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Abstract—This paper investigates a cellular edge caching
design under an extremely large number of small base stations
(SBSs) and users. In this ultra-dense edge caching network
(UDCN), SBS-user distances shrink, and each user can request
a cached content from multiple SBSs. Unfortunately, the com-
plexity of existing caching controls’ mechanisms increases with
the number of SBSs, making them inapplicable for solving the
fundamental caching problem: How to maximize local caching
gain while minimizing the replicated content caching? Further-
more, spatial dynamics of interference is no longer negligible in
UDCNs due to the surge in interference. In addition, the caching
control should consider temporal dynamics of user demands.
To overcome such difficulties, we propose a novel caching
algorithm weaving together notions of mean-field game theory
and stochastic geometry. These enable our caching algorithm to
become independent of the number of SBSs and users, while
incorporating spatial interference dynamics as well as temporal
dynamics of content popularity and storage constraints. Numer-
ical evaluation validates the fact that the proposed algorithm
reduces not only the long run average cost by at least 24% but
also the number of replicated content by 56% compared to a
popularity-based algorithm.

Index Terms—Edge caching, mean-field game, stochastic ge-
ometry, spatio-temporal dynamics, ultra-dense networks, 5G

I. INTRODUCTION

Upcoming 5G systems are expected to become ultra-dense
networks (UDNs) due to relentless user demand growth [1],
[2]. Limited backhaul capacity is however unable to cope with
a huge number of small base stations (SBSs) in a UDN.
In this respect, edge caching is a promising UDN enabler
that alleviates backhaul congestion by storing popular content
during off-peak hours at the network edges, i.e. SBSs [3]– [5],
yielding to an ultra-dense edge caching network (UDCN). This
paper aims at proposing a UDCN caching control algorithm
by solving the following three fundamental issues in UDCNs.

1. Caching control complexity. Edge caching network
performance relies on how much amount of users request the
content cached in SBSs, i.e. cache hits. If user demand is
fully correlated, caching the most popular files would be an
optimal control policy. However, user demand in reality is
heterogeneous, and therefore leads to the fundamental trade-
off of edge caching: maximizing individual user’s cache hits
while minimizing replicated content caching at SBSs. Solving
this trade-off in a centralized manner is too complicated to
be implemented in practice, so preceding works suggest semi-
distributed caching control algorithms where each SBS only
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Fig. 1: An illustration of ultra-dense edge caching networks (UD-
CNs) with spatio-temproal user demand and network dynamics.

exploits the local caching decisions of neighboring SBSs [6].
Unfortunately, the number of neighboring SBSs in a UDCN
is much larger than that of a traditional network, and thus
existing algorithms are computationally infeasible under ultra-
dense SBS environment. To make these worse, the following
two spatio-temporal aspects of UDCNs further increase the
caching control complexity.

2. Temporal dynamics of user demand. Content popularity
among users evolves over time, so demand prediction error
exists when caching files at SBSs. Minimizing this prediction
error straightforwardly brings about huge complexity increase,
but nevertheless UDCN caching control cannot overlook this
misprediction impact. The reason is that numerous users
amplify individual misprediction loss in a UDCN. A large
number of SBSs also lead to significant redundant caching
due to misprediction, increasing congestion at both backhauls
and cache storages.

3. Spatial dynamics of interference. In the downlink, inter-
ference amount and variance increase linearly with the number
of SBSs [7]. This significant impact of interference should
thus be carefully considered in UDCN caching control design.
Many preceding works apply somewhat simplified interference



modelings such as the average interference [8] with fixed
SBS locations. Incorporating the interference distribution that
specifies random locations of SBSs however incurs additional
complexity in UDCN caching control.

On the basis of these issues, our objective is to propose
a UDCN caching control algorithm that incorporates spatio-
temporal demand, cache storage and interference dynamics
with low computational complexity while minimizing the long
run average (LRA) cost. The cost is defined such that it
increases with (i) backhaul use, (ii) cache storage use, and
(iii) content replication, while decreasing with (iv) spectral
efficiency.

