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Thermal-Hydraulic (TH) codes are used to simulate the response of nuclear safety systems under transient and accident conditions. The outcomes of the simulations are used to verify the safety margins required for safe operation and make decisions on how to maintain them.

In this work, a novel Expert System (ES) based on Regional Sensitivity Analysis (RSA) is developed to guide a system undergoing an accident scenario towards the safest conditions in the optimal number of operation. The ES proceeds by firstly identifying the (uncertain) system controllable variables (i.e., control rods position, feedwater flow rate, void fraction inside the steam generator, etc.) that most affect the system response by RSA; then, the limit-state function is calibrated on a dataset of outcomes of TH code runs and the system failure boundary (i.e., the limit surface) is defined on the set of (uncertain) TH input variables.

Application of the ES is firstly shown with respect to an analytical case study that artificially simulates the response of a NPP to an accident scenario and, then, to a practical case study concerning the response of the pressurizer of a Pressurized Water Reactor (PWR).

INTRODUCTION

Safety remains a priority for Nuclear Power Plants (NPPs) design and operation, as the release of radioactive material can result in catastrophic consequences in terms of casualties, environmental pollution and financial losses [Hsieh et al., 2012]. For the safety of NPPs, accident-preventive design and operation, and effective consequence mitigation plans are developed [Ma et al., 2011]. In practice, Emergency Operating Procedures (EOPs) are defined to provide the technical basis for suitable operator response to Design Basis Accidents (DBAs) and, nowadays also, Beyond Design Basis Accidents (BDBAs) [IAEA, 2006].

Fault Detection and Diagnosis (FDD) methods have been developed for detecting different types of faults and supervising the plant behavior for accident prevention [Ma et al., 2011;[START_REF] Park | [END_REF]IAEA, 2000;IAEA, 2004;IAEA, 2005]. Upon localization and isolation, under certain abnormal conditions, manual actions are conducted by the plant operators for restoring normal operating conditions [Hsieh et al., 2012;[START_REF] Park | [END_REF]. For this, Abnormal Operating Procedures (AOPs) are provided, where the sequence of actions to undertake are given for different Initiating Events (IEs). Two practical issues are: i. it is difficult to ensure sufficient coverage of all possible IEs through AOPs, as they are developed based on historical data and there may exist significant IEs that have not yet been experienced [START_REF] Park | [END_REF];

ii. human errors may occur during abnormal situations and incorrect AOPs may, then, be followed [Hsieh et al., 2012].

In abnormal situations, time is critical, and the amount of information and data to be examined is large. Decision Support Systems (DSSs) can aid the operators and reduce the possibility of errors [Ma et al., 2011;Hsieh et al., 2012;[START_REF] Park | [END_REF]. Examples of DSSs are: the Alarm and Diagnosis-Integrated Operator Support (ADIOS) system that attempts to avoid that too many alarms influence the operators judgement in a wrong way [START_REF] Kim | [END_REF]; the Hidden Markov Model (HMM) for recognizing accidents in NPPs, proposed in [START_REF] Kwon | [END_REF]; the Fault Diagnosis Advisory System (FDAS), based on dynamic neural networks [Lee et al., 2007]; the Dynamic System Doctor (DSD), a system-independent interactive software for online state/parameter estimation in dynamic system [Aldemir et al., 2001]; the Analysis of Dynamic Accident Progression Trees (ADAPT) methodology [Hakobyan et al, 2008]; the unsupervised clustering technique for NPP components fault diagnosis, based on Haar Wavelet Transform (HWT) and Fuzzy C-Means (FCM) algorithm, in [Baraldi et al., 2013]; the hybrid approach for balancing false and missed alarms, based on Correlation Analysis (CA), Genetic Algorithms (GAs) and Sequential Probability Ratio Tests (SPRTs) in [START_REF] Maio | Fault Detection in Nuclear Power Plants Components by a Combination of Statistical Methods[END_REF]; the non-parametric decision strategy in [START_REF] Al-Dahidi | A Novel Fault Detection System Taking Into Account Uncertainties in the Resconstructed Signals[END_REF] to detect whether NPP components are in abnormal conditions, using Prediction Intervals (PIs) and Auto-Associative Kernel Regression (AAKR) [START_REF] Hines | [END_REF]]. However, there is no guarantee of improvement in the operators' performance and sometimes the result could be the increase of operator workload, with negative implications on performance [Yoshikawa 2005;Kim et al., 2007;Hsieh et al., 2012].

