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Highlights 

 An exploration framework for identifying CPS vulnerabilities to cyber threats is proposed. 

 Cyber attack scenarios are explored by Monte Carlo sampling. 

 A safety margin estimation approach is proposed for cyber threat prioritization. 

 The framework is illustrated with respect to the digital I&C system of an ALFRED 

simulator. 
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Abstract: With the extensive use of digital Instrumentation and Control (I&C) 

systems, Nuclear Power Plants (NPPs) are becoming Cyber-Physical Systems (CPSs). 

Their integrity can, then, be compromised also by security breaches (such as cyber 

attacks). Multiple failure modes (such as bias, drift and freezing) can occur, both due 

to random failures or induced by malicious external attacks. In this paper, we illustrate 

an exploration approach that, based on safety margins estimation, allows identifying 

the most vulnerable components to malicious external attacks. For demonstration, we 

apply the approach to the Advanced Lead-cooled Fast Reactor European 

Demonstrator (ALFRED). Its object-oriented model is embedded within a Monte 

Carlo (MC)-driven engine that injects different types of cyber attacks at random times 

and magnitudes. Safety margins are, then, calculated and used for identifying the most 

vulnerable CPS components. This allows selecting protections to make ALFRED 

resilient towards maliciously induced failures. 

 

Keywords: Nuclear Power Plant; Cyber-Physical System; Cyber Threats; Safety 

Margins; Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED). 
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ABBREVIATIONS 

ALFRED Advanced Lead-cooled Fast Reactor European Demonstrator 

CPS Cyber-Physical System 

CR Control Rod 

DoS Denial of Service 

FA Fuel Assemblies 

I&C Instrumentation and Control 

MC Monte Carlo 

NPP Nuclear Power Plant 

OS Order Statistics 

PI Proportional-Integral 

SG Steam Generator 

SISO Single Input Single Output 

 

NOMENCLATURE 

PTh Thermal power 

hCR Height of control rods 

TL,hot Coolant core outlet temperature 

TL,cold Coolant SG outlet temperature 

Г Coolant mass flow rate 

Tfeed Feedwater SG inlet temperature 

Tsteam Steam SG outlet temperature 

pSG SG pressure 

Gwater Feedwater mass flow rate 

Gatt Attemperator mass flow rate 

kv Turbine admission valve coefficient 

PMech Mechanical power 

Kp Proportional gain 

Ki Integral gain 

Kp,ref Reference value of proportional gain 

Ki,ref Reference value of integral gain 

t Time 

tA Attack time 

tM Mission time 

Δt Sensor measuring time interval 

y Variable (safety parameter) 

y(t) Real value of y 

yset,ref Reference value of controllers set point value of y 

yset Controller set point value of y under cyber attack 

e(t) Residual between y(t) and yset 

Ly Lower threshold of y 

Ry Reference value of y 

Uy Upper threshold of y 

ysensor(t) Sensor real measurement at t 

δ(t) Sensor measuring errors 

a Accidental scenario 
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N Number of samples of a 

max,ay  Maximum value of y during an accidental scenario a 

1

max,ay
  

Specific γ1 percentile of the distribution of the measured maximum 

values of y 

1
max,ay  First element of N samples sorted in descending order 

1 1,

max,ˆ ay
  Estimated 1

max,ay
  with confidence β1 

min,ay  Minimum value of y during a 

2

min,ay
  

Specific γ2 percentile of the distribution of the measured minimum 

values of y 

2 2,

min,
ˆ

ay
   Estimated 2

min,ay
  with confidence β2 

, aU yM  Safety margin of y with respect to Uy 

1 1,

, aU yM
   

Safety margin of y with respect to Uy, given with confidence β1 on 

the percentile γ1 

2 2,

, aL yM
   

Safety margin of y with respect to Ly, given with confidence β2 on 

the percentile γ2 

1 2, ,

, aT yM
    

Safety margin of y with respect to both Uy and Ly, given with 

confidence β for percentiles γ1 and γ2 

 

 

 

1. INTRODUCTION 

Hazards and threats are major concerns for the safety and security of modern 

industry (Aven, 2016; Aven and Krohn, 2014; Zio, 2016; Kriaa et al., 2015; Piètre-

Cambacédès and Bouissou, 2013). The accidents that may originate can be prevented 

only if they are known in advance, at least to some extent (Paté-Cornell, 2002; Paté-

Cornell, 2012). 

Modeling and simulation can be used to explore and understand the behavior of a 

system, under different, possibly uncertain conditions, including hazardous ones 

(Turati et al., 2017a; Turati et al., 2017b). Design-Of-Experiment (DOE) approaches 

have been proposed to study different operating conditions, in order to analyze the 

corresponding system responses with respect to specified performance criteria: safety, 

reliability, resilience, business continuity, etc. (Santner et al., 2013; Simpson et al., 

2001; Zeng & Zio, 2017). One outcome of the analysis, which is of particular interest, 

is the identification of the conditions (represented by factors, parameters and variables 

values) that lead the system to critical conditions of failure (Zio and Di Maio, 2009; 
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Zio, 2016; Turati et al., 2017a; Ntalampiras, 2016). 

In this paper, we consider Cyber-Physical Systems (CPSs). A CPS features a 

tight combination of (and coordination between) the system computational units and 

physical elements. The integration of computational resources into physical processes 

is aimed at adding new capabilities to stand-alone physical systems and realize 

functionalities of real-time monitoring, dynamic control and decision support during 

normal operation as well as in case of accidents. In CPSs, cyber and physical 

processes are dependent and interact with each other through feedback control loops 

(e.g., embedded cyber controllers monitor and control the system physical variables, 

whilst physical processes affect, at the same time, the monitoring system and the 

computation units by wired or wireless networks (Kim and Kumar, 2012; Lee, 2008)). 

The benefit of such self-adaptive capability is the reason why CPSs are increasingly 

operated in transportation, energy, medical and health-care, and other applications 

(Lee, 2008; Khaitan and McCalley, 2015; Bradley and Atkins, 2015). 