To this end, we tackle the aforementioned triple difficulty
in reverse order by using stochastic geometry (SG) and mean-
field game (MFG) theory. SG first plays a key role to specify
the interference dynamics at a randomly selected user, i.e.
a typical user. In UDNs, the interference normalized by BS
densification becomes deterministic [9], [10], which allows us
to simplify the spatial dynamics of UDCNs. Based on this
result, MFG captures temporal dynamics of demand and its
corresponding caching behavior by using two partial differ-
ential equations (PDEs), Hamilton-Jacobi-Bellman equation
(HJB) and Fokker-Planck-Kolmogorov equation (FPK). In a
UDCN, remarkably, no matter how many SBSs and users exist,
only a single pair of HJB-FPK can describe the entire caching
control and the resultant LRA cost dynamics [11], achieving
fixed computational complexity. Solving these HJB and FPK
equations provides the desired optimal UDCN caching control.

Related works. A recent study on caching [12] consid-
ers interference dynamics using SG for the spatial domain.
Caching policy adaptive to time-varying user request [13] is
proposed to enhance the local caching gain. The authors of
[14] considered temporal dynamics of SBSs’ states, replicated
contents, and interference on caching control in UDN environ-
ment. They, however, neglected temporal evolution of content
popularity and spatial dynamics of interference determined by
user locations. None of the works on caching jointly considers
the spatio-temproal dynamics of user demand and network
(interference and SBSs’ backhaul and storage capacities) in
ultra-dense scenarios.

Under these spatio-temporal dynamics, it is hard to improve
the caching gain while minimizing the replicated content
caching [15]. The replication problem becomes more severe in
UDCN, since the increased number of candidate SBSs serving
the same user induces that only one of them transmits the
cached data. Furthermore, the amount of replicated contents
varies according to the aforementioned dynamics. A caching
strategy dealing with the dynamically evolving replication
remains an open problem in UDNs.

Contributions. The contributions of this paper are summa-
rized as below.
• A novel caching control algorithm for UDCNs is pro-

posed, which minimizes LRA cost while incorporating
spatio-temporal demand and interference dynamics with
fixed computational complexity, independent of the num-
bers of SBSs and users (see Proposition 1). Specifically,

the algorithm does not need to get full knowledge of other
SBSs’ caching strategies or storage states.

• The proposed algorithm’s gains in LRA cost and repli-
cated contents are numerically validated (Figs. 5 and 6).

• The unique mean-field equilibrium (MFE) [11] is verified
by numerical evaluation (Fig. 4) as well as by analysis
(Proposition 1).

II. NETWORK MODEL AND SPATIO-TEMPORAL DYNAMICS

A. Ultra-dense network

We consider a UDN with SBS density λb and user density
λu. Their locations follow independent homogeneous Pois-
son point processes (PPPs), respectively. We set λb � λu,
according to the definition of UDN [16]. User i receives
signals from SBSs within a reception ball b(yi, R) centered
at yi with radius R, which represents the average distance
that determines a region where the received signal power is
larger than noise floor, as depicted in Fig. 1. When R goes to
infinity, the reception ball model is identical to a conventional
PPP network.

Transmitted signals from SBSs experience path-loss atten-
uation. The attenuation from the k-th SBS coordinates zk to
the i-th user coordinates yi is lk,i = min(1, ||zk − yi||−α),
where α is the path-loss exponent. The transmitted signals
experience independent and identically distributed fading with
the coefficient gk,i(t). We assume that the coefficient is not
temporally correlated. The channel gain hk,i from SBS k to
user i is |hk,i(t)|2 = lki|gk,i(t)|2. The received signal power is
given as S(t) = P |hk,i(t)|2, where P denotes transmit power
of an SBS.

The SBS directionally transmits signal by using Na number
of antennas. Its beam pattern at a receiver follows a sectored
uniform linear array model [17] where the main lobe gain is
Na with beam width θNa = 2π/

√
Na assuming that side lobes

are neglected and the beam center points at the receiver.

B. Edge caching model

Let us assume that there is a set N consisting of N SBSs
within the reception ball with radius R. Each SBS k ∈ N
has data storage unit size Ck,j assigned for content j. The
storage units allow SBSs to download contents a priori from
a server connected with non-ideal backhaul link as depicted
in Fig. 1. We assume that there is a set M consisting of M
contents, and the server has all the contents files in the set
M. Users request content j from the contents set M with
probability xj , and the size of the content j is denoted by
Lj . The goal of SBS k is to determine a vector of caching
probabilities pk(t) = {pk,1(t), ..., pk,j(t), ...pk,M (t)}, where
pk,j(t) ∈ [0, 1] is a probability that SBS k downloads content
j through its own backhaul link at time t. The control variable
pk,j(t) can also be interpreted as a fraction of the file in case
that each content file is encoded using a maximum distance
separable dateless code [18].

