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Abstract 

Thermal-Hydraulic (TH) codes are used to simulate the response of nuclear safety systems under transient and 

accident conditions. The outcomes of the simulations are used to verify the safety margins required for safe 

operation and make decisions on how to maintain them. 

In this work, a novel Expert System (ES) based on Regional Sensitivity Analysis (RSA) is developed to guide a 

system undergoing an accident scenario towards the safest conditions in the optimal number of operation. The 

ES proceeds by firstly identifying the (uncertain) system controllable variables (i.e., control rods position, feed-

water flow rate, void fraction inside the steam generator, etc.) that most affect the system response by RSA; then, 

the limit-state function is calibrated on a dataset of outcomes of TH code runs and the system failure boundary 

(i.e., the limit surface) is defined on the set of (uncertain) TH input variables. 

Application of the ES is firstly shown with respect to an analytical case study that artificially simulates the 

response of a NPP to an accident scenario and, then, to a practical case study concerning the response of the 

pressurizer of a Pressurized Water Reactor (PWR). 

 

Keywords: Nuclear System, Expert System, Best-Estimate Thermal-Hydraulic Code, Safety Margins, Limit-State 

Function, Regional Sensitivity Analysis, Pressurizer. 

 

1. INTRODUCTION 

Safety remains a priority for Nuclear Power Plants (NPPs) design and operation, as the release 

of radioactive material can result in catastrophic consequences in terms of casualties, 

environmental pollution and financial losses [Hsieh et al., 2012]. For the safety of NPPs, 

accident-preventive design and operation, and effective consequence mitigation plans are 

developed [Ma et al., 2011]. In practice, Emergency Operating Procedures (EOPs) are defined 

to provide the technical basis for suitable operator response to Design Basis Accidents (DBAs) 

and, nowadays also, Beyond Design Basis Accidents (BDBAs) [IAEA, 2006]. 

Fault Detection and Diagnosis (FDD) methods have been developed for detecting different 

types of faults and supervising the plant behavior for accident prevention [Ma et al., 2011; Park 

et al., 2015; IAEA, 2000; IAEA, 2004; IAEA, 2005]. Upon localization and isolation, under 

certain abnormal conditions, manual actions are conducted by the plant operators for restoring 
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normal operating conditions [Hsieh et al., 2012; Park et al., 2015]. For this, Abnormal 

Operating Procedures (AOPs) are provided, where the sequence of actions to undertake are 

given for different Initiating Events (IEs). 

Two practical issues are: 

 

i. it is difficult to ensure sufficient coverage of all possible IEs through AOPs, as they are 

developed based on historical data and there may exist significant IEs that have not yet 

been experienced [Park et al., 2015]; 

ii. human errors may occur during abnormal situations and incorrect AOPs may, then, be 

followed [Hsieh et al., 2012]. 

 

In abnormal situations, time is critical, and the amount of information and data to be examined 

is large. Decision Support Systems (DSSs) can aid the operators and reduce the possibility of 

errors [Ma et al., 2011; Hsieh et al., 2012; Park et al., 2015]. Examples of DSSs are: the Alarm 

and Diagnosis-Integrated Operator Support (ADIOS) system that attempts to avoid that too 

many alarms influence the operators judgement in a wrong way [Kim et al., 2001]; the Hidden 

Markov Model (HMM) for recognizing accidents in NPPs, proposed in [Kwon et al., 1999]; 

the Fault Diagnosis Advisory System (FDAS), based on dynamic neural networks [Lee et al., 

2007]; the Dynamic System Doctor (DSD), a system-independent interactive software for on-

line state/parameter estimation in dynamic system [Aldemir et al., 2001]; the Analysis of 

Dynamic Accident Progression Trees (ADAPT) methodology [Hakobyan et al, 2008]; the 

unsupervised clustering technique for NPP components fault diagnosis, based on Haar Wavelet 

Transform (HWT) and Fuzzy C-Means (FCM) algorithm, in [Baraldi et al., 2013]; the hybrid 

approach for balancing false and missed alarms, based on Correlation Analysis (CA), Genetic 

Algorithms (GAs) and Sequential Probability Ratio Tests (SPRTs) in [Di Maio et al., 2013]; 

the non-parametric decision strategy in [Al-Dahidi et al., 2014] to detect whether NPP 

components are in abnormal conditions, using Prediction Intervals (PIs) and Auto-Associative 

Kernel Regression (AAKR) [Hines et al., 1998]. However, there is no guarantee of 

improvement in the operators’ performance and sometimes the result could be the increase of 

operator workload, with negative implications on performance [Yoshikawa 2005; Kim et al., 

2007; Hsieh et al., 2012]. 