In the context of nuclear energy, the introduction of digital Instrumentation and 

Control (I&C) systems allows Nuclear Power Plants (NPPs) to take advantage of the 

new technologies in the field (IAEA, 2009). Cyber controllers have been shown to 

benefit from the use of information related to: (1) environmental conditions (which 

play an important role in affecting the system dynamics, and should be measured and 

adaptively integrated into the cyber real-time monitoring and control in an intelligent 

manner (Wang et al., 2017a)); (2) periodically updated values of parameters (for 

keeping up-to-date the CPS settings (Liu et al., 2014)); (3) new interaction modalities 

between human and system user interfaces (leading to more flexible system 

operability from the human perspective (Paelke and Röcker, 2015)); and (4) 

computer-based networks status (to enhance the network connectivity and remote 

control, communicate with sensing data, and coordinate over constrained 

environments (Ali et al., 2015)). 

Cyber threats, initiated in the cyber domain and manifested in the physical 

domain, can be misclassified as component failures, disguising their malicious 
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character (Zalewski et al., 2016; Rahman et al., 2016; Wang et al., 2018). Even if they 

are different from components stochastic failures, they can lead to similar 

consequences on the system physical processes (e.g., both a stochastic failure and a 

cyber attack can result in sensor performance degradation (Rahman et al., 2016)). 

From the perspective of security analysis, the identification of the cyber threats 

most affecting the system response is quite important for decision-making on optimal 

protection (Fang and Sansavini, 2017; Hu et al., 2017). 

Other works have focused on the formulation and modeling of malicious 

activities to CPSs (Kriaa et al., 2015; Xiang et al., 2017; Pasqualetti et al., 2013). 

Besides graphical methods (such as attack graphs (McQueen et al., 2006; Sheyner and 

Wing, 2003; Ingols et al., 2006), attack trees (Schneier, 1999; Fovino et al., 2009), 

Petri nets (Mitchell and Chen, 2013)), mathematical models (such as those based on 

game theory (Backhaus et al., 2013; Xiang et al., 2018) and attacker-defender models 

(Fang et al., 2017; Yuan et al., 2014)), cyber attacks have also been simulated (Huang 

et al., 2009; Rahman et al., 2016; Khalid and Peng, 2016). 

In particular, Monte Carlo (MC) simulation allows considering the interactions 

among the physical parameters of the process (e.g., temperature, pressure, flow rate, 

etc.), human actions, components stochastic failures, and malicious activities (Zio, 

2013; Wang et al., 2017b). Attacks aiming at damaging different components of the 

CPSs can, thus, be explored, generating different scenarios in the physical domain 

which lead to different consequences (e.g., magnitude of failure). Similarly, models 

can be introduced for describing attack magnitudes and the attackers’ 

adaptive/responsive behaviors, generating and exploring specific deviations caused by 

cyber attacks.  

Specifically, in this work, we develop a general modelling and simulation 

framework for generating cyber attack scenarios by MC sampling, testing their effects 

on CPS integrity and prioritizing the most vulnerable components of the CPS. An 

approach is originally undertaken for processing cyber attack scenarios, based on the 

related estimated safety margin, the most vulnerable components are identified. 
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A number of non-parametric statistical methods have been used in safety analysis 

for safety margin estimation: the Wilk’s method based on Order Statistics (OS) 

(Wilks, 1941; Wilks, 1942; Wald, 1943; Nutt and Wallis, 2004), Beran and Hall 

simple linear interpolation (Beran and Hall, 1993), Hutson fractional statistics 

(Hutson, 1999) and data-based bootstrap method (Efron and Tibshirani, 1986). 

Among these, OS is popular and consolidated because it provides relatively 

conservative results with a few computer code runs, for leveraging the usually 

expensive computational cost of simulation codes (Nutt and Wallis, 2004; Zio et al., 

2010; Sanchez-Saez et al., 2017). In this study, we, thus, take a “Bracketing” OS 

approach for tackling the computational problem and calculating the safety margins 

(Nutt and Wallis, 2004; Di Maio et al., 2016a; Di Maio et al., 2016b; Di Maio et al., 

2017).  

Without loss of generality and for demonstration purposes, the proposed 

approach is illustrated with respect to cyber attack scenarios injected into a specific 

nuclear CPS, namely, the digital I&C system of the pool-type Advanced Lead Fast 

Reactor European Demonstrator (ALFRED) (Alemberti et al., 2013), whose 

previously developed object-oriented DYMOLA simulator (Ponciroli et al., 2014; 

Ponciroli et al., 2015) with a multi-loop PI control scheme (Skogestad and 

Postlethwaite, 2007) is utilized. Cyber attacks to the components of the digital I&C 

system are injected into the ALFRED simulator by MC sampling of four important 

safety parameters: turbine inlet steam temperature, Steam Generator (SG) pressure, 

lead temperature at the SG outlet (the “cold leg” temperature) and thermal power. For 

simplicity, but without loss of generality, no protection is taken into account, i.e., the 

control system for the normal operation mode remains in operation during (and after) 

the cyber attack. This is, thus, a “worst-case” condition, since the protections to 

prevent or mitigate unwanted consequences are not considered. 

The paper is organized as follows. Section 2 presents the main characteristics of 

the ALFRED reactor, with its control scheme at full power nominal conditions, and 

the MC engine of cyber breaches injection for generating cyber attack scenarios. In 
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Section 3, safety margins are quantified with respect to sensors, actuators and 

controllers failure modes. Identification of the components most vulnerable to cyber 

attacks is illustrated in Section 4. In Section 5, conclusions are drawn. 

 

2. THE ADVANCED LEAD-COOLED FAST REACTOR EUROPEAN 

DEMONSTRATOR 

The ALFRED reactor with its full power mode control scheme and the MC 

engine of cyber breaches injection are described in Sections 2.2 and 2.3, respectively. 

 

2.1 ALFRED Description 

ALFRED is a small-size (300 MW) pool-type LFR, whose primary system 

configuration is shown in Fig. 1 (Alemberti et al., 2013). The ALFRED core is 

composed by wrapped Fuel Assemblies (FAs) for providing the thermal power PTh, 

and Control Rods (CRs) systems adjust the heights of CRs hCR for power regulation 

and reactivity swing compensation. 

At full power nominal conditions, the coolant (i.e., lead) flow coming from the 

cold pool enters the core at temperature TL,cold  equal to 400 
o
C and, once passed 

through the core, it is collected in the volume of the hot collector at temperature TL,hot 

equal to 480 
o
C; from there, it is delivered to eight Steam Generators (SGs). After 

leaving the SGs, the coolant enters the cold pool through the cold leg and returns to 

the core.  

