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Abstract: In real-time control of Cyber-Physical Systems (CPSs), physical process 

variables are monitored and processed by intelligent controllers for keeping the values 

of safety parameters between given thresholds. Environmental conditions can affect the 

system dynamics and also the controller function. This paper presents a hybrid fuzzy-

PID (Proportional-Integral-Derivative) controller, which learns the optimal PID 

controller parameters and adapts them according to the environmental parameters and 

process variables values. 

The proposed intelligent controller is applied to respond to the changes and 

transients in the environmental inlet air temperature of the secondary loop of a Lead-

Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS), for keeping 

the secondary average coolant temperature in a range of values between two safety 

thresholds. 

Keywords: Cyber-Physical System; Hybrid Fuzzy-PID Controller; Environmental 

Conditions; Nuclear Power Plants (NPPs); Lead-Bismuth Eutectic eXperimental 

Accelerator Driven System (LBE-XADS). 
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ABBREVIATIONS 

CPS Cyber-Physical System 

NPP Nuclear Power Plant 

PID Proportional-Integral-Derivative 

LBE-XADS Lead-Bismuth Eutectic eXperimental Accelerator Driven 

System 

FLC Fuzzy Logic Control 

 

NOTATIONS 

t Time 

e(t) Residual between the measured value and the set point 

Kp Proportional gain 

Ki Integral gain 

Kd Derivative gain 

P(t) LBE-XADS thermal power 

Q(t) Proton energy 
,C P

LBT  Primary outlet coolant temperature 

,P C

LBT  Primary inlet coolant temperature 

,ac C

LBT  Average in-core temperature 

,in S

oT  Secondary inlet oil temperature 

,out S

oT  Secondary outlet oil temperature 

,av S

oT  Secondary average oil temperature 

( )a t  Air mass flow rate 

,th u

oT  Upper threshold of the oil temperature 

,th l

oT  Lower threshold of the oil temperature 

  Monotonically increasing function 
,in S

aT  Inlet air temperature 

,ref S

oT  Set point of secondary average oil temperature 

dKp Change of the proportional gain 

dKi Change of the integral gain 

dKd Change of the derivative gain 

x Input of an input-output data pair 

y Output of an input-output data pair 

f Mapping function 

SSe  Average steady-state drift 

ASP Settling area 

Tj Fuzzy sets of the j-th Antecedent, j=1,2,…,7 

Ij Fuzzy sets of the j-th Consequent 

Rj j-th fuzzy rule 

Y Fuzzy set obtained from a fuzzy conclusion 

Y  Membership function 
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I. INTRODUCTION 

A Cyber-Physical System (CPS) combines a cyber system with a physical system, 

integrating computational resources into physical processes in order to add new 

capabilities to the original stand-alone physical system and realize real-time monitoring, 

dynamic control and decision support. The benefit from such capabilities makes CPSs 

increasingly operated in transportation, energy, medical and health-care, and other 

applications [1]-[3]. In CPSs, the cyber computation and the physical processes are 

dependable, and interact with each other through multiple and distinct modes (e.g., 

embedded cyber controllers monitor and control the system physical variables, whilst 

physical processes affect, at the same time, the monitoring system and the computation 

units by wired or wireless networks [2], [4], [5]). This information can be intelligently 

manipulated to guarantee the system to be self-adaptive, robust and reliable with respect 

to components failures and changes of the environmental operational conditions [4], [6-

8], [16]. For example, in [44] the flight control of parafoil systems is shown to be 

improved when wind conditions are duly taken into account, whereas in [45,46] 

adaptive speed control strategies of autonomous vehicles under various traffic 

conditions are proposed. 

Adaptivity of CPS control rules can be achieved based on real-time monitoring of 

physical and environmental variables. Stability is the main concern for real-time 

monitoring of CPSs. To satisfactorily control the dynamical systems, it is basically 

required the changes in the observed behavior of the physical system in case of any 

small perturbations imposed by the controller to be kept at minimum [37]. 

Traditionally, Proportional-Integral-Derivative (PID) control systems have been 

used for retroacting to actuators the actions to be undertaken for real-time controlling 

the system (see Fig. 1) [8], [16], [40]. Digital PIDs have overcome analog PIDs [9] but 

still cannot intelligently adapt their parameters setting to changing environmental 

conditions: a predesigned control function is implemented by a command signal, to 

control the physical process variables, which, once measured, are compared with a set 

point that originates the residual e(t) (see Fig. 1). A strong limitation of this traditional 
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control approach is that incorrect calibration of the PID parameters with respect to the 

current physical and environmental conditions may significantly degrade the control 

performance and robustness [9], [10]. Moreover, under this control scheme, the 

physical system may be led to dangerous operational conditions not only due to 

unforeseen changes of the environmental conditions but also due to human errors, 

malicious attacks through the network and poor/wrong database use in support to 

parameters setting (see Fig. 2). 

 

Physical processController
Command signal

Measured variable

Set point e(t)

 
Fig. 1. The PID control scheme 

 

Command signal Database

Human actions

Network

Measured variable

Set point
e(t)

Environment

Physical processController

(Unforeseen conditions) (Malicious attacks)

(Lack of credible statistics)

(Human errors)

 
Fig.2. The cyber control scheme 

 

To overcome the challenges of conventional PID control and add learning 

capabilities to a CPS controller, a Fuzzy Logic Control (FLC) strategy can be of help 

[14]. FLC has been increasingly used in real-world control engineering [15], [17], [39], 

[41], [47]. The fuzzy rules are obtained by a fuzzification of the ranges of the measured 

physical variables (Antecedents) and the logic mapping into the ranges of the control 

parameters (Consequents) [18], [19]. Nonlinear analysis has been adopted to build the 

FLC rules and improve the control performance, especially for systems operating under 

uncertain physical and environmental conditions [20]-[23]. In most cases, the fuzzy 
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rules are based on expert experience and knowledge of the system processes [24], [25]. 

The integration of a PID with a FLC (e.g., fuzzy-PID) is proven to be an intelligent, 

nonlinear and robust strategy that improves the performance of conventional PIDs, by 

readjusting the PID gains in an on-line and real-time manner [23], [42]. The resulting 

fuzzy-PID controller is, thus, aimed at accounting for time-dependent interactions of 

the cyber world with the physical world in an intelligent feedback loop, while at the 

same time, guaranteeing the stability of the CPSs, without causing the loss of control 

of the physical behaviors. 