In this paper, we propose an Expert System (ES) [McBride et al., 1993; Liao, 2005; Ikram et 

al., 2015] for operator aid, based on the system response outcomes obtained from a Thermal-

Hydraulic (TH) code and Regional Sensitivity Analysis [Wei et al., 2014]. The TH code 
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reproduces the system physical behavior according to a mathematical model m  that receives 

an input vector nx   (comprised of n  input variables) and generates the system response 

vector )(xmy  , containing (at least) one safety parameter y . The input variables set n  can 

be partitioned into two subsets: one with controllable variables ( q ), i.e. the levers under 

control of the plant operator, which can be manipulated to increase plant safety (e.g., reactor 

control rods position, rate of feed-water flow through the plant primary loops, accumulator 

water temperature and pressure, repair times, etc.), and the other one with non-controllable 

variables ( qn ) [Di Maio et al., 2016].  In practice, the inputs x  are uncertain [Apostolakis, 

1990; Helton, 1996; Oberkampf et al., 2004]. 

With reference to scenario FE , for which the response of interest Y  must be lower than a 

threshold 
yγ  (imposed by regulation), the limit-state function G  is defined as [Bourinet et al., 

2011]: 

 

 yXYXG  )()(  (1) 

 

The input space can be split into a failure domain }0)(:{  XGXF  and a safe domain 

}0)(:{  XGXS . The system failure boundary (limit surface) }0)(:{  XGXF , which 

separates S  from F , can be projected onto an input controllable subset ( q ) [Di Maio et al., 

2016], which contains the controllable variables 
qXXX ,,, 21   that can be varied to increase 

the system safety margin )(XYγ y   [Zio et al., 2010]. 

While the system is operating in its nominal state ex  (usually assumed equal to the expected 

values ][XE of the input variables X ), the safety parameter )( ee xmy   falls well below the 

safety threshold 
yγ , providing a margin of safety with respect to uncertainties in the model 

[Zio et al., 2008]. In abnormal conditions, the safety margin may decrease and this needs to be 

kept under control in order to avoid diverging to catastrophic accidents. 

An additional difficulty in the problem is due to the fact that any generic controllable input 

variable 
jX , qj ,,2,1  , can be affected by epistemic and/or aleatory uncertainty. In this 

paper, this uncertainty is modeled by considering that when 
jX  is set equal to jx̂ , the input 

variable actually ranges between 
jj xx ˆ  and 

jj xx ˆ  according to the modified Probability 

Density Function (PDF): 



4 

 

 

 
)ˆ()ˆ(

)(
)(*

jjXjjX

jX

jX
xxFxxF

xt
xf

jj

j

j 
 , ]ˆ,ˆ[ jjjjj xxxxx   (2) 

 

where )( jX xt
j

 is the truncated PDF of jX  over range ]ˆ,ˆ[ jjjj xxxx  : 
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Coherently, the system (uncertain) initial state is: 

 

 ][][][ 0,0,20,220,210,110,10 qqqq x,xxxx,xxxx,xxxX    (4) 

 

In this paper, we present the development of an Expert System (ES) for maximizing the safety 

margin by exploiting the results of a Regional Sensitivity Analysis (RSA) to guide the search 

for the range (or state of the system X ) closest to 
0X , where ])([ XG  is the smallest. 

In detail, the ES proposed in this paper is based on the Revised Ratio Functions (RRFs) [Wei 

et al., 2014]) that measure the impact on the mean (Revised Mean Ratio Function, HM ) and 

variance (Revised Variance Ratio Function, HV ) of the model output distribution due to the 

reduction in the range of variability of an individual input. For our purposes, the effect on the 

variance is of particular interest and it is here exploited to find which input controllable variable 

allows obtaining the largest decrease in G  (i.e., the largest increase in the expected safety 

margin) when the system is in its current abnormal state X . 