In this paper, we propose an Expert System (ES) [START_REF] Mcbride | [END_REF][START_REF] Liao | [END_REF][START_REF] Ikram | [END_REF] for operator aid, based on the system response outcomes obtained from a Thermal-Hydraulic (TH) code and Regional Sensitivity Analysis [Wei et al., 2014]. The TH code reproduces the system physical behavior according to a mathematical model m that receives an input vector n x   (comprised of n input variables) and generates the system response vector ) (x m y 

, containing (at least) one safety parameter y . The input variables set n  can be partitioned into two subsets: one with controllable variables ( q  ), i.e. the levers under control of the plant operator, which can be manipulated to increase plant safety (e.g., reactor control rods position, rate of feed-water flow through the plant primary loops, accumulator water temperature and pressure, repair times, etc.), and the other one with non-controllable variables ( [START_REF] Maio | [END_REF]. In practice, the inputs x are uncertain [Apostolakis, 1990; Helton, 1996; Oberkampf et al., 2004].

q n  ) [Di
With reference to scenario F E , for which the response of interest Y must be lower than a threshold y γ (imposed by regulation), the limit-state function G is defined as [Bourinet et al., 2011]:
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The input space can be split into a failure domain

} 0 ) ( : {   X G X F and a safe domain } 0 ) ( : {   X G X S
. The system failure boundary (limit surface)

} 0 ) ( : {    X G X F
, which separates S from F , can be projected onto an input controllable subset ( q  ) [Di [START_REF] Maio | [END_REF], which contains the controllable variables q X X X , , , 2 1  that can be varied to increase the system safety margin ) (X Y γ y  [Zio et al., 2010].

While the system is operating in its nominal state , providing a margin of safety with respect to uncertainties in the model [Zio et al., 2008]. In abnormal conditions, the safety margin may decrease and this needs to be kept under control in order to avoid diverging to catastrophic accidents.

An additional difficulty in the problem is due to the fact that any generic controllable input variable

j X , q j , , 2 , 1  
, can be affected by epistemic and/or aleatory uncertainty. In this paper, this uncertainty is modeled by considering that when j X is set equal to j x ˆ, the input variable actually ranges between 
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(3) Coherently, the system (uncertain) initial state is:
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In this paper, we present the development of an Expert System (ES) for maximizing the safety margin by exploiting the results of a Regional Sensitivity Analysis (RSA) to guide the search for the range (or state of the system X ) closest to 0 X , where

] ) ( [ X G  is the smallest.
In detail, the ES proposed in this paper is based on the Revised Ratio Functions (RRFs) [Wei et al., 2014]) that measure the impact on the mean (Revised Mean Ratio Function, HM ) and variance (Revised Variance Ratio Function, HV ) of the model output distribution due to the reduction in the range of variability of an individual input. For our purposes, the effect on the variance is of particular interest and it is here exploited to find which input controllable variable allows obtaining the largest decrease in G (i.e., the largest increase in the expected safety margin) when the system is in its current abnormal state X . Assuming that the system is operating at X and that range ] [

j j j j x x , x x     , , , , 2 , 1 q j  
is reduced to j x ˆ, the expected value (  ) and variance (Var ) of G are, respectively:
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The original RSA technique defines

j HV of input j X , q j , , 2 , 1  
, as the ratio between the

residual variance ] | [ j x G Var with respect to the residual mean ] | [ j x G 
, and the full variance   G Var [Wei et al., 2014]: ) where:
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As Eq. ( 7) shows, j HV indicates the actual reduction of the model output variance due to the restriction of the range of j X . The larger j HV is, the more function G varies (i.e., decreases or increases) for a perturbation of the other inputs  X ( j 



). Therefore, we define the revised * j HV as the ratio between the variance of G , computed over the range ] [

j j j j x x , x x     , q j , , 2 , 1  
, and the reduced range (  x ˆ) of each of the other inputs

,  X q , , 2 , 1    , , j   and the full variance   G Var . It is clear that the larger * j
HV is, the more function G varies and, thus, a larger increase in the system safety margins can be achieved through a perturbation of the j-th input.