In practice, environmental conditions can play an important role on the physical 

process by triggering unforeseen system dynamics. For example, seawater is often used 

as the coolant of the secondary coolant circuit of Nuclear Power Plants (NPPs) and any 

seawater temperature change may affect the NPP cooling capability and, eventually, its 

performance and safety [11]; in Heating, Ventilation and Air-Conditioning (HVAC) 

systems, changes of the environmental temperature make the heat transfer coefficient 

and the energy balances change [8], [12], [13]. Thus, environmental parameters should 

be measured and integrated into the cyber real-time monitoring and control in an 

intelligent manner: the resulting CPS is expected to learn the optimal control settings 

in different environmental conditions, and self-adapt to the varying conditions to 

preserve safe operation of the physical system and avoid loss of control. 

In this work, environmental parameters values are used as inputs of a fuzzy-PID 

controller that optimally sets the PID gains, denoted as Kp, Ki and Kd, for the 

proportional, integral, derivative parts of the control, respectively. By so doing, the 

hybrid fuzzy-PID is capable of controlling the CPS under varying environmental 

conditions. To increase the transparency of the hybrid fuzzy-PID control, the fuzzy rules 

are here optimized by resorting to a grid-type fuzzy partitioning approach [24], [26]-

[29], where the fuzzy sets and the fuzzy rules are learnt from examples of input 

variables and optimal control settings. 

The proposed controller is applied to respond to changes and transients of the 

environmental inlet air temperature of the secondary loop of a Lead-Bismuth Eutectic 
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eXperimental Accelerator Driven System (LBE-XADS) [30], so as to maintain the 

secondary average coolant temperature at a desired reference value, in-between two 

safety thresholds. The optimized CPS is finally compared with a traditional PID control 

scheme with fixed parameters and with a linearly variable gain PID control scheme. 

The remainder of the paper is organized as follows. Section II presents in details 

the LBE-XADS that is taken as CPS case study. In Section III, an overview of the 

proposed hybrid fuzzy-PID control strategy is presented for the temperature control of 

the secondary cooling system of the LBE-XADS, under varying environmental 

conditions. The results of the proposed approach are compared with the results of the 

reference PID control in Section IV. Section V draws the conclusions of the work. 

 

II. CPS CASE STUDY: THE LBE-XADS 

A. The Physical Process 

The Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-

XADS) is a sub-critical, fast reactor in which the fission process for providing thermal 

power P(t) is sustained by an external neutron source through spallation reaction by a 

proton beam Q(t) accelerated by a synchrotron on a Lead-Bismuth Eutectic (LBE) 

target. 

The primary cooling system is of pool-type with LBE liquid metal coolant leaving 

the top of the core, at full power nominal conditions, at temperature 𝜏𝐿𝐵
𝐶,𝑃

 equal to 400oC 

pushed by natural circulation enhanced by argon gas injection into the heat exchangers 

of the secondary cooling circuit and then re-entering the core from the bottom through 

the down-comer at temperature 𝜏𝐿𝐵
𝑃,𝐶

 equal to 300oC. The average in-core temperature 

of the LBE 𝑇𝐿𝐵
𝑎𝑐,𝐶

 is taken as the mean of 𝜏𝐿𝐵
𝐶,𝑃

 and 𝜏𝐿𝐵
𝑃,𝐶

. 

In the secondary cooling system, a flow of an organic diathermic oil is cooled in a 

secondary heat exchanger, from the inlet temperature 𝑇𝑜
𝑖𝑛,𝑆 equal to 320oC to the outlet 

temperatures 𝑇𝑜
𝑜𝑢𝑡,𝑆

  equal to 280oC, at full nominal power of 80MWth. Thus, the 

average nominal temperature 𝑇𝑜
𝑎𝑣,𝑆

 is 300oC. Cooling of the diathermic oil is obtained 
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through an air flow 𝛤𝑎(𝑡)  (nominally equal to 750kg/s [43]) provided by three air 

coolers connected in series (i.e., secondary heat exchanger), that can provide a 

maximum air flow rate of 1000kg/s [30, 43]. 

 

B. The Control Strategy 

In [30], the LBE-XADS was originally equipped with a simultaneous feedforward-

feedback control (whose scheme is shown in Fig. 3) to control the system physical 

dynamics by maintaining 𝑇𝑜
𝑎𝑣,𝑆

 close to 300oC during any operational transient and any 

design basis accident, for any LBE-XADS prototypical plant operated in any location 

in the World, where the air temperature ranges in [0, 30]oC with an average value equal 

to 20oC [30]. On the contrary, an oil temperature beyond the upper threshold 𝑇𝑜
𝑡ℎ,𝑢 equal 

to 340oC would lead to degradation of its physical and chemical properties (i.e., high-

temperature failure mode), whereas a temperature below the lower threshold 𝑇𝑜
𝑡ℎ,𝑙

 equal 

to 280oC could result in thermal shocks for the primary fluid and, eventually, for the 

structural components (i.e., low-temperature failure mode) [30], [31]. The average 

temperature of diathermic oil 𝑇𝑜
𝑎𝑣,𝑆 is the controlled variable, and the air mass flow rate 

𝛤𝑎(𝑡)  is the command signal provided by the controller. As shown in Fig. 3, the 

feedback controller was a conventional PID with low values of the proportional (Kp), 

the integral (Ki) and the derivative (Kd) gains, and contributing for 70% of the control 

strategy; the remaining 30% was provided by the feedforward action obtained by a 

monotonically increasing function Ψ relating the required air mass flow rate Γ𝑎(𝑡) to 

the reactor power P(t), according to Eq. (1): 

 ( ) ( ) ( )
( )

( )( )a p i d

de t
t K e t K e t dt K P t

dt
 = + + +  (1) 

The three feedback terms of Eq. (1) are:  

1) The Proportional (P)-term, that accounts for a control action proportional to the 

residual e(t) (i.e., the difference between the desired set point 𝑇𝑜
𝑟𝑒𝑓,𝑆

 and the value 

of 𝑇𝑜
𝑎𝑣,𝑆

 measured at time t) and that may lead to the large values of the steady-state 

residual over time in case of inaccurate setting; 
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2) The Integral (I)-term, that accumulates the past values of the residual over time, to 

reduce the steady-state residuals;  

3) The Derivative (D)-term, that sets the control action based on the present slope of 

the residual curve over time, to improve the response to a dynamic transient. 