The eight SGs work at pressure pSG equal to 180 bar. The feedwater of the 

secondary cooling system flows in the SGs, at pressure pSG and temperature Tfeed 

equal to 335 
o
C, and leaves the SGs after absorbing heat from the primary coolant, 

entering the turbine as steam at temperature Tsteam equal to 450 
o
C. From a control 

point of view, it is worth noticing that the steam mass flow rate is considered 

proportional to the inlet pressure and governed by maneuvering the turbine valve 

admission (kv). An attemperator is foreseen between the SG outlet header and the 

turbine, to limit the steam temperature at the turbine inlet Tsteam, keeping it as close as 

possible to its nominal value, by adjusting the attemperator mass flow rate Gatt. 
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Eventually, ALFRED produces mechanical power PMech to be transformed for the 

power grid. 

 

 

Fig. 1. ALFRED primary system layout (Alemberti et al., 2013) 

 

A simplified schematics of the ALFRED primary and secondary cooling systems 

is shown in Fig. 2. The input data of the ALFRED model are reported in Table 1. 

 

Table 1 ALFRED parameters values, at full power nominal conditions 

Parameter Parameter Description Value Unit 

PTh Thermal power 300·10
6
 W 

hCR Height of control rods 12.3 cm 

TL,hot Coolant core outlet temperature 480 
o
C 

TL,cold Coolant SG outlet temperature 400 
o
C 

Г Coolant mass flow rate 25984 kg·s
-1

 

Tfeed Feedwater SG inlet temperature 335 
o
C 

Tsteam Steam SG outlet temperature 450 
o
C 

pSG SG pressure 180·10
5
 Pa 

Gwater Feedwater mass flow rate 192 kg·s
-1

 

Gatt Attemperator mass flow rate 0.5 kg·s
-1

 

kv Turbine admission valve coefficient 1 - 

PMech Mechanical power 146·10
6
 W 
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Condenser

Turbine

TL,cold

TL,hot

Gwater

kv
hCR pSG

PTh

Tsteam

Water Pump

Attemperator

Gatt

Core

Steam 

Generator

Header

Tfeed

Turbine Admission 

Valve

PMech

 

Fig. 2. ALFRED simplified schematics 

 

2.2 Reactor Control Scheme 

To design the regulators and simulate the system controlled response, an object-

oriented simulator of the entire plant has been developed (Fig. 3), based on the 

Modelica language (Fritzson, 2010) and implemented in the Dymola environment 

(DYMOLA, 2015) (for details, see Ponciroli et al., 2014; Ponciroli et al., 2015). 

Both feedback and feedforward digital control schemes are adopted for ALFRED 

(see Fig. 3 shadowed part). The PI-based feedback control configuration employs four 

SISO (Single Input Single Output) control loops independent of each other (Ponciroli 

et al., 2015). The parameters of the PI regulators have been calibrated and are reported 

in Table 2. 
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Note:               - Sensor

Condenser

Turbine

TL,cold

TL,hot

Gwater

kvhCR pSG

PTh

Tsteam

Water Pump

Attemperator
GattCore

Steam 

Generator

Header

Control System
Tsteam

pSG

TL,cold

PTh

kv

Gatt

Gwater

hCR

PI1

PI2

PI3

PI4

Tfeed

Feedforward

Turbine Admission Valve
Control Rods

PMech

Physical System

 
Fig. 3. ALFRED reactor control scheme 

 

Table 2 Parameters of PI controllers  

PI 
Control Loop Controller Parameters 

Controlled variable Control variable Kp,ref Ki,ref 

PI1 Tsteam (
o
C) Gatt (kg·s

-1
) 1·10

-1
 5·10

-2
 

PI2 pSG (Pa) kv (-) 3·10
-7

 1·10
-8

 

PI3 TL,cold (
o
C) Gwater (kg·s

-1
) 6·10

-1
 1·10

-2
 

PI4 PTh (W) hCR (cm) 2·10
-11

 4·10
-11

 

 

The control aims at keeping the controlled variables of the control loops 

approximately at the steady state values, for outputting a steady mechanical power. 

The values represent the optimal working conditions of the system at full power 

nominal conditions. The regulation of the controlled variables is of particular concern, 

to bring benefits to the structural materials and ensure safe NPP operation conditions. 

Safety thresholds for each variable, listed in Table 3, are set such that consequences of 

transients and accidents are limited: for example, the TL,cold must be kept above 350
o
C 

to avoid the embrittlement of the structural materials in aggressive environments 

enhanced by the fast neutron irradiation.  

In Fig. 4, profiles of the controlled variables, with a mission time tM equal to 

3000s, are shown. Under the control scheme of Fig. 3, the values of the variables are 

kept approximately at their nominal values, at full power nominal conditions, despite 
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the measuring errors (white noise). 

 

Table 3 List of reference and threshold values for safety variables 

Variable, y 
Reference value, Ry, at full 

power nominal conditions 

Safety thresholds 

Lower, Ly Upper, Uy 

Tsteam (
o
C) 450 - 550 

pSG (Pa) 180·10
5
 170·10

5
 190·10

5
 

TL,cold (
o
C) 400 350 - 

PTh (W) 300·10
6
 270·10

6
 330·10

6
 

 

 

Fig. 4. Profiles of the controlled variables of the ALFRED model at full power nominal 

conditions: (a) Steam SG outlet temperature; (b) SG pressure; (c) Coolant SG outlet temperature; 

and (d) Thermal power 

 

2.3 The Monte Carlo Engine of Cyber Breaches Injection  

To test the effects of cyber attacks on system integrity, a MC engine is integrated 

with the ALFRED model for injecting cyber breaches at random times and 

magnitudes. It shall be noted that, the random time tA of the attack occurrence only 

plays an illustrative role in modeling the random occurrence of a cyber attack in 

reality. The cyber attacks here considered are sketched in Fig. 5 and hereafter 

described.  
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Condenser

Turbine

TL,cold

TL,hot

Gwater

kvhCR pSG

PTh

Tsteam

Water Pump

Attemperator
GattCore

Steam 

Generator

Header

Control System
Tsteam

pSG

TL,cold

PTh

kv

Gatt

Gwater

hCR

PI1

PI2

PI3

PI4

Tfeed

Feedforward

Turbine Admission Valve
Control Rods

PMech

Physical System

X

X

XX

X
X
X

X

X

X
X

Note:               - Sensor

                        - Cyber attackX
 

Fig. 5 Sketch of cyber attacks injected into the ALFRED system 

 (1) Sensors 

Controlled variables of the physical system are measured by sensors, whose 

values are fed to the control system. Four types of cyber attacks occurring at random 

time tA are considered for each sensor, preventing the controllers from receiving 

legitimate measurements (equivalent to typical Denial of Service (DoS) attacks 

(Zhang et al., 2016; Ding et al., 2016; Yuan et al., 2014; Wang et al., 2018; Zhu et al., 