Through the approach described, we aim at providing the plant operator with an effective and unequivocal AOP to keep the safety margins and avoid system failure, giving clear indications of which controllable variables to modify and by how much, when an IE has occurred.

The rest of the paper is organized as follows. Section 2 illustrates the proposed approach.

Section 3 shows an application of the approach to an analytical case study that artificially simulates the response of a NPP to an accident scenario. Section 4 contains the application of the approach to the pressurizer of a Pressurized Water Reactor (PWR). Conclusions are given in Section 5.

AN EXPERT SYSTEM FOR THE MAXIMIZATION OF SAFETY

MARGINS DURING SYSTEM OPERATION

For the sake of clarity, but without loss of generality, in this work the non-controllable input

variables (i.e., n q q X X X , , , 2 1   
) are considered to be fixed at some known values (i.e.,

n q q x x x , , , ~2 1    ) and ) ( X G is, consequently, a function of the controllable inputs only (i.e., q X X X , , , 2 1  ).
Given a current abnormal state of the system X , the most effective way to "escape" from it and reach safer conditions is to "perturb" the χ-th controllable variable  X ,

  q , 1   , that is associated to the larger * j HV value, n j , , 2 , 1  
, in order to attain the largest possible variation of ) (X G (i.e., of the safety margin) by adding or subtracting a constant h to its nominal value j x ˆ. When a perturbation of  X does not result in a reduction of   ) ( X G  (i.e., the expected safety margin value), it is considered that the system has reached normal conditions.

Based on these knowledge rules, the ES algorithm performs the following four steps at each υ-

th iteration of safety margins control, N , , 1 , 0    (where 1  N
is the final number of iterations):

1. it computes:

i. the realization

) (   x g g  of G when the system is in its current nominal state ) , , , ( , , 2 , 1     q x x x x   ; ii. the expected value   ) (X G 
over the range of input uncertainty, representing the system actual state

      q q q q x ,x x x x ,x x x x ,x x x X                        , , 2 , 2 2 , 2 1 , 1 1 , 1  ; iii. * j HV of each input j X , q j , , 2 , 1   , over its own range   j j j j, j, x x x x X         , ,
, with the initial ranges of all the other inputs  X reduced to
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). 

it identifies the input variable

 X ,   q , 1   ,
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h is the distance between the current system nominal state  x and the one that follows 1  

x (see below and Section 3 for further details).
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In other words, once the (χ-th) direction along which the largest change in G can be achieved is found (as in Step 3), Step 4 looks for the system nominal state that results in a decrease in

G between   x and   x and it finally checks that ] ) ( [  X G  is actually decreasing.
The algorithm stops when neither one of the two above statements is verified because

] ) ( [ ] ) ( [   X G X G     and ] ) ( [ ] ) ( [   X G X G    
, which means that moving the system from its nominal current state 

x to   x or to   x would not result in a decrease of ] ) ( [  X G  .
As it can be seen, the algorithm identifies a sequence of nominal states

1 , , 2 , 1 } {   N p p x  in S ,
obtained by shifting at each step υ the system nominal state 

x of a length h in the direction of the input variable (  X , ] , 1 [ q   ) that allows the largest reduction of   ) (X G E (computed as in Step 1 Point iii).
The choice of the step length h is a delicate task, because of two reasons:

1. the shorter h is, the more accurate is the final nominal state 1  N

x , but the larger is the number of iterations N that the algorithm needs to perform to get to a final solution; In all generality, if we are trying to estimate the integral I of a function

) (x v v  over an integration domain n    (i.e., x d x v I    ) (
), where

n x 
 , and a PDF ) (x f X can be defined over  , then I is equivalent to [Zio, 2013]: . Eq. ( 10) is true for any PDF
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can, then, be estimated by: i) generating S N random samples Rubinstein, 1981;Kalos et al., 2008;Zio, 2013]. In this work, the pseudo-random samples

) (c x (with S N c , , 2 , 1   ) of x according to ) (x f X , ii) computing the ratio ) ( ) ( ) ( ) (
) (c
x are generated from the uniform distribution

) (x u X ,   x
, according to the algorithm originally proposed by von Neumann [Zio, 2013].