 

Controller

Air coolers

Feedforward

70%

P(t)

Γa(t)

Feedback (PID)
To

av,S(t)

30%

 

Fig. 3. Structure of the LBE-XADS control strategy 

 

Fig. 4 shows the overall scheme of the LBE-XADS digital acquisition chain of 

environmental temperature 𝑇𝑎
𝑖𝑛,𝑆

 and diathermic oil temperature 𝑇𝑜
𝑎𝑣,𝑆

, that acts as the 

bounding layer between the physical process and the computation layer of the feedback 

controller. This digital acquisition chain is composed of two redundant channels (A and 

B) (see Fig. 4 shadowed box). Each channel consists of one signal sensor (S-A and S-

B, measuring the average oil temperature 𝑇𝑜
𝑎𝑣,𝑆

), one Bistable Processor Logic (BPL) 

subsystem (BPL-A and BPL-B), and one Local Coincidence Logic (LCL) subsystem 

(LCL-A and LCL-B). An independent signal sensor and an independent BPL is installed 

in each channel. Two redundant measured signals of 𝑇𝑜
𝑎𝑣,𝑆

 are collected by S-A and S-

B and processed by the corresponding BPL. The signal processing proceeds only if both 

channels produce the residual e(t) compared with the set point 𝑇𝑜
𝑟𝑒𝑓,𝑆

: each e(t) from a 

BPL is sent to both LCL-A and LCL-B, which process information by an “AND” gate. 

In other words, the residual signal is processed only when receiving two residual signals 

e(t) originating from the two different BPLs; the information is, then, processed by an 

“OR” gate at the end of the digital acquisition chain. Once the residual signal e(t) is 

processed, it is sent to the PID feedback. 
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Fig. 4. The simplified scheme of the LBE-XADS with its digital acquisition chain 

 

III. CONTROL STRATEGY UNDER VARYING ENVIRONMENTAL 

CONDITIONS 

A. System Properties Identification 

To show the effect of the environmental variable 𝑇𝑎
𝑖𝑛,𝑆 on the system dynamics and 

the corresponding control performance of the original PID, a Matlab/Simulink model 

of the LBE-XADS has been run N1=50 times with a mission time tM of 3000s. The inlet 

air temperature 𝑇𝑎
𝑖𝑛,𝑆

, initially equal to 20oC, changes at time t=1000s to a random value 

𝑇𝑎,𝐶
𝑖𝑛,𝑆

 sampled from a uniform distribution U~[0, 30]oC. The results are shown in Fig. 5 

(solid lines): at time t=1000s, the physical process rapidly responds to the change of the 

environmental condition (i.e., the inlet air temperature) and the average oil temperature 

𝑇𝑜
𝑎𝑣,𝑆

 deviates from its reference level (300oC) towards a new stationary temperature 

after approximately 800s, confirming the adaptive capability of the original PID.  

For completeness, some (uncontrollable) scenarios (dashed lines) are also shown 
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where 𝑇𝑜
𝑎𝑣,𝑆

 continues rising, eventually reaching the threshold of the high-temperature 

failure mode before the end of the mission time, because triggered by temperature 

changes that fall out of the design limits of the cooling system (e.g., for 𝑇𝑜
𝑎𝑣,𝑆

>300oC 

the maximum 𝛤𝑎(𝑡) equal to 1000kg/s is not capable of removing the decay heat). In 

light of this design limit of the LBE-XADS cooling system, in what follow we will 

discard such uncontrollable scenarios and focus on improving the controllability of the 

LBE-XADS under the nominal temperature range [0, 30]oC. 

 

  

Fig. 5. The N1=50 runs of the LBE-XADS controlled with the original PID when the inlet air 

temperature changes to a random value uniformly distributed in [0, 30]oC at time t=1000s 

 

B. The Hybrid Fuzzy-PID Controller 

A hybrid fuzzy-PID controller that automatically adapts the PID gains to different 

inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆(𝑡) is here proposed. The structure of the controller is shown 

in Fig. 6. The idea is that the Fuzzy logic element “filters” the 𝑇𝑎
𝑖𝑛,𝑆

 (Antecedent) and, 

based on the fuzzy logic reasoning, it provides the PID with the adaptation gain changes, 

dKp, dKi and dKd (Consequents), that need to be added to the current values of the gains 

Kp, Ki and Kd of Eq. (1), in order to adapt to the changed environmental conditions. 

The rules of the FLC are learnt by resorting to a grid-type fuzzy partitioning 

approach, as illustrated in the next subsection [24], [26]-[29], [32]. 



11 
 

Feedback

dKp dKi dKd

Ta
in,S(t)

Controller

Air coolers

To
av,S(t)

PID

Fuzzy Logic

Feedforward
P(t) 30%

70%

Γa(t)

 

Fig. 6. Structure of the controller under variable inlet air temperature conditions 

 

a. The Learning Algorithm 

Fuzzy logic is used for combining a number of antecedents and consequents 

linguistic statements into relations by fuzzy connections, where a general grid-type 

fuzzy partitioning approach can be used to learn the fuzzy rules from the numerical data 

of the sampled input-output data pairs [26], [29], [32]. The objective of the grid-type 

fuzzy partitioning approach is to separate the input-output feature space into a set of 

uniform or non-uniform grids with predefined membership functions, and, then, to 

obtain the most transparent fuzzy rules linking the antecedents and consequents of the 

available examples. The key point of the approach is that the optimal input-output data 

pairs are those that can be univocally mapped in the feature space, which means that 

the visual connection between antecedents and consequents should be explicit. Taking 

a one-input-one-output FLC as illustrative example, suppose n optimal input-output 

data pairs are obtained from m pairs of examples: 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2

, , , , , ,
n n

x y x y x y  (2) 

where x and y are the input and the output, respectively. The n (x,y) data pairs can be 

plotted in their feature space. If the data pairs show a clear mapping function f: x→y 

(see Fig. 7(a)), decision makers can determine a set of fuzzy rules with predefined 

membership functions, according to their knowledge, whereas when the data pairs 

scatter in the feature space (see Fig. 7(b)), and the connection between x and y is implicit, 

the fuzzy sets and fuzzy rules cannot be univocally generated. 
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x

y

x

y

(a) (b)  

Fig. 7. Illustration of the general grid-type fuzzy partitioning approach: (a) optimal input-output 

data pairs, presenting a clear relationship in the feature space, to generate univocal fuzzy sets and 

fuzzy rules; (b) data pairs scattered in the feature space. 