2014)), mimicking stochastic failures (Boskvic and Mehra, 2002): (a) bias, (b) drift, 

(c) wider noise and (d) freezing (see dotted lines in Fig. 6 a), b), c) and d), 

respectively). The occurrence of any of these failure modes results in altered sensor 

measurements ysensor(t), as in Eq. (1): 

  

       

       

         

       

 

, 0, , 0, 0,

, 0, 0, ,

, , ,

, 0, , 1, ,

, ,

A A

sensor A A

A

sensor A A

y t t t N t normal

y t t b b t b t t t bias

y t y t t c t c t c t t t t drift

y t t t N t t wider noise

y t t t freezing

   





   

   


    


      
     

 

 
(1) 

where y(t) is the real value of the controlled variable y at time t, δ(t) is the nominal 

measuring error, distributed according to a normal distribution N(0,σ), b is a constant 

bias factor, c is a constant drift factor, δ’(t) is a wider measuring error, distributed 
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according to a normal distribution N(0,ασ) with a larger variance than δ(t) (α>1).  

 

(a) Bias

y(t)

Attack
0 tA t

(b) Drift

y(t)

Attack
0 tA t

y(t)

(c) Wider noise

Attack
0 tA t

y(t)

(d) Freezing

Attack
0 tA t

b

t

c(t)=c·(t-tA)
yref yref

yref yref

b

ysensor(t)

ysensor(t)

ysensor(t)

ysensor(t)

 
Fig. 6. Sensor failure modes: (a) bias; (b) drift; (c) wider noise; and (d) freezing. Solid lines 

represent the real measurements of the controlled variables, whereas dotted lines are the altered 

measurements of the failed sensors 

 

Practically, the MC sampling procedure used to inject a random cyber attack to 

sensors at time tA consists in sampling the uncertain parameters b, c, δ’(t) from the 

distributions listed in Table 4 and, then, running the ALFRED simulator for collecting 

the controlled variables evolution throughout the mission time tM. Notice that 

Gaussian noises are typical of sensor data acquisition, leading to sensor nominal 

errors (column 2) and wider errors (column 5) under nominal condition and wider 

noise failure mode, respectively. Bias and drift (columns 3 and 4, respectively) are, 

instead, a-priori set from uniform distributions, to mimic sensor stochastic failures 

due to cyber attacks. 

 

Table 4 Parameters of sensors 

Sensor 
Nominal error 

δ(t) 

Failure factors 

Bias b Drift c Wider noise δ’(t) 

Tsteam (
o
C) N(0,1) U(-200,200) U(-1,1) N(0,10) 

pSG (Pa) N(0,0.1) ·10
5
 U(-100,30) ·10

5
 U(-0.2,0.2) ·10

5
 N(0,2) ·10

5
 

TL,cold (
o
C) N(0,1) U(-30,30) U(-1,1) N(0,5) 

PTh (W) N(0,0.5) ·10
6
 U(-300,30) ·10

6
 U(-0.5,0.5) ·10

6
 N(0,0.7) ·10

6
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(2) Actuators 

Three actuators of the digital I&C system of ALFRED are considered susceptible 

of a malicious attack, namely: control rods that regulate the rod heights hCR, water 

pump that regulates the feedwater mass flow rate Gwater and turbine admission valve 

kv that regulates the steam inlet mass flow rate. At nominal conditions, the actuators 

execute the command signals of the control system to respond to the sensors 

measurements and accommodate disturbances, transients or accidents. On the other 

hand, under attack, the actuators might fail stuck to a random magnitude of actuation 

A(t), here sampled from a uniform distribution (see Table 5): in this situation, the 

actuators would no longer receive proper control commands and the I&C system 

would not be capable of accommodating disturbances, transients or accidents, as 

shown in Fig. 7. 

 

Table 5 Parameters of actuators 

Actuator 
Regulated control 

variable 
Reference regulation Failure distribution 

Control rods hCR (cm) 12.3 U(0,64) 

Water pump Gwater (kg·s
-1

) 192 U(0,300) 

Turbine admission 

valve coefficient 
kv (-) 1 U(1,1.5) 

 

A(t)

Aref

0 tA t

Attack

 

Fig. 7. Typical actuator-stuck failure 

 (3) PI controllers 

At nominal conditions, PI gains (i.e., Kp and Ki) and controlled variables set 

points yset,ref  are fixed by the control designers, to keep the physical process variables 

close to their nominal values. Under the cyber attack of Fig. 8, equivalent to a 

deception attack maliciously injecting a false message to the controller (Rahman et 
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al., 2016; Ding et al., 2016), PI gains and set points are randomly sampled from 

uniform distributions, covering all possible values (see Table 6). In terms of uniform 

distributions for sampling random values of PI gains (columns 6 and 7), their 

expectations are larger than the reference values, for increasing the possibility that the 

cyber attack impacts the system integrity (Di Maio et al., 2011). 