Assuming that the system is operating at X  and that range ]ˆˆ[ jjjj xx,xx  , ,,,2,1 qj   

is reduced to jx̂ , the expected value ( ) and variance (Var ) of G  are, respectively: 
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The original RSA technique defines 
jHV  of input 

jX , qj ,,2,1  , as the ratio between the 

residual variance ]ˆ|[ jxGVar  with respect to the residual mean ]ˆ|[ jxG , and the full variance 

 GVar  [Wei et al., 2014]: 
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where: 
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As Eq. (7) shows, 
jHV  indicates the actual reduction of the model output variance due to the 

restriction of the range of 
jX . The larger 

jHV  is, the more function G  varies (i.e., decreases 

or increases) for a perturbation of the other inputs X  ( j ). Therefore, we define the 

revised *

jHV  as the ratio between the variance of G , computed over the range 

]ˆˆ[ jjjj xx,xx  , qj ,,2,1  , and the reduced range ( x̂ ) of each of the other inputs ,X  

q,,2,1  , ,j  and the full variance  GVar . It is clear that the larger *

jHV  is, the more 

function G  varies and, thus, a larger increase in the system safety margins can be achieved 

through a perturbation of the j-th input. 

Through the approach described, we aim at providing the plant operator with an effective and 

unequivocal AOP to keep the safety margins and avoid system failure, giving clear indications 

of which controllable variables to modify and by how much, when an IE has occurred. 

The rest of the paper is organized as follows. Section 2 illustrates the proposed approach. 

Section 3 shows an application of the approach to an analytical case study that artificially 
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simulates the response of a NPP to an accident scenario. Section 4 contains the application of 

the approach to the pressurizer of a Pressurized Water Reactor (PWR). Conclusions are given 

in Section 5. 

 

2. AN EXPERT SYSTEM FOR THE MAXIMIZATION OF SAFETY 

MARGINS DURING SYSTEM OPERATION 

 

For the sake of clarity, but without loss of generality, in this work the non-controllable input 

variables (i.e., 
nqq XXX ,,, 21 
) are considered to be fixed at some known values (i.e., 

nqq xxx ~,,~,~
21 

) and )(XG  is, consequently, a function of the controllable inputs only (i.e., 

qXXX ,,, 21  ). 

Given a current abnormal state of the system X , the most effective way to “escape” from it 

and reach safer conditions is to “perturb” the χ-th controllable variable X ,  q,1 , that is 

associated to the larger *

jHV  value, nj ,,2,1  , in order to attain the largest possible variation 

of )(XG  (i.e., of the safety margin) by adding or subtracting a constant h  to its nominal value 

jx̂ . When a perturbation of X  does not result in a reduction of  )(XG  (i.e., the expected 

safety margin value), it is considered that the system has reached normal conditions. 

Based on these knowledge rules, the ES algorithm performs the following four steps at each υ-

th iteration of safety margins control, N,,1,0   (where 1N  is the final number of 

iterations): 

 

1. it computes: 

i. the realization )(  xgg   of G  when the system is in its current nominal state 

),,,( ,,2,1  qxxxx  ; 

ii. the expected value  )(XG  over the range of input uncertainty, representing the 

system actual state 

     qqqq x,xxxx,xxxx,xxxX   ,,2,22,21,11,1  ; 

iii. *

jHV  of each input 
jX , qj ,,2,1  , over its own range  

 jjjj,j, xxxxX   ,, , with the initial ranges of all the other inputs X  

reduced to 
 ,,,2,1 ,,,,, qxxxx   ( q,,2,1  , j ). 
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2. it identifies the input variable 
X ,  q,1 , with the largest *

jHV  value (i.e., 

 
}{max: *

,
,1

*

,  j
qj

HVHVX


  that, once “perturbed”, generates the largest change in G ; 

3. it computes two realizations 

g  and 

g  of function G in 

x  and 

x , respectively, 

where: 

i. ),,,,,( ,,2,1  qxhxxxx   ; 

ii. ),,,,,( ,,2,1  qxhxxxx   ; 

iii. h  is the distance between the current system nominal state x  and the one that 

follows 1x  (see below and Section 3 for further details). 