 

b. Fuzzy Rules Generation for the Hybrid Fuzzy-PID Controller 

The generation of the fuzzy sets and rules from examples of input variables and 

optimal control settings follows two steps as for the grid-type fuzzy partitioning 

approach. Step 1 collects the optimal input-output data pairs from the randomly 

sampled examples and extracts the optimal pairs among the collected examples on the 

basis of two performance indexes. Step 2 generates the fuzzy sets and the fuzzy rules 

for the learnt significant input-output data pairs. 

Step 1: Collection of the input-output data pairs. 

We define two performance indexes to be used for extracting the optimal pairs with 

respect to one trial of the simulation of the LBE-XADS (controlled with the original 

PID) in which the inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆

  changes to a random value uniformly 

distributed in [0, 30]oC, at t=1000s. The profile of the average oil temperature 𝑇𝑜
𝑎𝑣,𝑆

 

within the mission time of 3000s is shown in Fig. 8. When 𝑇𝑎
𝑖𝑛,𝑆

 changes to a random 

value 𝑇𝑎,𝐶
𝑖𝑛,𝑆

  at t=1000s, the physical process rapidly responds to the change of 

environmental condition. 𝑇𝑜
𝑎𝑣,𝑆

 recovers from the step response after a resettling time 

roughly equal to 800s, and the system dynamics reaches a new steady state. 
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Fig. 8. Illustration of the characterization indexes 

 

As it is known, in the PID controller, the steady-state residual error is inversely 

proportional to Kp, whose inappropriate value renders the control unstable, whereas Kd 

limits the high-frequency noise at the system steady state. Thus, the performances of 

Kp and Kd are to be evaluated by an average steady-state drift (𝑒̅𝑆𝑆) defined in Eq. (3) 

below, that is the average residual of 𝑇𝑜
𝑎𝑣,𝑆

  with respect to 𝑇𝑜
𝑟𝑒𝑓,𝑆

  after the system 

reaches a new steady-state condition. To obtain the optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKp) and (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKd) 

data pairs to be used for the learning algorithm of Section III.B.a, 𝑒̅𝑆𝑆  has to be 

minimized: 

 𝑒̅𝑆𝑆 =
∑ |𝑇𝑜

𝑎𝑣,𝑆(𝑡𝑖) − 𝑇𝑜
𝑟𝑒𝑓,𝑆

|𝑃
𝑖=1

𝑃
 (3) 

where, the time interval [t1, tP] is the period of time after 𝑇𝑜
𝑎𝑣,𝑆

 reaches steady state 

and, P is the number of the temperature measurements within the period. In this study, 

[t1, tP] is taken equal to [2000, 2500]s and, thus, P=501. Notice that 𝑒̅𝑆𝑆=0.10oC is taken 

as the largest acceptable value of the average steady-state bias, taking into account the 

value of 0.07oC of the original model at full power, nominal condition and the 

uncertainty in the sampling. On the other side, it is also known that Ki drives the PID 

adjustment towards the steady state by accumulating the past values of the residual over 

time to reduce the steady-state residuals. Thus, the better tuned is the Ki value the better 



14 
 

the PID responds to the environmental change of 𝑇𝑎
𝑖𝑛,𝑆

  in shorter settling time. A 

settling area ASP is defined in Eq. (4) to quantify the accumulated residuals over (tAC, 

tSP) due to the change of inlet air temperature, and has to be minimized to obtain the 

optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi) data pairs from examples: 

 𝐴𝑆𝑃 = ∫ |𝑇𝑜
𝑎𝑣,𝑆(𝑡) − 𝑇𝑜

𝑟𝑒𝑓,𝑆
|𝑑𝑡

𝑡𝑆𝑃

𝑡𝐴𝐶

 (4) 

where, tAC is the starting change time of 𝑇𝑎
𝑖𝑛,𝑆

, i.e., tAC=1000s in our case, and tSP is the 

end time of the PID settling period, i.e., tSP=1800s (as suggested by the scenarios plotted 

in Fig. 5). At full power nominal conditions, the average drift within the time interval 

of [1000, 1800]s is 0.067oC and the accumulated residual is, thus, equal to 53.6. For the 

conservative consideration of the optimal data pairs, 300 is assumed as the acceptable 

value of ASP. 

In this step, three groups of n2=1000 simulations each of the LBE-XADS are run, 

each one devised to obtain the input-output data pairs, for finding the optimal dKp, dKi, 

and dKd, respectively: 

1) Group 1: 

a. Set the initial inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆(0)  equal to 20oC and start the 

simulation. 

b. At t=1000s, sample a random value of 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 uniformly distributed in [0, 30]oC 

and the value of the change of the gain Kp from a uniform distribution U~[-50, 

50), whereas, the Ki and Kd are kept equal to the reference values 0.2 and 0, 

respectively; continue the present simulation till the mission time tM = 3000s. 

c. Calculate the value of the performance index, 𝑒̅𝑆𝑆, and represent its values on 

the three-dimensional diagrams, i.e., (𝑇𝑎,𝐶
𝑖𝑛,𝑆

 , dKp, 𝑒̅𝑆𝑆 ). When the calculated 

value is smaller than 0.07oC, the input-output data pair is labelled as optimal 

to be utilized hereafter. 
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(a) (b) 

Fig. 9. Results of the n2=1000 runs for the Group 1: (a) three-dimensional plot of (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKp, 𝑒̅𝑆𝑆), 

where circles are the value of 𝑒̅𝑆𝑆 smaller than 0.07oC and crosses are the value of 𝑒̅𝑆𝑆 exceeding 

0.07oC; (b) optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKp) data pairs (circles of Fig. 9(a)) 
 

Fig. 9(a) shows that the value of 𝑒̅𝑆𝑆  is smaller than 0.07oC if the inlet air 

temperature changes to values smaller than 30oC. The sparsity of the optimal input-

output data pairs (𝑇𝑎,𝐶
𝑖𝑛,𝑆

 , dKp) (circles in Figs. 9(a) and (b)) suggests the lack of a 

univocal mapping correlation of Kp with changes of 𝑇𝑎
𝑖𝑛,𝑆

  and, thus, defines the 

weakness of Kp in controlling the physical dynamics under variable environmental 

conditions. 