 

Table 6 Parameters of PIs 

PI 
Controlled 

variable, y 

Reference value PI parameter upon attack 

Kp,ref Ki,ref 
Set point, 

yset,ref 
Kp Ki Set point, yset 

PI1 Tsteam 1·10-1 5·10-2 450 (oC) U(1·10-2,1) U(5·10-4,5) U(430,470) (oC) 

PI2 pSG 3·10-7 1·10-8 180·105 (Pa) U(3·10-8,3·10-4) U(3·10-10,3·10-5) U(170,190) ·105 (Pa) 

PI3 TL,cold 6·10-1 1·10-2 400 (oC) U(6·10-2,6) U(1·10-4,1) U(380,420) (oC) 

PI4 PTh 2·10-11 4·10-11 300·106 (W) U(2·10-12,2·10-7) U(4·10-13,4·10-6) U(285,315) ·106 (W) 

 

Kp (Ki or yset)

Attack
0 tA t

Kp,ref (Ki,ref  or yset,ref)

 

Fig. 8 PI regulator failure due to the cyber attack 

 

It is worth mentioning that the components of the digital I&C system considered, 

their failure modes and cyber attack types are not intended to provide a 

comprehensive description of the system accidental behavior, but are only taken as 

exemplary for generating the dynamic accident scenarios to be processed for safety 

margins estimation, within the framework here proposed for the identification of the 

components most vulnerable to cyber threats. Moreover, we observe that an attacker 

is interested also in injecting “soft” failures that slowly drive the system into failure, 

rather than, only “hard” failures because the former is more difficult to detect and 

recover.  
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3. SAFETY MARGINS ESTIMATION FOR THE IDENTIFICATION OF 

THE COMPONENTS MOST VULNERABLE TO CYBER THREATS 

A safety margin approach of literature (Zio et al., 2010; Di Maio et al., 2016b; Di 

Maio et al., 2017) is here originally used to estimate the extent of the consequences of 

cyber threats on the CPS components. 

 

3.1 Estimation of Safety Margins 

(1) One-sided safety margin 

Considering an accidental scenario a simulated over a mission time tM, the safety 

margin 𝑀𝑈,𝑦𝑎 of a safety parameter y, with respect to a predefined upper threshold Uy, 

is defined as the ratio between the computed value reached by the maximum value 

ymax,a during the accidental scenario and the design value yref  (see Fig. 9) (Nutt and 

Wallis, 2004; Di Maio et al., 2016b; Di Maio et al., 2017): 

 

max,

, max,

max,

max,

0

1

a

y a

U y ref a y

y ref

y a

a ref

U y
M y y U

U y

U y

y y


  





 

 

(2) 

ya(t)

yref

Uy

tM t

max,y aU y
y refU y

ymax,a

 

Fig. 9 One-sided safety margin 𝑀𝑈,𝑦𝑎 

 

Being 𝑀𝑈,𝑦𝑎 a stochastic variable, the safety margin with respect to Uy (see Fig. 

10) is more rigorously defined as the difference between Uy and the value of a specific 

γ1 percentile of the distribution of the measured maximum values, 𝑦𝑚𝑎𝑥,𝑎
𝛾1 , where 

𝑦̂𝑚𝑎𝑥,𝑎
𝛾1,𝛽1  (i.e., the estimate of 𝑦𝑚𝑎𝑥,𝑎

𝛾1 ) is given  with confidence β1 (Lehmann and 
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Casella, 2006), viz: 

 
 

 

1

1 1 1

1 max, max,

,

1 max, max,

Pr

ˆPr

a a

a a

y y

y y



  





  


 

 (3) 

and, 

 

1 1

1 1 1 1

1 1

1 1

,

max,, ,

, max,

,

,

max,

,

max,

ˆ
ˆ

ˆ0

ˆ1

a

j a

U y ref a y

j j ref

y a

a ref

U y
M y y U

U y

U y

y y

 

   

 

 

 
  





 

 

(4) 

The value 1 1,

max,ˆ ay
  is estimated by a Bracketing OS approach, which allows 

controlling the computational cost of the simulation codes and guarantees that the first 

element (out of N) in the descending sorted sample 1

max,ay  has a certain probability β1 

of exceeding the unknown true γ1 percentile. The number N can be calculated by Eq. 

(5), when γ1 and β1 are predefined. 

 1 11 N    (5) 

ya(t)

yref

Uy

γ1

β1

Mt

max, iay

1

max,ay


1 1,

max,
ˆ

ay
 

distributions

ya(t)

0 time

y refU y1 1,

max,ˆ
y aU y




 1

max,af y


 max,af y

 

Fig. 10. 
max, iay  obtained from N samples of the accidental scenario a used to estimate 1 1,

max,ˆ ay
 , 

and, thus, to estimate 1 1,

, aU yM
   

 

Similarly, the safety margin with respect to a lower threshold Ly becomes: 
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2 2

2 2 2 2

2 2

2 2

,

min,, ,

, min,

,

min,

,

min,

ˆ
ˆ

ˆ0

ˆ1

a

a y

L y y a ref

ref y

a y

ref a

y L
M L y y

y L

y L

y y

 

   

 

 

 
  





 

 

(6) 

where, 2 2,

min,
ˆ

ay
   is the point estimate value of the γ2 percentile of the distribution of the 

measured values 
min,ay , with a confidence β2, and, γ2 and β2 are: 

 
 

 

2

2 2 2

2 min, min,

,

2 min, min,

Pr

ˆPr

a a

a a

y y

y y



  





  


 

 (7) 

The number N can be calculated by Eq. (8), when γ2 and β2 are predefined. 

  2 21 1
N

     (8) 

(2) Two-sided safety margin 

The safety margin 𝑀𝑇,𝑦𝑎 of a safety parameter y with respect to the double-sided 

(both upper Uy and lower Ly) thresholds (see Fig. 11) is defined as the minimum value 

between 1 ,

, aU yM
   and 2 ,

, aL yM
   of Eqs. (4) and (6): 

  1 2 1 2, , , ,

, , ,min ,
a a aT y U y L yM M M

      
  (9) 

where, the number of the scenario samples N to be sorted can be calculated, when γ1, 

γ2 and β are predefined (Nutt and Wallis, 2004), according to Eq. (10): 

    1 2 1 21 1 1 1
NNN               (10) 
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ya(t)

Mt

Ly

γ1

β

1-γ2

β

yref

Uy

1

max,ay


1 1,

max,
ˆ

ay
 

2 2,

min,
ˆ

ay
 

2

min,ay


max, iay

min, iay

time

ya(t)

distributions

1 1,

max,ˆ
y aU y


 y refU y

yref
y L2 ,

min,
ˆ

ya
y L




 1

max,af y


 max,af y

 min,af y

 2

min,a
f y



 

Fig. 11. N pairs of maximum and minimum values of the accidental scenario are used to estimate 

1 ,

max,ˆ ay
  and 2 ,

min,
ˆ

a
y


, and, thus, to estimate 

1 2, ,

, aT yM
  

 