ANALYTICAL CASE STUDY

Analytical Model Description

Let us assume that the safety-significant response variable Y of the system is given by an analytical function m of two controllable inputs 1 X and 2 X as: [Cammi et al., 2006;Baraldi et al., 2013;[START_REF] Maio | [END_REF]), obeying two independent normal distributions The safety threshold limit to be applied to Y is 125  y γ and the resulting limit-state function of the system is [START_REF] Bourinet | [END_REF]Zio et al., 2008]

3 2 2 2 1 2 1 2 1 ) 1 ( ) 2 ( ) 3 ( 8 ) , (         X X X X X X m Y (12)
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In Figures 1 and2, the limit-state function G (continuous grid) and the system failure boundary F  (solid line) are shown as functions of variables 1 X and 2 X . According to the definition of failure boundary given in Section 1, in this simplified case, F  (Figures 1 and2) can be easily found by the intersection between surface ) , ( 2 1 x x g (Figure 1) and plane 0  g . In Figure 2, the safe ( S ) and failure ( F ) domains of the system are also shown. 

Assumptions

As already discussed in Section 1, the uncertainty affecting input j X , 2 , 1  j , with j X being fixed at some value

  10 , 10 ˆ  j x
, is here modeled by considering j X to be ranging in the interval ] , [

j j j j x x x x    
. For the sake of simplicity and without loss of generality, Furthermore, the step length h is set equal to its maximum allowed value (Section 2) that is 0.5 in this case (for example, if j X represents the mass flow rate through the SG safety valves, h is the increase or decrease in j X resulting from regulating the valves operating position).

Results

The methodological steps illustrated in Section 3.2 have been applied to five different initial nominal positions of the system 

) ( 0  x , 5 , , 2 , 1    , in S .
   N x . x 0,1 (ς) x 0,2 (ς) x Nς-1,1 (ς) x Nς-1,2 (ς)
1   N ).
From Table 1, one can read that ) 5 . 0 , 0 . 0 ( ) 3 ( 1) 2 ( 1)

1 ( 1 3 2 1       N N N x x x and
). 0 . 10 , 0 . 9 (

) 5 ( 1 ) 4 ( 1 5 4     N N x x
Indeed, depending on the initial nominal state of the system

) ( 0  x , ) ( 1    N x is either ) 5 . 0 , 0 . 0 (    P or ) 0 . 10 , 0 . 9 (   P , as ) 625 . 0 , 118 . 0 (    Q
and  P are two local minima of function g (see Figure 1).

As an example, Figure 3 shows the optimal sequence For the sake of completeness, in Figure 5 These results can be usefully compared with those obtained in [START_REF] Maio | [END_REF] for the same analytical case study of Eq. ( 11). However, it should be honestly pointed out that these two works rest on two different rationales: i. in [START_REF] Maio | [END_REF], the objective is to identify the farthest system state * x from the failure boundary F  , regardless of the system working conditions when the accident scenario F E is triggered. Since * x is the farthest from F  , it is also considered the optimal position for the system, i.e., the one where the final failure event is less likely to occur;

ii. in this work, the initial abnormal state of the system 0 X is of paramount importance, as it is required to assess the feasibility of "escaping away" from failure starting from it. Indeed, the proposed ES evaluates where the system should go step-by-step in the input space depending on the behavior of function G , which is representative of the system safety margin.

In [START_REF] Maio | [END_REF], the only non-controllable variable y  (i.e., the system safety threshold) is assumed to be normally distributed on the range [-500,2500], with mean where the risk-prone and risk-averse conditions are defined as the 80-th and 20-th percentiles of a population of safest operating conditions computed for different values of y  , respectively.