4. it checks the following statements: 

i. if 
 gg ˆˆ   and ])([])([  XGXG   , then 

   xx 1
; 

ii. otherwise, if 
 gg ˆˆ   and ])([])([  XGXG   , then 

   xx 1
. 

In other words, once the (χ-th) direction along which the largest change in G  can be 

achieved is found (as in Step 3), Step 4 looks for the system nominal state that results 

in a decrease in G  between 

x  and 

x  and it finally checks that ])([ XG  is actually 

decreasing. 

 The algorithm stops when neither one of the two above statements is verified because 

])([])([  XGXG    and ])([])([  XGXG   , which means that moving the 

system from its nominal current state x  to 

x  or to 

x  would not result in a decrease 

of ])([ XG . 

 

As it can be seen, the algorithm identifies a sequence of nominal states  
1,,2,1}{  Nppx   in S , 

obtained by shifting at each step υ the system nominal state x   of a length h  in the direction 

of the input variable (
X , ],1[ q ) that allows the largest reduction of  )(XGE  (computed 

as in Step 1 Point iii). 

The choice of the step length h  is a delicate task, because of two reasons: 

 

1. the shorter h  is, the more accurate is the final nominal state 1Nx , but the larger is the 

number of iterations N  that the algorithm needs to perform to get to a final solution; 
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2. *

,jHV  is computed at the υ-th step of the algorithm for each j-th input variable over the 

range ],[ , jjjj,j, xxxxRG  
, whose length equals x2 ; it is, then, suggested 

that xh   because at step υ  there is no information on the behavior of function g

outside range 
j,RG . 

 

As ),,,( 21 qxxxg   is generally a complex function of 
qxxx ,,, 21  , the integrals in Eq. (7) 

are very complicated and cannot be solved analytically. Conversely, numerical techniques such 

as Monte Carlo integration [Zio, 2013], can allow approximating such integrals and computing 

])([ XGE  and 
,jHV  in a reasonable time at each υ-th iteration of the algorithm. 

In all generality, if we are trying to estimate the integral I  of a function )(xvv   over an 

integration domain 
n  (i.e., xdxvI 



 )( ), where 
nx  , and a PDF )(xf

X
 can be 

defined over  , then I  is equivalent to [Zio, 2013]: 
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where 

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



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 is the expected value of the ratio 

)(

)(

xf

xv
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random variable distributed according to )(xf
X

. Eq. (10) is true for any PDF )(xf
X

 on  , as 

long as 0)( xf
X

 whenever 0)( xv .  

The value of 

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xf
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X

, ii) computing the ratio 
)(
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c
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c
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 for each 

sample and iii) finding the average 
SNI  of these values: 
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According to the law of large numbers, as more and more samples are taken the Monte Carlo 

estimator 
SNI  is guaranteed to converge to I , with a standard deviation that decreases as a 

function of the number of samples SN , by a rate of SN  [Rubinstein, 1981; Kalos et al., 

2008; Zio, 2013]. In this work, the pseudo-random samples 
)(cx  are generated from the 

uniform distribution )(xu
X

, x , according to the algorithm originally proposed by von 

Neumann [Zio, 2013]. 

 

3. ANALYTICAL CASE STUDY 

 

3.1 Analytical Model Description 

 

Let us assume that the safety-significant response variable Y  of the system is given by an 

analytical function m  of two controllable inputs 1X  and 2X  as: 

 

 
3

2

2

21

2

121 )1()2()3(8),(  XXXXXXmY  (12) 

 

where  10,101 X  and  10,102 X  are random variables (such as, reactor control rods 

position, reactor coolant mass flow rate, steam generator feed-water mass flow rate, surge line 

mass flow rate, etc. [Cammi et al., 2006; Baraldi et al., 2013; Di Maio et al., 2015]), obeying 

two independent normal distributions )4,2(1N  and )25.6,0(2N , respectively. 