 

 

3.2 Cyber Threats Prioritization 

The responses of ALFRED to cyber attacks to sensors, actuators and PI 

regulators are investigated by simulation. From the simulations outcomes, safety 

margins of the four controlled variables (i.e., Tsteam, pSG, TL,cold, and PTh) are estimated, 

to quantify the effects of the cyber attacks on the system functionalities. A total of 

NT=29 runs of the ALFRED model are simulated, to satisfy the requirements of the 

percentiles estimations of the safety parameters by the Bracketing OS of Section 3.1, 

with respect to both one-sided (N=22, given i) γ1= 90
th

, β1=90
th

, or ii) γ2=10
th

, β2=90
th

) 

and two-sided (N=29, given γ1,= 90
th

, γ2=10
th

, β=90
th

) thresholds. Accordingly, N=22 

samples are randomly taken to estimate the safety margins of Tsteam (with respect to its 

upper threshold) and TL,cold (with respect to its lower threshold) and N=29 samples are 

used to estimate the safety margins of pSG and PTh (with respect to their two-sided 

thresholds). 

Effects of cyber attacks on the CPS components and on the system integrity are 

qualitatively ranked according to a three-level risk metric (see Table 7). Table 8 shows 
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the quantified design safety margins when the code is run 29 times under nominal 

conditions (proving that the system works with ample safety margins). 

 

Table 7 A three-level risk metric for ranking the effects of cyber attacks on the CPS 

Effect 
 #1 #2

#3

orM  

Negligible [0.8, 1.0] 

Medium [0.2, 0.8) 

Severe [0.0, 0.2) 

  

Note: 1) #1 refers to “γ2,β2” for TL,cold, and to “γ2,β” for pSG and PTh;  

2) #2 refers to “γ1,β1” for Tsteam, and to “γ1,β” for pSG and PTh; 

3) #3 refers to “U,ya” for Tsteam, to L,ya for TL,cold, and to “T,ya” for pSG and PTh; 

4) γ1= 90
th

, γ2=10
th

, β1=90
th

, β2=90
th

, β=90
th

. 
 

Table 8 Safety margins estimation of the safety parameters under normal conditions 

Variable Tsteam (
o
C) pSG (Pa) TL,cold (

o
C) PTh (W) 

#1

min,
ˆ

ayy  - 1.7967·10
7
 396.1839 2.9819·10

8
 

#2

max,
ˆ

ayy  455.3330 1.8029·10
7
 - 3.0181·10

8
 

 #1 #2

#3

orM  0.9667 0.9672 0.9237 0.9396 

 

 

 

 

4. RESULTS 

4.1 Sensors 

Table 9 presents the results of the safety margins estimation of the four types of 

failure modes of the four sensors measuring the values of the controlled variables, i.e., 

Tsteam, pSG, TL,cold, and PTh. 

 
Table 9 Safety margins estimation of the safety parameters of the cyber attacks to sensors 

Scenario a 1 1

,

,

, steam aU TM    1 2

,

, ,

, SG aT pM     2 2

, ,

,

, L cold aL TM    1 2

,

, ,

, Th aT PM     

Tsteam 

sensor 

bias 0.9562 0.9626 0.9350 0.9349 

drift 0.9604 0.9654 0.9188 0.9322 

wider noise 0.9579 0.9478 0.9195 0.9330 

freezing 0.9604 0.9654 0.9203 0.9374 

pSG sensor bias 0.8185 0 0.7776 0.8136 

drift 0.8701 0 0.9042 0.9335 

wider noise 0.9349 0.4098 0.9257 0.9220 

freezing 0.8988 0 0.9031 0.8600 

TL,cold 

sensor 

bias 0.5875 0.5787 0.5436 0.3838 

drift 0 0 0.5469 0 

wider noise 0.9138 0.9002 0.9085 0.9073 

freezing 0.2187 0.9722 0.6261 0.4707 

PTh sensor bias 0.9641 0 0.2342 0 
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drift 0.9539 0.9662 0.8811 0 

wider noise 0.9601 0.9649 0.9212 0.9326 

freezing 0.9657 0.9645 0.9261 0.7672 

 

The results show that cyber attacks leading to Tsteam sensor failures do not affect 

the system functioning because all safety parameters are negligibly affected. System 

integrity can be affected by cyber attacks to the pSG, TL,cold and PTh sensors, directly 

resulting in large variations of the respective variables (attacks to PTh with a minor 

impact on the other controlled variables, whereas, cyber attacks to TL,cold sensor, e.g., 

bias, drift, or freezing, may impact the whole physical system). 

As example, Fig. 12 shows the evolution of the safety parameters when the TL,cold 

sensor is affected by the freezing failure mode. In all cases, the lead temperature at the 

SG outlet, TL,cold(t) deviates from its set point equal to 400
o
C (Fig. 12(a)), due to the 

PI3 response to the frozen value TL,cold,sensor(t). Then, the steam SG outlet temperature 

Tsteam changes accordingly to the change of the lead temperature (Fig. 12(b)), causing 

the change of Thermal power PTh (Fig. 12(d)). SG pressure change (Fig. 12(c)) is 

negligible thanks to the effective regulation of the steam mass flow rate by the turbine 

admission valve. These alterations are well caught by the safety margin analysis. In 

particular, the safety margin of Tsteam, TL,cold, and PTh  in case of TL,cold sensor freezing 

(Table 10) result to be equal to 0.2187, 0.6260, and 0.4707, respectively. This 

corresponds to a “medium” effect, according to the predefined risk metric of Table 7. 

On the other hand, SG Pressure is kept approximately at the nominal level with little 

disturbances, and, thus, “negligibly” affected by the cyber attacks. 
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Fig. 12. Profiles of the safety parameters for NT=29 runs, when TL,cold sensor is frozen: (a) 

evolution of lead temperature in the cold leg; (b) evolution of steam SG output temperature; (c) 

evolution of SG pressure; and (d) evolution of reactor thermal power 

 

Table 10 Safety margins estimation of the safety parameters of TL,cold sensor freezing cyber 

attack scenarios 

Variable Tsteam (
o
C) pSG (Pa) TL,cold (

o
C) PTh (W) 

#1

min,
ˆ

ayy  - 1.7972·10
7
 381.3042 2.8412·10

8
 

#2

max,
ˆ

ayy  528.1336 1.8026·10
7
 - 3.0391·10

8
 

 #1 #2

#3

orM  0.2187 0.9722 0.6260 0.4707 

Note: 1) a in this Table refers to TL,cold sensor freezing, denoting that the simulation is run to simulate 

the system dynamic scenario processing when the TL,cold sensor is attacked to freezing and, to test the 

effects of such cyber attacks on the system integrity. 