In this case study, y  is supposed to be known and set equal to 125. As Table 1 and Figure 5 show, for [START_REF] Maio | [END_REF]. This is due to the different criterion adopted in determining x is identified as the input variables setting for which the system is best sheltered against failures, whereas, in this work we provide the plant operator with instructions on how to change step by step the abnormal variables from the setting 0

x to a normal state 1   N x
, which may (or may not) correspond to *

x (that might not be realistic to reach for some accident scenarios 

PRESSURIZER CASE STUDY

Pressurizer Model Description

The pressurizer of a PWR NPP, whose scheme is shown in Fig. 6, has been simulated through a Matlab SIMULINK model that is here taken as the TH model of the component [Baraldi et al., 2013]. The developed TH model is based on the application of the mass and energy conservation equations to the two regions of vapor and liquid. The exchanges between the two regions, due to evaporation of the liquid and condensation of the gas, have been taken into account [Kuridan et al., 1998[START_REF] Todreas | [END_REF]. The system of non-linear differential equations describing the TH model is detailed in [Baraldi et al., 2010]. Let us assume the safety-relevant response Y of the system to be the pressure reached within the pressurizer when two controllable variables X1 and X2 (i.e., sprayers mass flow rate and heaters power, respectively) are the levels under control of the operators to counteract any developing surge line flow rate excursion scenario. To estimate g, a data set has been built in order to represent a realistic situation simulating 100 surge line transients, whose initial conditions have been taken to represent the realistic situation of a standard PWR pressurizer, (Table 2), whereas the surge mass flow rate excursion has been randomly sampled from the uniform distribution in the range [-10,10] 

The safety threshold γy is set equal to 155 bar and the resulting limit-state function G is given in Eq. ( 16).

𝐺(𝑋 1 , 𝑋 2 ) = 𝑌(𝑋 1 , 𝑋 2 ) -𝛾 𝑦 = 5.6 -11.2𝑋 1 + 10 -2 𝑋 2 + 2.5 • 𝑋 1 2 + 2.9 • 10 -3 𝑋 1 𝑋 2 -0.1 • 𝑋 1 3 (16)
In Figures 7 and8, the limit-state function G (continuous grid) and the system failure boundary 𝜕𝐹 (solid line) are shown as functions of variables X1 and X2. In Figure 8, the safe (S) and failure (F) domains are also shown. 

Assumptions

The uncertainty affecting the input Xj, j = 1,2, is here modelled considering Xj to be ranging in The step length h is set equal to its maximum allowed value (Section 2) for each one of the variables, i.e. h1 = 0.78 kg/s and h2 = 35.6 kW (with j X representing the mass flow rate through the sprayers of the pressurizer and the power of its heaters respectively, j h is the increase or decrease in j X resulting from regulating the two different systems under operator's control).

Results

The methodological steps have been applied to three different initial nominal positions of the system 𝑥̅ 0 (𝜍) , ς = 1, 2, 3, that belong to S and are close to 𝜕𝐹.

The ES has been applied to these initial positions and the final system nominal states 𝑥̅ 𝑁 𝜍 -1 (𝜍)

have been obtained as shown in Table 4, where Nς+1 is the number of iterations needed to reach 𝜍) ) and final (𝑥̅ 𝑁 𝜍 -1 (𝜍) ) states of the system in S, and number of performed iterations (Nς+1)

𝑥̅ 𝑁 𝜍 -1 (𝜍) . ς Initial nominal states 𝑥̅ 0 (𝜍) Final nominal states 𝑥̅ 𝑁 𝜍 -1 (𝜍) Nς+1 𝑥̅ 0,1 (𝜍) 𝑥̅ 0,2 (𝜍) 𝑥̅ 𝑁 𝜍 -1,1 (𝜍) 𝑥̅ 𝑁 𝜍 -1,2 ( 
At each step, the algorithm identifies the direction X1 or X2 along which the function G mostly decreases, leading the system into a new state where gp is lower. The algorithm automatically stops in the state in which the minimum value of gp is found.

From Table 4, it can be seen that, irrespective of the initial nominal state, the ES leads the operator to the same final state 𝑥̅ 𝑁 𝜍 -1 (𝜍) ≡ (3.89,0) ≡ 𝑃 𝜗 , which corresponds to a local minima of the limit-state function G.

Without loss of generality, Table 5 shows the sequence of optimal nominal states for ς = 3, in which the final number of iterations is N3+1=13. In Figure 9, it is noteworthy comparing the pressure transient arising from the ES with the one deriving from the application of a PID control system, when the same in-surge accident scenario occurs (e.g., a total water mass entering in the pressurizer from the primary system of 1466 kg, with flow rate of 9 kg/s). In the first phase of the transient (up to 30 s), the PID system shows a constant pressure of 150 bar, while the ES produces a drop of 0.5 bar. The reason is that the safest position is 147.9 bar, as it can be seen from the data at the end of the transient; thus, the ES works to reach this condition.