The safety threshold limit to be applied to Y  is 125yγ  and the resulting limit-state function 

of the system is [Bourinet et al., 2011; Zio et al., 2008]: 

 

 125)1()2()3(8),(),( 3

2

2

21

2

12121  XXXXγXXYXXG y  (13) 

 

In Figures 1 and 2, the limit-state function G  (continuous grid) and the system failure boundary  

F  (solid line) are shown as functions of variables 1X  and 2X . According to the definition 

of failure boundary given in Section 1, in this simplified case, F  (Figures 1 and 2) can be 

easily found by the intersection between surface ),( 21 xxg  (Figure 1) and plane 0g . In Figure 

2, the safe ( S ) and failure ( F ) domains of the system are also shown. 
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Figure 1: limit-state surface G  and failure boundary F  of the analytical model m  considered. 

 

 

Figure 2: failure boundary F  of the analytical model m  represented in the input space ]10,10[]10,10[  . 

 

3.2 Assumptions 

 

As already discussed in Section 1, the uncertainty affecting input 
jX , 2,1j , with 

jX  being 

fixed at some value  10,10ˆ jx , is here modeled by considering 
jX  to be ranging in the 

interval ]ˆ,ˆ[ jjjj xxxx  . For the sake of simplicity and without loss of generality, 
jx  is 

independent of 
jx~  and it is computed as follows, for both 1X  and 2X : 
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 5.0

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I

jj

j
N

ab
x , 2,1j  (14) 

 

where 10ja  and 10jb  are the lower and upper bounds of the domain ],[ jj ba  of input 

jX , respectively, while 20IN  is an arbitrary number of subintervals in which ],[ jj ba  is 

partitioned. In a real case, the magnitude of 
jx  would depend on the actual variability of 

jX  

and represents the confidence on how close 
jX  actually is to its nominal value 

jx̂  (for 

instance, 
jX  may describe the mass flow rate removed from the Steam Generator (SG) of a 

NPP by a set of safety valves during a “swell and shrink” accident [Di Maio et al., 2015], with 

jx̂  and 
jx   equal to 25 [kg/s] and 5 [kg/s], respectively). 

Furthermore, the step length h  is set equal to its maximum allowed value (Section 2) that is 

0.5 in this case (for example, if 
jX  represents the mass flow rate through the SG safety valves, 

h  is the increase or decrease in 
jX  resulting from regulating the valves operating position). 

 

3.3 Results 

 

The methodological steps illustrated in Section 3.2 have been applied to five different initial 

nominal positions of the system  )(

0

x , 5,,2,1  , in S . After applying on each )(

0

x  the set 

of rules that constitutes the ES detailed in Section 2, five final nominal positions 
)(

1



 Nx  have 

been obtained as reported in Table 1, where 1N  is the final number of iterations needed to 

identify 
)(

1



 Nx . 

 

x 0,1
(ς)

x 0,2
(ς)

x Nς-1,1
(ς)

x Nς-1,2
(ς)

1 -3.0 -2.0 0.0 -0.5 11

2 3.0 -2.0 0.0 -0.5 11

3 0.0 3.0 0.0 -0.5 15

4 8.0 6.0 9.0 10.0 12

5 0.0 6.0 9.0 10.0 28

N ς+1

Initial nominal states

x 0
(ς)

ς

Final nominal states

x Nς-1
(ς)
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Table 1: initial ( )(

0

x ) and final (
)(

1



 Nx ) nominal states of the system in S , and number of performed 

iterations ( 1N ). 

 

From Table 1, one can read that )5.0,0.0()3(

1

)2(

1

)1(

1 321
  NNN xxx  and ).0.10,0.9()5(

1

)4(

1 54
  NN xx  

Indeed, depending on the initial nominal state of the system )(

0

x , 
)(

1



 Nx  is either 

)5.0,0.0( P  or )0.10,0.9(P , as )625.0,118.0( Q  and 
P   are two local minima of 

function g  (see Figure 1). 

As an example, Figure 3 shows the optimal sequence 1,,2,1

)( }{  


Nppx   of the system nominal 

states computed for 1 , where the system initial nominal position is )2,3()1(

0 x  and the 

total number of iterations is 1111 N . 