 

4.2 Actuators 

The results of the safety margins estimation of the three actuator failures are 

shown in Table 11. The cyber attacks leading to actuator-stuck failure at a random 

output level, severely affect the system functioning and integrity since most of the 

safety margins of the parameters turn out to be less than 0.2. This evidence should 

raise defenders’ concern, because the ALFRED dynamics would be severely affected 

if cyber breaches are injected into these vulnerable components. 

 

Table 11 Safety margins estimation of the safety parameters of the cyber attacks to actuators 

Scenario a 1 1

,

,

, steam aU TM    1 2

,

, ,

, SG aT pM     2 2

, ,

,

, L cold aL TM    1 2

,

, ,

, Th aT PM     
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CR height stuck 0.4895 0 0.7532 0 

Water pump stuck 0 0 0.5441 0 

Turbine valve stuck 0.1708 0 0.8484 0.1792 

 

As illustrative example, Fig. 13 shows the evolution of the safety parameters 

when the water pump is attacked to fail stuck with a random value sampled from the 

uniform distribution in U(0,300) mentioned in Table 5, at a random time tA. The 

feedwater mass flow rate Gwater is output at a constant value in each case and this 

directly affects the SG performance. As a result, the lead temperature at the SG outlet 

TL,cold (Fig. 13(a)) and steam SG outlet temperature Tsteam (Fig. 13(b)) are strongly 

affected. Then, changes in Tsteam cause transients of SG pressure (Fig. 13(c)), and, at 

the same time, TL,cold causes the CRs regulation that affects the reactor thermal power 

PTh (Fig. 13(d)). The results are shown in Table 12. Regarding the lower threshold, the 

safety margin of TL,cold turns out to be 0.5441, classified as a “medium” effect, 

according to three-level risk metric of Table 7. On the other hand, all safety margins 

of Tsteam, pSG, and PTh, result to be equal to 0, indicating that a cyber attack to the 

water pump-stuck would “severely” affect the system dynamics and integrity.  

 

  

Fig. 13 Profiles of the safety parameters for NT=29 runs, when the water pump is attacked to fail 

stuck with a random value: (a) evolution of lead temperature in the cold leg; (b) evolution of 

steam SG output temperature; (c) evolution of SG pressure; and (d) evolution of thermal power 

Table 12 Safety margins estimation of the safety parameters of water pump-stuck 
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cyber attack scenarios 

Variable Tsteam (
o
C) pSG (Pa) TL,cold (

o
C) PTh (W) 

#1

min,
ˆ

ayy  - 1.6089·10
7
 377.2037 2.0677·10

8
 

#2

max,
ˆ

ayy  715.0707 1.8712·10
7
 - 3.1242·10

8
 

 #1 #2

#3

orM  0 0 0.5441 0 

Note: 1) a in this Table refers to water pump-stuck, denoting that the simulation is run to test the system 

dynamic scenario processing when the water pump is attacked to get stuck in a random value and, to 

test the effects of such cyber attacks on the system integrity. 

 

4.3 PI Controllers 

The safety margins estimation results of cyber attacks to PI gains and set points 

are presented in Table 13. Cyber attacks to change of PI gain values have negligible 

effects on the safety parameters and on the system functionalities (except for changes 

of the Kp value of PI3). This is potentially ascribed to the PI controller capability of 

regulating the errors of controlled variables close to zero even if the (relative small) 

gain values are changed to 3 or 4 orders of magnitude larger than the reference 

settings. On the other hand, cyber attacks changing the controllers set point values 

(i.e., pSG,set, TL,cold,set, PTh,set) are more likely to cause system performance degradation. 

Such evidences demonstrate that PI gain values play a less important role, compared 

with the residual between the measurement and the set point value, e(t). 

 
Table 13 Safety margins estimation of the safety parameters of the cyber attacks to 

PI regulator value changes 

Scenario a 1 1

,

,

, steam aU TM    1 2

,

, ,

, SG aT pM     2 2

, ,

,

, L cold aL TM    1 2

,

, ,

, Th aT PM     

PI1  Kp  0.9676 0.9696 0.9203 0.9355 

Ki  0.9624 0.9698 0.9219 0.9232 

Tsteam,set 0.9534 0.9591 0.9263 0.9295 

PI2  Kp  0.9612 0.9722 0.9304 0.9321 

Ki  0.9677 0.9684 0.9213 0.9370 

pSG,set 0.9647 0.0213 0.9260 0.9300 

PI3  Kp  0.9451 0.7570 0.9156 0.8981 

Ki  0.9677 0.9660 0.9199 0.9414 

TL,cold,set 0.6879 0.8840 0.5739 0.6264 

PI4  Kp  0.9623 0.9671 0.9168 0.9287 

Ki  0.9657 0.9699 0.9187 0.9343 

PTh,set 0.9655 0.9685 0.9120 0.4628 

 

 

Fig. 14 shows the evolution of the safety parameters when the reference value of 
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Kp of PI1 is attacked at a random time tA and changes to a random value distributed as 

U(1e-2,1) (see Table 6). 

Under such circumstances, the steam SG outlet temperature Tsteam (Fig. 14(a)) is 

negligibly affected. The most probable reason is that Kp plays a less important role in 

PI computation, compared with the residual between the measurement Tsteam and the 

set point value Tsteam,set, e(t). The resulting negligible change of Tsteam will not lead to 

any transients of SG functioning. Also, the evolutions of SG pressure pSG (Fig. 14(b)), 

of lead temperature at the SG outlet TL,cold (Fig. 14(c)), and of reactor thermal power 

PTh (Fig. 14(d)) are not altered with respect to normal conditions. Safety margins of 

Tsteam, pSG, TL,cold and PTh result to be equal to 0.9676, 0.9696, 0.9203, and 0.9355, 

respectively. 