Whereas, if 𝑇𝑎,𝐶
𝑖𝑛,𝑆

  is larger than 30oC (i.e., out of the system design operational 

limits), 𝑒̅𝑆𝑆 exceeds by far the acceptable value of 0.07oC, such that no optimal input-

output data pairs can be expected. As already said, this phenomenon is due to the fact 

that the maximum air mass flow rate Γ𝑎,𝑚𝑎𝑥 cannot meet the required value when 𝑇𝑎,𝐶
𝑖𝑛,𝑆 

exceeds 30oC. 

2) Group 2: 

a. Set the initial inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆(0)  equal to 20oC and start the 

simulation. 

b. At t=1000s, sample a random value of 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 uniformly distributed in [0, 30]oC 

and the value of the change of the gain Ki from a uniform distribution U~(-0.2, 

0.4), whereas the Kp and Kd are kept equal to the reference values 50 and 0, 
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respectively; continue the present simulation till the mission time tM = 3000s. 

c. Calculate the value of the performance index, ASP, and represent the values of 

the performance index on the three-dimensional diagrams, i.e., (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi, ASP). 

When the calculated value is smaller than 300, the input-output data pair is 

labelled as optimal and stored for future utilization. 

Fig. 10(a) shows the values of ASP increasing with (i) increasing dKi and decreasing 

𝑇𝑎,𝐶
𝑖𝑛,𝑆

, or (ii) decreasing dKi and increasing 𝑇𝑎,𝐶
𝑖𝑛,𝑆

. When the sampled 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 is larger than 

30oC (i.e., out of the system design operational limits), the value of the calculated ASP 

is much larger than 300, no matter the value of dKi. 

Fig. 10(b) shows the optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi) (i.e., whose ASP is below the acceptable 

value) and the existence of an explicit mapping relationship between dKi and 𝑇𝑎,𝐶
𝑖𝑛,𝑆

. This 

makes this value crucial for adjusting the hybrid fuzzy-PID gains to the varying 

environmental conditions and controlling the system dynamics. 

 

  

(a) (b) 

Fig. 10. Results of the n2=1000 runs for the Group 2: (a) three-dimensional plot of (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi, 

ASP), where circles are the value of ASP smaller than 300 and crosses are the value of ASP 

exceeding 300; (b) mapping of the optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi) data pairs 

 

3) Group 3: 

a. Set the initial inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆(0)  equal to 20oC and start the 

simulation. 
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b. At t=1000s, sample a random value of 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 uniformly distributed in [0, 30]oC 

and the value of the change of the gain Kd from a uniform distribution U~(-0.2, 

0.4), whereas the Kp and Ki are kept equal to the reference values 50 and 0.2, 

respectively; continue the present simulation till the mission time tM = 3000s. 

c. Calculate the value of the performance index, 𝑒̅𝑆𝑆, and represent values on the 

three-dimensional diagrams, i.e., (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKd, 𝑒̅𝑆𝑆). When the calculated value 

is smaller than 0.07oC, the input-output data pair is labelled as optimal to be 

utilized hereafter. 

Fig. 11(a) shows that the value of 𝑒̅𝑆𝑆  is smaller than 0.07oC if the inlet air 

temperature changes to values smaller than 30oC. The sparsity of the optimal input-

output data pairs (𝑇𝑎,𝐶
𝑖𝑛,𝑆

 , dKd) (circles in Figs. 11(a) and (b)) suggests the lack of a 

univocal mapping correlation of Kd with changes of 𝑇𝑎
𝑖𝑛,𝑆

  and, thus, defines the 

weakness of Kd in controlling the physical dynamics under variable environmental 

conditions. 

 

  
(a) (b) 

Fig. 11. Results of the n2=1000 runs for the Group 3: (a) three-dimensional plot of (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKd, 

𝑒̅𝑆𝑆), where circles are the value of 𝑒̅𝑆𝑆 smaller than 0.07oC and crosses are the value of 𝑒̅𝑆𝑆 

exceeding 0.07oC; (b) mapping of the optimal (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKd) data pairs (circles in Fig. 11(a)) 

 

Whereas, with the fixed initial value of inlet air temperature 𝑇𝑎
𝑖𝑛,𝑆(0) equal to 20oC, 

if 𝑇𝑎,𝐶
𝑖𝑛,𝑆

  is larger than 30oC (i.e., out of the system design operational limits), 𝑒̅𝑆𝑆 
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exceeds by far the acceptable value of 0.07oC, such that no optimal input-output data 

pairs can be expected. Such a phenomenon is probably due to the fact that the maximum 

air mass flow rate 𝛤𝑎,𝑚𝑎𝑥 cannot meet the required value when 𝑇𝑎,𝐶
𝑖𝑛,𝑆 exceeds 30oC. 

In conclusion, we can claim that, for this case study, Kp and Kd play a negligible 

role in the adaptation of the controller when working under varying environmental 

conditions, whereas Ki is sensitive to changes of the environmental conditions and, 

therefore, an appropriate setting of Ki to different 𝑇𝑎,𝐶
𝑖𝑛,𝑆

  can improve the adaptive 

properties of the controller for maintaining 𝑇𝑜
𝑎𝑣,𝑆

 at the desired reference value. As a 

result, the controller block of Fig. 6 is transformed to that shown in Fig. 12. 

 

Feedback

dKi

Ta
in,S(t)

Controller

Air coolers

To
av,S(t)

PID

Fuzzy Logic

Feedforward
P(t) 30%

70%

Γa(t)

 

Fig. 12. Optimized structure of the controller under variable inlet air temperature 

 

Step 2: Generation of the fuzzy sets and fuzzy rules 

The grid-type fuzzy partitioning approach is used to generate the fuzzy sets and 

fuzzy rules for the fuzzy reasoning between the input 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 and the output dKi, as shown 

in Fig. 13: 
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Fig. 13. Generation of the fuzzy sets by the grid-type fuzzy partitioning approach 

 

1) Evenly partition the antecedents domain 𝑇𝑎,𝐶
𝑖𝑛,𝑆

=[0, 30]oC into reasonably small sets 

with given triangular membership functions; we partitioned the input support in 

seven sets Tj, j=1,2,…,7, [-5, 0, 5], [0, 5, 10], [5, 10, 15], [10, 15, 20], [15, 20, 25], 

[20, 25, 30], [25, 30, 35]oC (see Fig. 14) (See the Appendix for a sensitivity analysis 

that justifies the choice of the number of the fuzzy sets). 