To explain in more detail, Figure 4 illustrates each computed system state )(
px , 9,,2,1 p , 

coupled with its corresponding realization )( )1(

pp xgg   of function G . As can be noticed, at 

each step the algorithm successfully identifies the direction along which function G  varies the 

most between the 1X  and 2X  axes; then, it brings the system into a new optimal state, where 

pg  is lower; finally, the algorithm stops when ])([ pXG  cannot be reduced any further and 

the system is ultimately located in position )5.0,0.0( P . 
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Figure 3: sequence of system optimal nominal states 1,,2,1

)( }{  


Nppx   for 1 . 

 

Figure 4: sequence of system optimal nominal states 1,,2,1

)( }{  


Nppx   coupled with the corresponding 

realizations 1,,2,1

)( )}({ 




Nppp xgg  . 

 

For the sake of completeness, in Figure 5 the entire sequence of optimal nominal states of the 

system 1,21

)( }{ 


…,N,p=px  is illustrated for 5,,2,1  . 

 

Figure 5: sequences of system optimal nominal states 1,21

)( }{ 


…,N,p=px  computed for 5,,2,1  . 
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These results can be usefully compared with those obtained in [Di Maio et al., 2016] for the 

same analytical case study of Eq. (11). However, it should be honestly pointed out that these 

two works rest on two different rationales: 

 

i. in [Di Maio et al., 2016], the objective is to identify the farthest system state 
*x  from 

the failure boundary F , regardless of the system working conditions when the 

accident scenario FE  is triggered. Since 
*x  is the farthest from F , it is also 

considered the optimal position for the system, i.e., the one where the final failure event 

is less likely to occur; 

ii. in this work, the initial abnormal state of the system 
0X  is of paramount importance, 

as it is required to assess the feasibility of “escaping away” from failure starting from 

it. Indeed, the proposed ES evaluates where the system should go step-by-step in the 

input space depending on the behavior of function G , which is representative of the 

system safety margin. 

 

In [Di Maio et al., 2016], the only non-controllable variable 
y  (i.e., the system safety 

threshold) is assumed to be normally distributed on the range [−500,2500], with mean 

500y
  and variance 25002 y

 . Based on the randomness of variable 
y , various safest 

operating conditions (i.e., states) ),( *

2

*

1

* xxx   are recommended for the system, depending on 

the operator risk attitude: 

 

i. risk-averse: )00.10,63.4(* x ; 

ii. risk-prone: )00.10,00.8(* x ; 

iii. mean: )95.9,91.5(* x ; 

iv. median: )00.10,25.4(* x . 

 

where the risk-prone and risk-averse conditions are defined as the 80-th and 20-th percentiles 

of a population of safest operating conditions computed for different values of 
y , respectively. 
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In this case study, 
y  is supposed to be known and set equal to 125. As Table 1 and Figure 5 

show, for 3,2,1  the final optimal nominal state 
)(

1



 Nx  of the system (i.e., )5.0,0.0( P ) 

is far from all the solutions 
*x  of [Di Maio et al., 2016]. This is due to the different criterion 

adopted in determining 1,21

)( }{ 


…,N,p=px  and ),( *

2

*

1

* xxx  : in [Di Maio et al., 2016] the 

(possibly unreachable) safest state 
*x  is identified as the input variables setting for which the 

system is best sheltered against failures, whereas, in this work we provide the plant operator 

with instructions on how to change step by step the abnormal variables from the setting 0x  to 

a normal state 1Nx , which may (or may not) correspond to 
*x  (that might not be realistic to 

reach for some accident scenarios FE ), depending on the actual behavior of function G . 

 

4. PRESSURIZER CASE STUDY 

 

4.1 Pressurizer Model Description 

 

The pressurizer of a PWR NPP, whose scheme is shown in Fig. 6, has been simulated through 

a Matlab SIMULINK model that is here taken as the TH model of the component [Baraldi et 

al., 2013]. The developed TH model is based on the application of the mass and energy 

conservation equations to the two regions of vapor and liquid. The exchanges between the two 

regions, due to evaporation of the liquid and condensation of the gas, have been taken into 

account [Kuridan et al., 1998, Todreas et al., 1990]. The system of non-linear differential 

equations describing the TH model is detailed in [Baraldi et al., 2010].  
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Fig. 6: Scheme of a PWR NPP pressurizer. 