At t = 30 s, the in-surge accident takes place and it is possible to notice a rise in pressure in both transients, steeper for the PID controller. But the main observation is that in the PID transient the pressure overcomes the failure boundary of 155 bar, whereas the ES manages to keep the pressure well below the failure boundary for the entire duration of the in-surge accident scenario. Lastly, as the accident scenario is recovered, the actions driven by the ES lead to a reduction in pressure, till it reaches its safest optimal working level of 147.9 bar. Finally, it is worth mentioning that the capability of the proposed ES in providing the plant operator with a live, effective and unequivocal AOP to keep the safety margins and avoid system failure only depends on the computational demand of the TH code utilized, and not on the ES algorithm itself: more complex simulation codes, that may become computationally intensive, may challenge the practical scalability of the proposed procedure and endanger the live guidance feature offered by the ES, despite that these could still be utilized for an off-line design of accurate, effective and unequivocal AOPs.

CONCLUSIONS

In this work, an ES based on regional sensitivity indices (i.e., the Revised Variance Ratio Functions) has been proposed for improving the safety margin of a system when an IE occurs during operation. A RSA is performed to define the strategy for keeping under control the uncertainty affecting the controllable input variables. Such uncertainty has been modeled by centering the nominal value of the input variable on a reduced range of its domain. The ES successfully achieves the stepwise maximization of the system safety margin by acting on the model controllable inputs. The proposed approach has been proved effective on an analytical case study, which mimics the response of a NPP to an accident scenario, and on a case study of a pressurizer exposed to an accidental surge line transient.
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 1 Figure 1: limit-state surface G and failure boundary F  of the analytical model m considered.
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 6 Fig. 6: Scheme of a PWR NPP pressurizer.
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 7 Figure 7: limit-state function G and failure boundary F  of the pressurizer model m.
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 8 Figure 8: failure boundary F  of the pressurizer model m represented in the input space ] 320 , 0 [ ] 7 , 0 [  .
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 9 Figure 9: Pressure transient in an in-surge accident scenario using the ES (dashed line) and the PID controller (thick solid line) to control the system. The failure boundary is represented by the horizontal thin line.

  with the largest

	X		:	* ,   HV		  { max , 1 q j HV 	* ,  j	}	that, once "perturbed", generates the largest change in	G ;
	3. it computes two realizations   g and   g of function	G in   x and   x , respectively,
	where:								
			i.		(	, 1	,	2	,	,	,	,	,	,	)

* j HV value (i.e.,

Table 1 :

 1 initial (

	) x ) and final ( ( 0 	)   1  N ( x ) nominal states of the system in S , and number of performed
		iterations (

  kg/s.

		Initial condition
	Level	7.221 m
	Liquid temperature 342.1 °C
	Vapor temperature 342.3 °C
	Pressure	150.0 bar

Table 2 :

 2 Initial conditions of the pressurizer.If 𝑋 1 ∈ [0,7] kg/s is distributed like a N~(3.5, 2.4) and 𝑋 2 ∈ [0,320] kW is distributed like a N~ (160,107.650), the resulting Y fitted to the available dataset is equal to Eq. (15).

	𝑌 = 𝑚(𝑋 1 , 𝑋 2 ) = 160.6 -11.2𝑋 1 + 10 -2 𝑋 2 + 2.5 • 𝑋 1 2 + 2.9 • 10 -3 𝑋 1 𝑋 2 -0.1 • 𝑋 1 3

  the interval [𝑥 𝑗 ̂-∆𝑥 𝑗 , 𝑥 𝑗 ̂+ ∆𝑥 𝑗 ]. The ∆𝑥 𝑗 values to be used in what follows are listed in Table

	3.
	j aj bj NI Δxj
	1 0 7 18 0.39
	2 0 320 18 17.8

Table 3 :

 3 Values of Δxj. 

Table 4 :

 4 initial (𝑥̅ 0 (

Table 5 :

 5 sequence of system optimal nominal states

	p 𝑥̅ 1 (3) 𝑥̅ 2 (3)
	1 1.56 320
	2 2.33 320
	3 3.11 320
	4 3.89 320