 

  

Fig. 14 Profiles of the safety parameters for NT=29 runs, when the PI1 Kp gain is changed to a 

random value: (a) evolution of steam SG output temperature; (b) evolution of SG pressure; (c) 

evolution of lead temperature in the cold leg; and (d) evolution of reactor thermal power 

 

Table 14 Safety margins estimation of the safety parameters of change of Kp value of 

PI1 cyber attack scenarios 

Variable Tsteam (
o
C) pSG (Pa) TL,cold (

o
C) PTh (W) 

#1

min,
ˆ

ayy  - 1.7971·10
7
 396.0125 2.9809·10

8
 

#2

max,
ˆ

ayy  453.2381 1.8030·10
7
 - 3.0193·10

8
 

 #1 #2

#3

orM  0.9676 0.9696 0.9203 0.9355 
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Note: 1) a in this Table refers to change of Kp value of PI1, denoting that the simulation is run to test the 

system dynamic scenario processing when the Kp gain value of PI1 is attacked to be changed to a 

random value and, to test the effects of such cyber attacks on the system integrity. 

 

4.4 Multiple Cyber Attacks to PI Controllers 

Coupling of malicious alteration of PI gain values and set points are hereafter 

considered, being expected to lead to more severe effects on the PI performance and, 

therefore, on the system safety, rather than the single failure modes considered in 

Section 4.3. In each simulation run, the PI gain value and the controlled variable set 

point value are both attacked at a random time tA, within the mission time of tM. Thus, 

eight types of the multiple cyber attack scenarios are considered (see Table 15 first 

two columns).  

Results are shown in Table 15. Except for the cyber attacks to PI1 resulting in 

negligible effects, the scenarios originated by attacks to PI2, PI3 and PI4 would result 

in more severe impacts on the safety parameters and the system functionality, 

compared with single cyber attacks of PIs of Table 13. The evidence entails further 

concerns on the protection design of multiple cyber attack scenarios, for optimizing 

the cyber defense strategies from the perspective of the defenders. 

 

Table 15 Safety margins estimation of the safety parameters of the sequence of 

multiple cyber attacks to PI regulators 

Scenario a 
1 1,

, _ aU T steamM
 

 

1 2, ,

, aT PressureM
    

2 2,

, _ _ aL T cold legM
 

 

1 2, ,

, _ aT Th powerM
  

 

PI1 Kp & Tsteam,set 0.9562 0.9560 0.9246 0.9373 

Ki & Tsteam,set 0.9590 0.9607 0.9134 0.9352 

PI2 Kp & pSG,set 0.9670 0 0.9224 0.9203 

Ki & pSG,set 0.9628 0.0566 0.9200 0.9342 

PI3 Kp & TL,cold,set 0.6182 0.2687 0.6300 0.4196 

Ki & TL,cold,set 0.7991 0.8850 0.5872 0.5840 

PI4 Kp & PTh,set 0.8170 0.4819 0.8355 0 

Ki & PTh,set 0.9675 0.9719 0.9195 0.5201 

 

4.5 Comments 

The results of the single failure modes of Sections 4.1, 4.2 and 4.3 suggest 

insightful recommendations. On one hand, the cyber attacks to actuators (control rod 

height, water pump and turbine coefficient valve) seem to be the most worrying for 
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the entire system functionality and integrity. The effect of the attacks to the pSG and 

PTh sensors are limited to the secondary and primary circuits, respectively, making 

them less problematic. The situation is different if the attack involves the TL,cold 

sensor, since the whole system is affected by a departure from the nominal values, 

underlying once again the relevance of the lead temperature control. Functionality of 

the ALFRED reactor will be negligibly affected, if attackers access the Tsteam sensor 

database or the values of PI gains. As a last remark, it is important to point out that 

multiple cyber attacks originated by the coupled alteration of gain values and set 

points, discussed in Section 4.4, raise further concerns on protection design decision-

making for counteracting cyber threats, compared with single failure modes of 

controllers.  

We conclude by noting that, in practice, modality, timing and sequencing of 

cyber attacks are less predictable than stochastic failures, making the identification of 

the most vulnerable components to cyber threats an issue of outmost importance for 

protection design. Optimal protection design strategies have to be considered also on 

the basis of cyber threats prioritization, on one hand and, on the other hand, a trade-

off between safety. 

 

5. CONCLUSIONS 

In this study, we have proposed a Monte Carlo-based exploration framework for 

generating cyber attack scenarios in Cyber-Physical Systems (CPSs) and accounting 

for multiple failure modes of attacked components of the CPSs, to test the effects of 

the cyber threats on the system functionality and integrity, and to prioritize the most 

vulnerable components for cyber security protection decision-making. 

A safety margin estimation approach has been proposed for cyber threat 

prioritization. Safety margins of the safety parameters are estimated by a Bracketing 

OS approach, with respect to the one- and two-sided thresholds.  

We have taken the digital I&C system of the Advanced Lead-cooled Fast Reactor 

European Demonstrator (ALFRED) as case study, in which cyber breach events 

aiming at attacking the embedded CPS components are injected by a Monte Carlo 
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sampling procedure, at random times and of random magnitudes. The results of the 

case study identify actuators as the most vulnerable CPS components, their failures 

leading more easily to the loss of system functionality and integrity, along with the 

lead temperature sensor, which is relevant component for the control of the 

temperature lead in the cold pool.  

With due caution, in future works we seek to accommodate the notion of 

probabilistic safety margin assessment (Di Maio et al., 2016b; Grabaskas et al., 2015; 

Zio et al., 2008) to encompass the explorative characteristics of the here proposed 

framework and the underlying (if any) probabilistic distributions behind cyber attacks 

and attackers behaviors. Besides, other future works will regard, on one hand, the 

development of both statistical and dynamic scenario processing methods with the 

purpose of distinguishing between cyber attacks and stochastic failures, and, on the 

other hand, modeling possible attack strategies considering factors such as 

frequencies of occurrence, component compromise probabilities, attack costs, etc., 

and optimizing defense countermeasures, considering factors such as economics loss 

and defense costs. Both single and multiple cyber attack scenarios will be considered 

in these future works. In particular, a special concern is to model the effects of cyber 

attacks on the power grid, with reference to the therein transferred mechanical power, 

since the stability of plant power production plays an important role in maintaining 

functionality and integrity of the complex power infrastructure, where the NPP is 

functionally located. 
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