 

Let us assume the safety-relevant response Y of the system to be the pressure reached within 

the pressurizer when two controllable variables X1 and X2 (i.e., sprayers mass flow rate and 

heaters power, respectively) are the levels under control of the operators to counteract any 

developing surge line flow rate excursion scenario. To estimate g, a data set has been built in 

order to represent a realistic situation simulating 100 surge line transients, whose initial 

conditions have been taken to represent the realistic situation of a standard PWR pressurizer, 

(Table 2), whereas the surge mass flow rate excursion has been randomly sampled from the 

uniform distribution in the range [-10,10] kg/s.  

 

 Initial condition 

Level 7.221 m 

Liquid temperature 342.1 °C 

Vapor temperature 342.3 °C 

Pressure 150.0 bar 

 

Table 2: Initial conditions of the pressurizer. 
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If 𝑋1 ∈ [0,7] kg/s is distributed like a N~(3.5, 2.4) and 𝑋2 ∈ [0,320] kW is distributed like a 

N~ (160,107.650), the resulting Y fitted to the available dataset is equal to Eq. (15). 

 

𝑌 = 𝑚(𝑋1, 𝑋2) = 160.6 − 11.2𝑋1 + 10−2𝑋2 + 2.5 · 𝑋1
2 + 2.9 · 10−3𝑋1𝑋2 − 0.1 · 𝑋1

3 (15) 

 

The safety threshold γy is set equal to 155 bar and the resulting limit-state function G is given 

in Eq. (16). 

 

𝐺(𝑋1, 𝑋2) = 𝑌(𝑋1, 𝑋2) − 𝛾𝑦 = 5.6 − 11.2𝑋1 + 10−2𝑋2 + 2.5 · 𝑋1
2 + 2.9 · 10−3𝑋1𝑋2 − 0.1 ·

𝑋1
3 (16) 

 

In Figures 7 and 8, the limit-state function G (continuous grid) and the system failure boundary 

𝜕𝐹 (solid line) are shown as functions of variables X1 and X2. In Figure 8, the safe (S) and 

failure (F) domains are also shown. 

 

 

Figure 7: limit-state function G  and failure boundary F  of the pressurizer model m. 
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Figure 8: failure boundary F  of the pressurizer model m represented in the input space ]320,0[]7,0[  . 

  

 

4.2 Assumptions 

 

The uncertainty affecting the input Xj, j = 1,2, is here modelled considering Xj to be ranging in 

the interval [𝑥𝑗̂ − ∆𝑥𝑗 , 𝑥𝑗̂ + ∆𝑥𝑗]. The ∆𝑥𝑗 values to be used in what follows are listed in Table 

3. 

 

j aj bj NI Δxj 

1 0 7 18 0.39 

2 0 320 18 17.8 

 

 Table 3: Values of Δxj.  

 

The step length h  is set equal to its maximum allowed value (Section 2) for each one of the 

variables, i.e. h1 = 0.78 kg/s and h2 = 35.6 kW (with 
jX  representing the mass flow rate through 
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the sprayers of the pressurizer and the power of its heaters respectively, jh  is the increase or 

decrease in 
jX  resulting from regulating the two different systems under operator’s control). 

 

4.4 Results 

 

The methodological steps have been applied to three different initial nominal positions of the 

system 𝑥̅0
(𝜍)

, ς = 1, 2, 3, that belong to S and are close to 𝜕𝐹. 

The ES has been applied to these initial positions and the final system nominal states 𝑥̅𝑁𝜍−1
(𝜍)

 

have been obtained as shown in Table 4, where Nς+1 is the number of iterations needed to reach 

𝑥̅𝑁𝜍−1
(𝜍)

. 