According to the definition of UDN, multiple SBSs can
serve a user [16] unlike traditional unidentified networks as
show in Fig. 1. We assume that a reference user is associated



to one of the SBSs storing the requested content within the
threshold distance R. If there are multiple SBSs having the
same content within the region, the serving SBS is randomly
chosen. If no SBS has cached the requested content, one of
the SBSs within R fulfills the user request by downloading it
from the server through the backhaul.

C. Spatio-temporal dynamics of user demand and network

Evolution law of time-varying content popularity. The
probability that users request a content, representing popular-
ity, varies over time in reality. We use Ornstein-Uhlenbeck
process [19] to model this temporal fluctuation as a stochastic
differential equation (SDE):

dxj(t) = (uj − aj)dt+ ηdWj(t), (1)

where xj(t) is the probability that users request content j at
time t, uj and aj respectively denote popularity increment and
decrement for content j, η is a positive constant, and Wj(t)
is a Wiener process.

Temporal dynamics of cache storage size. The remaining
cache storage capacity varies according to the instantaneous
caching policy. Let us assume that SBS k discards content files
at a rate of µk,j in order to make a space for downloading other
data. Considering the discarding rate, we model the evolution
law of storage unit as follows

dQk,j(t) = (µk,j − Ljpk,j(t))dt, (2)

where Qk,j(t) denotes the remaining storage size dedicated to
content j of SBS k at time t, and Lj is data size of content j.
Ljpk,j(t) represents instant data size of content j downloaded
by SBS k at time t.

Spatial dynamics of interference. In UDN, an SBS having
no associated user within its coverage becomes dormant,
not transmitting any signal. Locations of users determine
activation of SBSs, characterizing spatial distribution of inter-
ference. Consider a randomly selected typical user. We assume
that active SBSs have always data to transmit regardless
of their own caching policy. It indicates that the aggregate
interference is imposed by active SBSs with active probability
pa. Assuming that pa is homogeneous over SBSs yields
pa ≈ 1− [1+λu/(3.5λb)]

−3.5 [20]. It provides that density of
arbitrary interfering SBSs is equal to paλb. Then, active SBSs’
coordinates, consisting a set ΦR(paλb), determine dynamics
of interference If (t).

If (t) =

|ΦR(paλb)|∑
k

P |hk,i(t)|2, (3)

The signal-to-interference-plus-noise (SINR) with Na number
of transmit antennas is

SINR(t) = NaP |h(t)|2/
(
σ2 +

θNa
2π

NaI
f (t)

)
. (4)

In the following section, we present the spatially averaged
version of If(t).

III. PROBLEM FORMULATION

The goal of each SBS k is to determine its own caching
probability p∗k,j(t) for content j in order to minimize a long
run average (LRA) cost. The LRA cost is determined by other
SBSs’ caching policies, states of content request probability,
wireless channel, backhaul capacity, and remaining storage
size. Caching strategies of other SBSs also vary according
to the spatio-temporal dynamics.

A. Interactions: Replication and Interference

There are inherent interactions among SBSs with respect
to their own caching strategies. These interactions depend
on replicated contents and interference, which are major
bottleneck for optimizing distributed caching. Our purpose is
to estimate these interactions in a distributed fashion without
full knowledge of other SBSs’ states or actions.

Replication. As shown in Fig. 1, there may be replicated
contents downloaded by multiple SBSs within R. The over-
lapping contents increases redundant cost due to inefficient
resource utilization [15]. It is worth noticing that the number
of replicated contents is determined by other SBSs’ caching
strategies. We define the replication function Irk,j(p−k,j(t))
as the expected value of the overlapping content size per unit
storage size Ck,j .