2) Collect (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi) of the seven central points of the optimal sets. 

3) Generate triangular output fuzzy sets Ij, j=1,2,…,7, whose largest degree of 

membership is centered on the dKi of the data pairs (𝑇𝑎,𝐶
𝑖𝑛,𝑆

, dKi) of Step (2). The 

seven output fuzzy sets, then, are [-0.22, -0.2, -0.18], [-0.2, -0.18, -0.13], [-0.18, -

0.13, -0.06], [-0.13, -0.06, 0], [-0.06, 0, 0.1], [0, 0.1, 0.225], [0.1, 0.225, 0.4] (see 

Fig. 14). 

4) Define the fuzzy rules Rj, j=1,2,…,7, that define how to match antecedents and 

consequents, that, in our case, take the form: 

Rj: IF (𝑇𝑎,𝐶
𝑖𝑛,𝑆

 belong to Tj) THEN (dKi belong to Ij). 
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Fig. 14. The fuzzy sets generated from the grid-type partitioning approach 

 

Defuzzification of the consequents is performed by the centroid calculation of a 

Mamdani-style fuzzy system inference [33]-[35]. The fuzzy conclusion of the 

consequent y(dKi) corresponding to an antecedent is a fuzzy set Y constituted by the 

membership function μY(y(dKi)). Fig. 15 shows an example of fuzzy conclusion. 

 

 

Fig. 15. Example of the consequent dKi calculation: the value 0.0581 is the centroid of the 

weighted area of the two fuzzy sets activated by the antecedent 𝑇𝑎,𝐶
𝑖𝑛,𝑆

=21.5oC 

 

For example, 𝑇𝑎
𝑖𝑛,𝑆

  changes to 21.5oC at time t=1000s and yields the fuzzy 
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membership values 0.7 in T5 and 0.3 in T6, respectively: 

𝑇𝑎,𝐶
𝑖𝑛,𝑆(21.5)

: (0.7 in T5, 0.3 in T6). 

Thus, the weights 0.7 and 0.3 are applied to T5 and T6 given for the antecedent 𝑇𝑎,𝐶
𝑖𝑛,𝑆(21.5)

.  

The aggregated output fuzzy set Y is generated with the weights 0.7 in I5 and 0.3 

in I6 (see shadowed area in Fig. 15), whose centroid is equal to 0.0581 that is assumed 

as consequent dKi to a change of 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 to 21.5oC. 

 

C. The Variable-Gain PID Controller 

In this Section, a variable-gain PID controller of literature [38] is defined for 

comparing its controlling capability with that of the proposed hybrid fuzzy-PID 

controller. In Section II.A, it has been pointed out that Ki is sensitive, whereas, Kp and 

Kd are insensitive to changes of the environmental conditions, therefore, the PID 

controller will only vary the Ki as in Eq. (5) [38]. 

Notice that the pivotal values of 𝑇𝑎,𝐶
𝑖𝑛,𝑆

  used to build the best fitting linear 

interpolation curve are (15oC, Ki=0.135) and (25oC, Ki=0.30), that are two optimal data 

pairs of Fig. 10(b) defining a likely interval of temperatures under which the plant is 

operated. Thus, the expression of Ki can be as (see Fig. 16): 
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Fig. 16. Generation of the expression of Ki in terms of 𝑇𝑎,𝐶
𝑖𝑛,𝑆
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IV. RESULTS 

In Section IV.A, the capability of the hybrid fuzzy-PID of Section III is 

benchmarked with the originally proposed PID controller with respect to a batch of 

sample simulations among the n2 (described in Section III.A) that were used to train the 

algorithm for learning the rules. The practical usefulness of the proposed hybrid fuzzy-

PID controller is, then, demonstrated with respect to a realistic scenario of daily cycle 

of inlet air temperatures, under normal environmental conditions and also transients 

due to wrong measurements of the temperature sensor (in Sections IV.B and IV.C, 

respectively). 

 

A. Test on the Training Examples 

We sample 18 random trials from the n2 runs of the LBE-XADS Simulink model 

that were generated to train the rule generation algorithm, as described in Section III.B. 

As shown in Fig. 17(a), despite that the performance of the original PID controller (line 

with triangles) and the linearly variable Ki PID controller (line with diamonds) are 

acceptable for all of the 18 samples, the settling areas ASP obtained with the hybrid 

fuzzy-PID controller (line with dots) are in most cases smaller than those obtained with 

the original PID and with the linearly variable Ki PID (also can be seen in Table I): in 

general terms, the optimized hybrid fuzzy-PID smooths down the step response caused 

by the change of the environmental conditions. At the same time, if 𝑇𝑎
𝑖𝑛,𝑆

 changes to a 

random value within the interval of [8, 30.5]oC, the average steady-state drift 𝑒̅𝑆𝑆 is 

smaller with the hybrid fuzzy-PID (line with dots) than with the original PID (line with 

triangles) and with the linearly variable Ki PID (line with diamonds), as shown in Fig. 

17(b). In particular, the larger the temperature, the better the performance of the hybrid 

fuzzy-PID with respect to the original PID (see cases number 17 and 18 with 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 equal 

to 29.98oC and 30.45oC, respectively), not only because 𝑒̅𝑆𝑆 decreases (from 0.157 to 

0.0405 and from 1.16 to 0.0490, respectively), but also because the hybrid fuzzy-PID 

is capable of bringing back the secondary average coolant temperature to the reference 

value equal to 300oC, whereas the original PID cannot. 



23 
 

It is worth pointing out that neither the hybrid fuzzy-PID nor the original PID can 

safely control the system when 𝑇𝑎
𝑖𝑛,𝑆

 changes to a value larger than 31oC, as mentioned 

in Section III.B.b. 