 

ς 

Initial nominal states 

𝑥̅0
(𝜍)

 

Final nominal states 

𝑥̅𝑁𝜍−1
(𝜍)

 Nς+1 

𝑥̅0,1
(𝜍)

 𝑥̅0,2
(𝜍)

 𝑥̅𝑁𝜍−1,1
(𝜍)

 𝑥̅𝑁𝜍−1,2
(𝜍)

 

1 0.79 0 3.89 0 5 

2 0.79 35.6 3.89 0 6 

3 1.56 320 3.89 0 13 

 

Table 4: initial (𝑥̅0
(𝜍)

) and final (𝑥̅𝑁𝜍−1
(𝜍)

) states of the system in S, and number of performed iterations (Nς+1) 

 

At each step, the algorithm identifies the direction X1 or X2 along which the function G mostly 

decreases, leading the system into a new state where gp is lower. The algorithm automatically 

stops in the state in which the minimum value of gp is found. 

From Table 4, it can be seen that, irrespective of the initial nominal state, the ES leads the 

operator to the same final state 𝑥̅𝑁𝜍−1
(𝜍)

≡ (3.89,0) ≡ 𝑃𝜗, which corresponds to a local minima 

of the limit-state function G. 

Without loss of generality, Table 5 shows the sequence of optimal nominal states for ς = 3, in 

which the final number of iterations is N3+1=13.   

 

p 𝑥̅1
(3)

 𝑥̅2
(3)

 

1 1.56 320 

2 2.33 320 

3 3.11 320 

4 3.89 320 
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5 3.89 284 

6 3.89 249 

7 3.89 213 

8 3.89 178 

9 3.89 142 

10 3.89 107 

11 3.89 71.1 

12 3.89 35.6 

13 3.89 0 

 

Table 5: sequence of system optimal nominal states 1,,2,1

)( }{  


Nppx   for 3 . 

 

In Figure 9, it is noteworthy comparing the pressure transient arising from the ES with the one 

deriving from the application of a PID control system, when the same in-surge accident 

scenario occurs (e.g., a total water mass entering in the pressurizer from the primary system of 

1466 kg, with flow rate of 9 kg/s).   

 

 

 

Figure 9: Pressure transient in an in-surge accident scenario using the ES (dashed line) and the PID controller 

(thick solid line) to control the system. The failure boundary is represented by the horizontal thin line. 

 

In the first phase of the transient (up to 30 s), the PID system shows a constant pressure of 150 

bar, while the ES produces a drop of 0.5 bar. The reason is that the safest position is 147.9 bar, 
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as it can be seen from the data at the end of the transient; thus, the ES works to reach this 

condition.  

At t = 30 s, the in-surge accident takes place and it is possible to notice a rise in pressure in 

both transients, steeper for the PID controller. But the main observation is that in the PID 

transient the pressure overcomes the failure boundary of 155 bar, whereas the ES manages to 

keep the pressure well below the failure boundary for the entire duration of the in-surge 

accident scenario. Lastly, as the accident scenario is recovered, the actions driven by the ES 

lead to a reduction in pressure, till it reaches its safest optimal working level of 147.9 bar.  

Finally, it is worth mentioning that the capability of the proposed ES in providing the plant 

operator with a live, effective and unequivocal AOP to keep the safety margins and avoid 

system failure only depends on the computational demand of the TH code utilized, and not on 

the ES algorithm itself: more complex simulation codes, that may become computationally 

intensive, may challenge the practical scalability of the proposed procedure and endanger the 

live guidance feature offered by the ES, despite that these could still be utilized for an off-line 

design of accurate, effective and unequivocal AOPs. 

 

 

5. CONCLUSIONS 

 

In this work, an ES based on regional sensitivity indices (i.e., the Revised Variance 

Ratio Functions) has been proposed for improving the safety margin of a system when an IE 

occurs during operation. A RSA is performed to define the strategy for keeping under control 

the uncertainty affecting the controllable input variables. Such uncertainty has been modeled 

by centering the nominal value of the input variable on a reduced range of its domain. The ES 

successfully achieves the stepwise maximization of the system safety margin by acting on the 

model controllable inputs. The proposed approach has been proved effective on an analytical 

case study, which mimics the response of a NPP to an accident scenario, and on a case study 

of a pressurizer exposed to an accidental surge line transient.  
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