Irk,j(p−k,j(t)) =
1

Ck,jNr(j)

|N |∑
i 6=k

pi,j(t), (5)

where p−k,j(t) is a vector of caching probabilities of all the
other SBSs except SBS k, and Nr(j) denotes the number of
contents whose request probability is asymptotically equal to
that of content j. Specifically, Nr(j) is the cardinality of a set
{m|m ∈ M such that |xm − xj | ≤ ε} where ε is sufficiently
small.

Interference. Interactions among SBSs through interference
can be bottlenecks for optimizing distributed caching. To
incorporate this spatial interaction, we adopt an analysis of
[9] on interference in UDN. It provides Îf (t), the interference
normalized by SBS density and the number of antennas as
follows:

Îf(t)=(λuπR)2N
− 1

2
a λ

−α2
b

(
1+

1−R2−α

α− 2

)
PEg[|g(t)|2]. (6)

It gives us an average downlink spectral efficiency (SE) Rk(t)
in UDN as follows:

Rk(t)=ES,If [log(1+SINR(t))]≈ES log

1+ Sk(t)
σ2

Naλ
α/2
b

+EIf[Î
f (t)]

,
(7)

where σ2 is the noise power. Eq. (7) allows us to investigate
the effect of interference on the upper bound of an average
SE.



B. Cost Functions

An instantaneous cost function Jk,j(t) defines the LRA cost.
It is affected by backhaul capacity, remaining storage size,
spectral efficiency, and overlapping contents among SBSs.
SBS k cannot download more than Bk,j(t), the allocated
backhaul capacity for downloading content j at time t.
If pk,j(t) <

Bk,j(t)
Lj

, the backhaul cost φk,j is model as
φk,j(pk,j(t)) = − log(Bk,j(t) − Ljpk,j(t)). Otherwise, the
cost function φk,j(pk,j(t)) goes to infinity, preventing the
download rate of content j from exceeding the available
backhaul rate. This form of cost function is widely used as
in [14].

As cached content files occupy the storage, it causes pro-
cessing latency [21] or delay to search requested files by users.
We consider this storage cost as follows:

ψk,j(Qk,j(t)) = γ(Ck,j −Qk,j(t))/Ck,j . (8)
Then, the global instantaneous cost is

Jk,j(pk,j(t),p−k,j(t)) =
φk,j(pk,j(t))(1+Irk,j(p−k,j(t)))

Rk(t,If (t))xj(t)

+ ψk,j(Qk,j(t)). (9)

With this cost function, we define an average total cost over
the long run, called long run average (LRA) cost.

C. Stochastic Differential Game for Edge Caching

The state of SBS k and content j at time t is defined
as sk,j(t) = {xj(t),Rk(t), Qk,j(t)}, ∀k ∈ N ,∀j ∈ M.
The stochastic differential game (SDG) for edge caching is
defined by (N ,Sk,j ,Ak,j ,Jk,j) where Sk,j is the state space
of SBS k and content j, Ak is the set of all caching controls
{pk,j(t), 0 ≤ t ≤ T} admissible for the state dynamics, and
Jk,j is the LRA cost over a time window [0, T ] defined as
follows:

Jk,j = E

[∫ T

t

Jk,j(pk,j(t),p−k,j(t)) dt+ κ(sk(T ))

]
, (10)

where κ : Sk,j → R, sk 7→ κ(sk) is the cost of having a
remaining storage size at the end of the time window [0, T ].
Thus, the SDG is formulated as follows:

(P1) vk,j(t) = inf
pk,j(t)

Jk,j(t). (11)

subject to dxj(t) = (uj − aj)dt+ ηdWj(t), (12)
dQk,j(t) = (µk,j − Ljpk,j(t))dt. (13)

The existence of a Nash equilibrium of problem P1 is
guaranteed if there exists a joint solution of the following
coupled HJB equations for all k and j [22]:

0= ∂tvk,j(t)+ inf
pk,j(t)

[
Jk,j(pk,j(t),p−k,j(t))+

η2

2
∂2
xxvk,j(t)

+(µk − Ljpk,j(t))︸ ︷︷ ︸
(A)

∂Qkvk,j(t) + (uj−aj)︸ ︷︷ ︸
(B)

∂xvk,j(t)

]
. (14)

If the smoothness of the drift functions (A) and (B) in
the dynamic equation (14) and the cost function (9), we can
assure that a unique solution of the equation (14) exists [22].