 

Fig. 17. Comparison between results of samples of the 𝑇𝑜
𝑎𝑣,𝑆

 evolution with the optimized hybrid 

fuzzy-PID controller (line with dots), with linearly variable Ki PID (line with diamonds) and with 

the original PID (line with triangles): (a) comparison of ASP; (b) comparison of 𝑒̅𝑆𝑆 

 

TABLE I  

comparison of the performance indexes obtained from samples of the 𝑇𝑜
𝑎𝑣,𝑆

 evolutions with 

the hybrid fuzzy PID, the linear variable Ki PID and the original PID 

No. 
𝑇𝑎,𝐶
𝑖𝑛,𝑆

 (oC) at 

t=1000s 

Original PID Linear Ki PID Hybrid fuzzy-PID 

ASP 𝑒̅𝑆𝑆 (oC) ASP 𝑒̅𝑆𝑆 (oC) ASP 𝑒̅𝑆𝑆 (oC) 

1 3.474 989.7 0.0929 69.64 0.0947 290.8 0.233 

2 4.751 934.1 0.0907 163.8 0.241 173.9 0.134 

3 5.531 898.1 0.0878 264.4 0.370 205.1 0.133 

4 7.663 796.0 0.0851 376.2 0.433 181.3 0.0913 

5 8.716 742.6 0.0848 257.1 0.238 125.3 0.0742 

6 11.54 592.2 0.0806 78.54 0.0848 76.14 0.0618 

7 13.09 501.8 0.0777 60.74 0.0773 57.82 0.0607 

8 16.38 293.1 0.0734 99.94 0.0727 79.02 0.0573 

9 18.87 120.2 0.0688 114.7 0.0689 47.86 0.0550 

10 19.83 62.53 0.0685 115.7 0.0680 49.84 0.0582 

11 20.50 61.61 0.0680 114.2 0.0682 71.95 0.0651 

12 21.73 136.8 0.0640 109.0 0.0654 90.43 0.0538 

13 22.33 184.9 0.0833 105.3 0.0645 84.63 0.0510 

14 23.87 321.3 0.0597 93.33 0.0621 55.57 0.0456 

15 26.92 634.0 0.0583 59.02 0.0565 108.7 0.0474 

16 28.21 786.1 0.0631 51.35 0.0550 93.02 0.0461 

17 29.98 1305 0.157 49.07 0.0561 54.39 0.0405 

18 30.45 1685 1.16 68.50 0.0454 43.21 0.0490 
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B. A Realistic Daily Air Temperature Scenario 

For demonstration purpose, let us assume a realistic daily 𝑇𝑎
𝑖𝑛,𝑆

 fluctuation as that 

in Fig. 18, where the initial value 𝑇𝑎
𝑖𝑛,𝑆(0)  is equal to 20oC corresponding to the 

nominal operating condition of the LBE-XADS and, the actual 𝑇𝑎
𝑖𝑛,𝑆

  is fed to the 

Simulink model of the LBE-XADS, to test the hybrid fuzzy-PID controller working 

under real-time varying environmental conditions, at each 100s (i.e., smaller than the 

original PID resettling period, equal to 800s as shown in Fig. 5). This is done with the 

purpose of illustrating the capability of the hybrid fuzzy-PID to reduce residual e(t) 

even when the system is fed with high frequency changes of 𝑇𝑎
𝑖𝑛,𝑆

 that do not allow it 

to reach a new steady state before a new measurement is collected. Under these 

assumptions, Fig. 19 shows that 𝑇𝑜
𝑎𝑣,𝑆 can be kept close to the desired reference level 

of 300oC with both the hybrid fuzzy-PID controller (line with dots), the linear variable 

Ki PID controller (line with diamonds) and the original PID (line with triangles). 

The proposed hybrid fuzzy-PID feedback controller reduces the drift 

𝑒̅𝑆𝑆 =0.1376oC of the original PID and 𝑒̅𝑆𝑆 =0.1027oC of the variable Ki PID to 

𝑒̅𝑆𝑆=0.0600oC, showing that in this case the hybrid fuzzy-PID controller performs better 

than the original PID controller, under varying environmental conditions. 

 

 

Fig. 18. Realistic daily 𝑇𝑎
𝑖𝑛,𝑆

 fluctuation pattern, embedded into the simulation of the LBE-XADS 
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Fig. 19. Realistic daily simulation of the 𝑇𝑜
𝑎𝑣,𝑆

 evolution with the optimized hybrid fuzzy-PID 

controller (line with dots), with the linear variable Ki PID (line with diamonds) and with the 

original PID (line with triangles), at the normal operating conditions 

 

C. Sensors Failure Scenarios 

Adaptivity of the CPS to sensors failures has also been analyzed for demonstration 

purpose. Indeed, transients due to wrong measurements can affect the NPP dynamics, 

since any transient, even though on the secondary side, can propagate to the primary 

coolant system and, eventually to the reactor core [36]. With no intention to treat a full 

spectrum of failures, for the purpose of exemplification, two failures are considered: 

1) Drift: at 06:00, 𝑇𝑎
𝑖𝑛,𝑆

 drifts up to 28oC that is reached at roughly 06:07, and, then, 

drops back to the normal environmental condition at 06:10 (see Fig. 20(b)); 

2) Bias: within the time interval between 18:00 and 18:05, the measured 𝑇𝑎
𝑖𝑛,𝑆

  is 

biased (because of a sensor bias or a malicious cyber attack) with an increased 

noise distributed as U~(-10, 1)oC (see Fig. 20(c)). 
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Fig. 20. Sketch of the assumed sensors failures: (a) the assumed daily 𝑇𝑎
𝑖𝑛,𝑆

 profile; (b) drift of 

𝑇𝑎
𝑖𝑛,𝑆

 within [06:00, 06:10]; (c) bias of 𝑇𝑎
𝑖𝑛,𝑆

 within [18:00, 18:05] 

 

 

Fig. 21. 𝑇𝑜
𝑎𝑣,𝑆

 evolution with the optimized hybrid fuzzy-PID controller (continuous line), with the 

linear variable Ki PID (dashed line) and with the original PID (dotted line), under the assumed 

sensors failure conditions 

 

Fig. 21 shows that under the two assumed 𝑇𝑎
𝑖𝑛,𝑆

  sensors failures, the 𝑇𝑜
𝑎𝑣,𝑆

 

fluctuations provided by the linear variable Ki PID (dashed line) and by the original 

PID (dotted line) are larger than those of the hybrid fuzzy-PID controller (continuous 

line). 
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Let us focus on the local details of the 𝑇𝑜
𝑎𝑣,𝑆

 evolutions within the two spans of 

transients, including the post-transient adaptivity periods. For the transient periods and 

post-transient periods, the average drifts obtained with the hybrid fuzzy-PID controller 

are much smaller than those obtained with the original PID (see TABLE II). 

