000 and varying standard deviation
σ is shown in Fig. 5. M-MMSE provides no benefit over S-
MMSE or MRC in the special case of σ = 0, where all covari-
ance matrices are linearly dependent (scaled identity matrices).
This is a special case that has received massive attention from
researchers. However, M-MMSE provides substantial gains
as soon as there are some minor variations in channel gain
over the array, which effectively make the covariance matrices
linearly independent. This is in line with Example 2. The range
of fading variations in this simulation can be compared with
the measurements in [12], which show large-scale variations
of around 4 dB over a massive MIMO array.

IV. CONCLUSION

Pilot contamination generally does not cause a fundamental
upper limit on the SE in massive MIMO, despite all the
previous results that have pointed towards this direction. There
are indeed special cases where the channel covariance matrices
are linearly dependent, which make the channel estimates of
the desired and interfering UEs parallel such that linear receive
combining cannot remove the interference. In general, the
covariance matrices and the channel estimates are not linearly
dependent, thus linear M-MMSE combining can extract the
desired signal while rejecting the pilot contamination. There
is a power loss, as compared to the contamination-free case,
but the SE still grows without bound as M →∞. Importantly,



this means that MRC (also known as matched filtering) is
generally not asymptotically optimal in massive MIMO.

APPENDIX A: USEFUL RESULTS

Lemma 2 (Theorem 3.4, Corollary 3.4 [13]). Let A ∈ CM×M
and x,y ∼ NC(0, 1

M IM ). Assume that A has uniformly
bounded spectral norm (with respect to M ) and that x and y
are mutually independent and independent of A. Then,

(i) xHAx � 1

M
tr(A) (ii) xHAy � 0.

Lemma 3 ([14]). For any positive semi-definite N × N
matrices A and B, it holds that

1

N
tr (AB) ≤ ‖AB‖2 ≤ ‖A‖2‖B‖2. (31)

Lemma 4 ([14]). For any positive semi-definite N × N
matrices A and B, it holds that

tr
(
(I + A)−1B

)
≥ 1

1 + ‖A‖2
tr(B). (32)

APPENDIX B: PROOF OF THEOREM 1
Using the matrix inversion lemma [4, Lemma 2], we may

rewrite γ1 in (11) as

γ1 = M

(
1

M
ĥH

1 Z−1ĥ1 −

∣∣∣ 1
M ĥH

1 Z−1ĥ2

∣∣∣2
1
M + 1

M ĥH
2 Z−1ĥ2

)
(33)

by also multiplying and dividing each term by M . Under
Assumption 1, when M →∞, using Lemma 1 and Lemma 2
(see Appendix A) we have that1

1

M
ĥH

1 Z−1ĥ1 �
1

M
tr(Φ1Z

−1) , β11 (34)

1

M
ĥH

2 Z−1ĥ2 �
1

M
tr(Φ2Z

−1) , β22 (35)

1

M
ĥH

1 Z−1ĥ2 �
1

M
tr(Υ12Z

−1) , β12. (36)

It also follows from Assumption 1 that lim infM β22 > 0, and
we then obtain

γ1

M
� δ = β11 −

β2
12

β22
. (37)

Since Assumption 2 implies that lim infM δ > 0 (see Ap-
pendix D) we have that γ1 grows a.s. unboundedly and, thus,
the result of the theorem follows.

APPENDIX C: PROOF OF COROLLARY 1
The expression in (14) can be lower bounded as
1

M
tr
(
Q−1

(
R1 − λR2

)
Z−1

(
R1 − λR2

))
≥

1
M tr

((
R1 − λR2

)(
R1 − λR2

))
(ρtr + ‖R1 + R2‖2)(ρ+ ‖

∑2
k=1(Rk −Φk)‖2)

(38)

by applying Lemma 4 in Appendix A twice. The denominator
in (38) is bounded, due to Assumption 1, and independent
of λ. The numerator equals 1

M ‖R1 − λR2‖2F . Hence, if (15)
holds, then it follows from (38) that Assumption 2 also holds.

1Observe that under Assumption 1 the matrices Q−1RiZ
−1Rk have

uniformly bounded spectral norm, which can be proved by using Lemma 3
in Appendix A.

APPENDIX D

We want to show that Assumption 2 implies that

lim inf
M

(
β11 −

β2
12

β22

)
> 0. (39)

Following the same line of reasoning as in [15, p. 24], As-
sumption 2 ensures (possibly over a converging subsequence,
which exists because all quantities in (14) are bounded)

lim
M
β11 + λ2 lim

M
β22 − 2λ lim

M
β12 > 0. (40)

The left-hand side of (40) is a quadratic polynomial in λ and
thus (40) is satisfied if and only if

lim
M
β11 + λ2 lim

M
β22 − 2λ lim

M
β12 = 0 (41)

has no real solutions. This requires the discriminant
limM β2

12−limM β11 limM β22 to be negative, i.e., limM β2
12−

limM β11 limM β22 < 0, which together with limM β22 > 0
leads to the desired result in (39).
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