Fig. 2: Ultra-dense edge caching flow charts with and without
utilizing MFG and SG.

Unfortunately, it is complex to solve the coupled N ×M HJB
equations. We thus release complexity of this system in the
next section.

D. Mean-field Game for Caching

It is hard to react to each individual SBS’s caching strategy
in solving the SDG P1. Mean-field game (MFG) theory
enables us to transform these multiple interactions into a single
interaction, called MF interaction, via MF approximation. Ac-
cording to [19], this approximation holds under the following
conditions: a large number of players, excahngeability of
players under the caching control and finite MF interaction.

Remark that the first condition corresponds to the definition
of UDNs. Players in the SDG are said to be exchangeable or
indistinguishable under the control pk,j(t) and the states of
players and contents, if the player’s control is invariant by
their indices and decided by only their individual states. In
other words, permuting players’ indices cannot change their
control policies. Under this exchageability, we can focus on a
generic SBS by dropping its index k.

Respective MF interactions (5) and (6) should asymptoti-
cally converge to a finite value under the above conditions. MF
replication (5) goes to zero when the number of contents per
SBS is extremely large, i.e. M � N . Such a condition implies
that the cardinality of the set consisting of asymptotically
equal content popularity goes to infinity. In other words, Nr(j)
goes to infinity yielding that Irk,j(p−k,j(t)) becomes zero.
In terms of interference, MF interference converges as the
ratio of SBS density to user density goes to infinity, i.e.
Naλ

α
b /(λuR)4 → ∞ [9]. Such a condition corresponds to

the notion of UDN [16] or massive MIMO (Na → ∞). That
is, the conditions enabling MF approximation inherently hold
under ultra-densified caching networks.

To approximate interactions from other SBSs, we need a
state distribution of SBSs and contents at time t, called MF



distribution mt(x,Q). It is defined by a counting measure
M

(N×M)
t (x,Q) = 1

NM

∑M
j=1

∑N
k=1 δ{xj(t),Qk(t)}. We as-

sume that the empirical distribution M (N×M)
t (x,Q) converges

to mt(x,Q), which is the density of contents and SBSs in
state (x,Q). Note that we omit the SE R(t) from the density
measure to only consider temporally correlated state without
loss of generality.

The MF distribution mt(x,Q) is a solution of the following
Fokker-Planck-Kolmogorov (FPK) equation.

0 = ∂tmt(x,Q)− (uj − aj)∂xmt(x,Q)

+ (µk − Ljpj(t))∂Qmt(x,Q) +
η2

2
∂2xxmt(x,Q). (15)

Let us denote the solution of the FPK equation (15) as
m∗t (xj , Q). Exchangeability and existence of the MF distri-
bution allow us to approximate the interaction Irk,j(p−k,j(t))
as a function of m∗t (xj , Q) as follows:

Irj (t,m
∗
t (xj , Q)) =

∫
Q

∫
x

m∗t (xj , Q)

Ck,jNr(j)
pj(t, x,Q)dxdQ, (16)

Remark that we can estimate the interaction from replication
(16) without observing other SBSs’ caching strategies. Thus,
it is not necessary to have full knowledge of the states or the
caching control policies of other SBSs. It provides that an SBS
only need to solve a pair of equations, the FPK equation (15)
and the following modified HJB one from (14):

0= ∂tvj(t)+ inf
pj(t)

[
Jj(pj(t), Ij(t,m

∗
t (x,Q))+

η2

2
∂2
xxvj(t)

+(µ− Ljpj(t))∂Qvj(t) + (uj−aj)∂xvj(t)
]
. (17)

We can solve this equation in backward and find the solution of
the stochastic optimization problem P1. It is worth mentioning
that the number of PDEs to solve for one content is reduced to
two from N . The respective processes of solving P1 in ways
of SDG and MFG are depicted in Fig. 2.

Proposition 1. The optimal caching probability is given by:

p∗j (t) =
1

Lj

[
Bj(t)−

1 + Irj (t,m∗t (xj , Q))

R(t, If (t))xj(t)∂Qv∗j

]+
, (18)

where m∗t (x,Q) and v∗j (t) are the unique solutions of (15)
and (17), respectively.
Proof: Appendix.