 

TABLE II 

Comparison of the average drifts of the 𝑇𝑜
𝑎𝑣,𝑆

 evolutions with the hybrid fuzzy PID, the linear variable Ki PID 

and the original PID, under the transient operating conditions 

Transient 

type 

Time 

interval 

𝑒̅𝑆𝑆 (oC) 

Original PID 
Variable Ki 

PID 

Hybrid 

fuzzy-PID 

Drift 

[06:00, 

06:10] 
1.4040 0.7345 0.4268 

[06:10, 

06:20] 
1.2464 0.3363 0.1555 

Bias 

[18:00, 

18:05] 
0.8439 0.1852 0.2622 

[18:05, 

18:15] 
0.4327 0.0770 0.1533 

 

Figs. 22 and 23 zoom the 𝑇𝑜
𝑎𝑣,𝑆

 evolutions obtained from the simulations with the 

optimized hybrid fuzzy-PID controller, with the linear variable Ki PID and with the 

original PID, under the transients (a) and (b), respectively. The original PID cannot 

adaptively respond to the rapid fluctuations of the environmental conditions (dotted line 

with triangle) and requires roughly 600s (from 06:10 to 06:20) to recover the system 

stability under sensor drift circumstances (see Fig. 22). The linearly variable Ki PID can 

rapidly respond to the transient and recover the system stability from the drift failure 

scenario as shown in Fig. 21, however, 𝑇𝑜
𝑎𝑣,𝑆

 largely deviates from the reference value 

with an 𝑒̅𝑆𝑆 equal to 0.7345oC within the transient period (dashed line with diamonds) 

and an 𝑒̅𝑆𝑆  equal to 0.3363oC within the recovery period. Despite an 𝑒̅𝑆𝑆  equal to 

0.4268oC within the transient period (continuous line with dots), 𝑇𝑜
𝑎𝑣,𝑆

 can promptly 

recover the nominal temperature with an 𝑒̅𝑆𝑆 equal to 0.1555oC, which is much smaller 

than that obtained from the original PID (1.2464oC) (see TABLE II).  

Similarly, the original PID poorly adapts to the sensor bias failure scenario (see 

Fig. 23, dotted line with triangle) and yields an 𝑒̅𝑆𝑆 equal to 0.8439oC. Despite larger 

𝑒̅𝑆𝑆 during both the transient and the post-transient periods (𝑒̅𝑆𝑆 equal to 0.2622oC and 
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0.1533oC, respectively (see TABLE II)) compared with the linearly variable Ki PID 

controller, the proposed hybrid fuzzy-PID can still rapidly respond to the transient and 

recover the system from the sensor bias failure. 

 

 

Fig. 22. Comparison of the  𝑇𝑜
𝑎𝑣,𝑆

 evolution with the optimized hybrid fuzzy-PID controller 

(continuous line), with the linear variable Ki PID (dashed line) and with the original PID (dotted 

line), under the sensor drift failure scenario 

 

 

Fig. 23. Comparison of the  𝑇𝑜
𝑎𝑣,𝑆

 evolution with the optimized hybrid fuzzy-PID controller 

(continuous line), with the linear variable Ki PID (dashed line) and with the original PID (dotted 

line), under the sensor bias failure scenario 

 

In conclusion, the proposed hybrid fuzzy-PID controller achieves less average 
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drifts 𝑒̅𝑆𝑆  than other controllers, in realistic scenarios of daily cycles of inlet air 

temperatures and also in accidental transients due to wrong sensor measurements, in 

the end preventing the system dynamics from deviating from steady-state beyond safety 

limits. 

 

V. CONCLUSIONS 

A hybrid fuzzy-PID control strategy is proposed for controlling a Cyber-Physical 

System (CPS), under varying environmental conditions. Environmental parameters 

values are fed to the hybrid fuzzy-PID, which adaptively optimizes the PID gains for 

controlling the physical variables of interest so as to keep them within preset safety 

bounds and, thus, improve the real-time performance of CPSs. To increase the 

transparency of the fuzzy reasoning underpinning the control, a grid-type fuzzy 

partitioning approach is proposed for optimizing the fuzzy sets and fuzzy rules, which 

are learnt from examples of input-output data pairs. 

For illustration purposes, the proposed controller is applied for the control of the 

LBE-XADS secondary side average temperature, by adaptively responding to changes 

of the inlet air temperature. Results demonstrate the benefits that the hybrid fuzzy-PID 

controller offers over traditional PIDs, effectively reducing the resettling time of the 

system response to changes in the inlet air temperature.  

 

APPENDIX. SENSITIVITY ANALYSIS FOR THE IDENTIFICATION OF 

THE OPTIMAL NUMBER OF FUZZY SETS 

In this analysis, a number S=3, 5, 7, 9, 11 of input membership functions T are 

tested, resulting in S output fuzzy sets, according to the procedure of Section III.B.b. 

The 18 samples of Section IV.A are run with the LBE-XADS model equipped with the 

resulting hybrid fuzzy-PID controllers. Results are shown in Fig. A.1: Fig. A.1(a) shows 

that the hybrid fuzzy-PIDs with S=7 and S=11 perform better than the others, because 

ASP is below 300 (at any environmental temperature), whereas the others cannot. Fig. 

A.1(b) shows that S=7 is to be preferred, because 𝑒̅𝑆𝑆  is smaller than 0.07oC and 
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acceptable (when 𝑇𝑎,𝐶
𝑖𝑛,𝑆

 larger than 8oC). 

The compromise between performance, robustness and computational demand has, 

thus, led us to set up a hybrid fuzzy-PIDs with 7 sets of membership functions. 

 

 

Fig. A.1. SA results of the samples obtained from the hybrid fuzzy-PID controller with different 

sets of membership functions and from the original PID: (a) settling area ASP; (b) steady-state 

drift 𝑒̅𝑆𝑆 
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