The optimal caching probability p∗j (t) is calculated by
water-filling fashion, where the allocated backhaul capacity
Bj(t) determines the water level. Noting that SE R(t) in-
creases with the number of antenna Na and SBS density λb,
SBSs cache more contents from server when wireless capacity
is improved. The partial derivative ∂Qvj implies the effect of
the current decision on the final LRA cost.

The respective solutions m∗t (x,Q) and v∗j (t) of (15) and
(17) define the mean field equilibrium (MFE) which cor-
responds to the notion of Nash equilibrium in the MFG

Fig. 3: Evolution of the optimal caching control p∗(t, Q) at the MF
equilibrium when xj = 0.4. The initial MF distribution m0 is given
as N (0.7, 0.052).

framework [11]. Note that existence and uniqueness of the
optimal caching control is guaranteed. It verifies that the
optimal caching algorithm converges to a unique MFE, when
the initial conditions m0, xj(0), and Q(0) are given.

The optimal caching algorithm in Proposition 1 becomes
more tractable when each SBS affords high storage capacity
enough to ignore cost for storage usage. Thus, we can obtain
the following corollary of Proposition 1.

Corollary 1. When the storage capacity is sufficiently high
(Ck,j →∞), the optimal caching control is given by

p∗j (t) =
1

Lj

[
Bj(t)−

1 + Irj (t,m∗t (xj , Q))

R(t, If (t))xj(t)γ̂

]+
, (19)

where γ̂ is a constant.

Proof: When the storage capacity goes to infinity, the instanta-
neous cost function for storage usage (8) is given as follows:
limCj→∞ ψj(Qj(t)) = γ. Hence, the partial derivative of
LRA cost with respect to the remaining storage size ∂Qvj
also has a constant value of γ̂. �

It is worth noticing that the optimal caching control becomes
independent from the LRA cost dynamics with respect to the
storage state.

IV. NUMERICAL RESULTS

In this section, we present numerical results for cases in
which content request probability remains static and tem-
porally varies according to its evolution law (1). Let us
assume full knowledge of contents request probability and
their evolution laws. The initial distribution of the SBSs m0

is given as a normal distribution N (0.7, 0.052). We assume
that the storage size Q belongs to a set [0, 1]. Assuming
Rayleigh fading with mean one, we set the parameters as
follows: µ = 0.1, γ = 0.01, λu = 0.001, λb = 0.03, R =
10/
√
π,B = 1, Nr(j) = 20, Q(0) = 0.7, η = 0.1, α = 4.

A. Static content request probablity

We numerically analyze the algorithm performance when
the content request probability is static. In this case, the
problem becomes simplified, because the caching control
strategies does not depend on the evolution law of the content



Fig. 4: Evolution of the MF distribution m∗t (Q) that indicates the density of SBSs having the remaining storage space Q at time t with
respect to different content popularity x, B = 1, Nr(j) = 20, µ = 0.1, λu = 0.001, λb = 0.03, R = 10/

√
π.

Fig. 5: Long run average costs of different caching strategies
(Q(0) = 0.7, x(0) = 0.3, η = 0.1, a = 0.15, u = 0.1).

popularity. Specifically, in HJB (17) and FPK (15) equations,
the derivative terms with respect to content request probability
x become zero.

Fig. 3 shows the evolution of the optimal caching probability
p∗(t) for a content with respect to storage state. We observe
that the value of p∗(t) is lower than the content request
probability at all time slots and decreases when available
storage space Q becomes small. The reason is that SBSs
restrain replication of the content and save storage capacity
for downloading more popular contents.

Fig. 4 represents evolutions of MF distribution m∗t (Q) for
a content with different popularity. Note that m∗t (Q) indicates
the density of SBSs whose unoccupied storage size is equal
to Q at time t. We observe that the unoccupied storage space
of SBSs does not diverge from each other. It validates that the
proposed algorithm achieves the MFE. In this equilibrium, the
amount of downloaded content file decreases when the content
popularity x becomes low. This tendency corresponds to the
trajectory of the optimal caching probability in Fig. 3. Almost
every SBS has downloaded the content over time, but not
spent its whole storage. The remaining storage saturates even
though the content popularity is equal to 0.9. It implies that
SBSs reduce the downloading amount of the popular content
in consideration of the expected replication amount, which
increases with the popularity.

Fig. 6: The amount of replicated contents per storage usage (Q(0) =

0.7, η = 0.1, a = 0.15, u = 0.1).

B. Dynamic content request probablity

We investigate the performance of the proposed MF caching
algorithm under temporal dynamics of the content popu-
larity (1). Note that the temporal dynamics constrains the
optimal caching strategy to follow the optimal trajectory
[v∗j (t),m∗t (x,Q)], a set of solutions to the coupled equations
(17) and (15).

Fig. 5 shows the LRA cost of the proposed MF caching
algorithm compared to results of a popularity based algorithm
and random caching one. The blue dot in the figure indicates
the minimal LRA cost obtained by an exhaustive search.
A slight disagreement between the proposed and exhaustive
algorithm by full search appears from two reasons; one is that
each segment size of time t and storage capacity Q is not
infinitesimal, leading to inaccurate partial derivative values,
and the other is the finite number of SBSs. Nevertheless, the
proposed caching strategy reduces about 36% of the LRA
cost as compared to an algorithm that determines caching
probability in proportional to the request probability. This
performance gain results from allowing the system to avoid
the expected replication of contents and interference varying
according to the spatio-temporal dynamics.

Fig. 6 shows the amount of replicated contents per storage
usage as a function of initial content probability x(0). The
proposed MF caching algorithm reduces caching content repli-
cation averagely 56% compared to popularity based caching.



However, MF caching algorithm yields the higher amount of
replication than random caching does when the content request
probability becomes high. The reason is that the random policy
downloads contents regardless of their own popularity, so the
amount of replication remains steady. On the other hand, MF
caching increases the downloaded volume of popular contents.

V. CONCLUDING REMARKS

In this paper, we proposed an edge caching algorithm
for ultra-dense edge caching networks (UDCNs), taking into
account the spatio-temporal user demand and network dy-
namics. Leveraging the frameworks of MFG theory and SG,
our algorithm enables SBSs to distributively determine their
own caching strategy without full knowledge of other SBSs’
caching strategies or storage state. The proposed MF caching
algorithm reduces not only the long run average cost but also
the replicated content amount compared to a caching control
that is merely based on content popularity. Future work can
extend to an optimal caching strategy to cope with imperfect
knowledge of content popularity dynamics.

VI. APPENDIX: PROOF OF PROPOSITION 1

The optimal control strategy is the argument of the infimum
term of the HJB equation (14).

inf
pj(t)

[
Jj(pj(t), I

r
j (t,m∗t (x,Q))+

η2

2
∂2xxvj(t)

+(µ− Ljpj(t))∂Qvj(t) + (uj−aj)∂xvj(t)
]

(20)

Solving (20) for all time t is immediate by convexity of the
objective function, of which the critical point is the unique
optimal control p∗j (t) calculated as described in (18). Note that
p∗j (t) is a function of the solutions of the equations (15) and
(17). The expression of p∗j (t) (18) provides the final versions
of the HJB and FPK equations composing MFG as follows:

0 = ∂tvj(t)−
log

(
Bj(t)−

[
Bj(t)−

1+Irj (t,m∗
t (x,Q))

R(t,If (t))xj(t)∂Qvj

]+)
R(t, If (t))xj(t)

×(1+Irj (t,m∗t (x,Q))) +
α(Cj−Qj(t))

Cj
+ (uj−aj)∂xvj(t)

+

(
µ−
[
Bj(t)−

1+Irj (t,m
∗
t (x,Q))

R(t, If (t))xj(t)∂Qvj

]+)
∂Qvj(t)+

η2

2
∂2
xxvj(t),

0 = ∂tmt(x,Q)− (uj − aj)∂xmt(x,Q) +
η2

2
∂2
xxmt(x,Q)

+

(
µk −

[
Bj(t)−

1+Irj (t,mt(x,Q))

R(t, If (t))xj(t)∂Qv∗j

]+)
∂Qmt(x,Q).

From these equations, we can find the values of v∗j (t) and
m∗t (x,Q). Note that the smoothness of the drift functions and
in the dynamic equation and the cost function (9) assures the
uniqueness of the solution [22]. �
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