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Dynamic risk assessment based on statistical failure
data and condition-monitoring degradation data

Zhiguo Zeng and Enrico Zio, Senior Member, IEEE

Abstract—Traditional Quantitative Risk Assessment (QRA)
methods (e.g., event tree analysis) are static in nature, i.e.,
the risk indexes are assessed before operation, which prevents
capturing time-dependent variations as the components and
systems operate, age, fail, are repaired and changed. To address
this issue, we develop a Dynamic Risk Assessment (DRA) method
that allows online estimation of risk indexes using data collected
during operation. Two types of data are considered: statistical
failure data, which refer to the counts of accidents or near misses
from similar systems and condition-monitoring data, which come
from online monitoring the degradation of the target system of
interest. For this, a hierarchical Bayesian model is developed
to compute the reliability of the safety barriers and a Bayesian
updating algorithm, which integrates Particle Filtering (PF) with
Markov Chain Monte Carlo (MCMC), is developed to update the
reliability evaluations based on both the statistical and condition-
monitoring data. The updated safety barriers reliabilities, are,
then, used in an Event Tree (ET) for consequence analysis and
the risk indexes are updated accordingly. A case study on a
High-Flow Safety System (HFSS) is conducted to demonstrate the
developed methods. A comparison to the DRA method which only
uses statistical failure data shows that by introducing condition-
monitoring data on the system degradation process, it is possible
to capture the system-specific characteristics, and, therefore,
provide a more complete and accurate description of the risk
of the target system.

Index Terms—Dynamic risk assessment, event tree analysis,
hierarchical Bayesian model, condition-monitoring, Particle Fil-
tering (PF), Markov Chain Monte Carlo (MCMC)

I. INTRODUCTION

QUANTITATIVE Risk Assessment (QRA) has been wide-
ly applied in various areas [1–3]. Despite of the wide

application, traditional QRA methods (e.g., event tree analysis
[4]) have been frequently criticized for being “intrinsically
static”, i.e., the risk indexes are assessed before systems
come into operation, and, so, they do not capture the time-
dependent variations as components and systems operate, age,
fail, are repaired and changed [5]. Dynamic Risk Assessment
(DRA) is defined in [6] as a risk assessment method that
updates the estimated risk of a deteriorating process according
to the performance of the control system, safety barriers,
inspection and maintenance activities, the human factors, and
the implementation of procedures. Compared to the traditional
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“static” QRA, DRA is capable of capturing the time-dependent
behaviors of the risk indexes and provides a more realistic
description of the system risk [3, 5, 6].

Traditionally, DRA methods use only statistical failure data
for risk updating, which refer to count data of accidents
or near misses from similar systems [7, 8]. A drawback of
using only statistical failure data is that, one has to wait for
accidents or near misses (precursors) to occur before updating
the estimation of the risk indexes. Besides, statistical failure
data are collected from similar systems, reflecting population
characteristics but not fully accounting for the individual
features of the target system. A beneficial complement of
statistical failure data is condition-monitoring data, which
come from the online monitoring of the system’s operational
state and degradation process [9]. Condition-monitoring data
contain information on the individual degradation process
of the target system and, therefore, provide the opportunity
to update the reliability values before actual failures occur.
Hence, integrating condition-monitoring data with statistical
failure data can significantly enhance the effectiveness of
DRA.

Statistical failure data and condition-monitoring data have
been used separately for DRA but the integration of the two
data sources for DRA remains an open issue. To fill this gap,
we develop a novel method for DRA that integrates both sta-
tistical and condition-monitoring data. The main contribution
of the paper can be summarized as follows:

• A hierarchical Bayesian reliability model is developed for
incorporating both statistical failure data and condition-
monitoring data;

• A hybrid MH/Gibbs algorithm is developed for dynamic
reliability assessment;

• A sequential Bayesian method is developed by integrating
the two data sources in DRA.

The rest of this paper is organized as follows. The developed
DRA method is presented in Section III and applied in Section
IV to a high-flow safety alarm system. Finally, the paper is
concluded in Section V with a discussion of potential future
work.

II. RELATED WORKS

In this section, we review existing works related to DRA.
Based on the data used for DRA, we divide the existing
works into two categories: in Sub-Section II-A, we discuss
DRA methods using statistical failure data, while in Sub-
Section II-B, we focus on DRA methods using condition-
monitoring data.
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It should be noted that as [6], the DRA methods discussed
in this paper only consider the time-dependent behavior of the
failure probability of the safety barriers. The system failure
logic, on the contrary, remains static, i.e., does not change
over time. For DRA with time-dependent failure logic, readers
might refer to dynamic fault tree/event tree analysis (e.g., see
[10] and [11]).

A. DRA with statistical failure data
Statistical failure data, also known as Accident Sequence

Precursor (ASP) data, refer to count data of accidents or near
misses from similar systems [7, 8, 12]. Most existing DRA
methods use statistical failure data to update the reliability
and risk indexes. For example, an early attempt of DRA
was conducted in [7, 8], where Bayes theorem was used to
dynamically update the estimates of accident probabilities,
using near misses and incident data collected from similar
systems. Kalantarnia et al. developed a similar DRA method,
where Bayes theorem is used for probability updating and
Event Tree (ET) analysis is used for consequence modeling
[12]. Roy et al. used ET to model the accident sequences of
an ammonia storage unit and Bayes theorem for DRA [13].
Pariyani et al. used ET and Bayes theorem to update the risk
in chemical process industries based on data from a large near-
miss data base [14]. Khakzad et al. developed a hierarchical
Bayesian model for DRA and applied it to analyze the near-
accident data of offshore blowouts [15]. Yang et al. applied a
similar hierarchical Bayesian model to dynamically assess the
risk of an offshore drilling platform [16].

In [17], Bayes theorem was combined with a Bow-Tie (BT)
model for DRA: failure probabilities of the primary events and
safety barriers in the BT were constantly revised over time
and the updated BT model was used to estimate the updated
risk profile. Paltrinieri et al. used BT to support the DRA
from metal dust accidents [18]. Abimbola et al. applied a
similar method to update in real time the risk estimation of
offshore drilling operations [19]. Khakzad et al. developed a
DRA method using a Bayesian Network (BN) model, where
the probabilities of the basic events in the BN are updated
when new accident data are collected [20]. A comparison of
the BT-based and BN-based methods were made in [21], and
a procedure was given to map a BT into a BN. Li et al.
considered the DRA for assessing the risk of leakage failure
in submarine oil and gas pipelines using BT and BN [22]. In
[23], Zarei et al. applied the BN in the DRA of a natural gas
station.

The DRA methods reviewed above use only statistical
failure data for risk updating. As mentioned in Section I,
one significant drawback of statistical failure data is that they
cannot give alerts prior to the occurrence of accidents, since
they are collected at failure. Another issue is that statistical
failure data are collected from a population of similar systems,
and, therefore, do not fully account for the system-specific
features of the target system.

B. DRA with condition-monitoring data
Condition-monitoring data refer to the online-monitoring

data related to the system’s operational state and degradation

processes [9]. In practice, accident initiating events and safety
barriers failures usually occur as a result of degradation
mechanisms, e.g., wear [24], corrosion [25], fatigue [26], crack
growth [27], oxidation [28], etc. These degradation processes
can be monitored and failures can be predicted and antici-
pated with reference to specific thresholds of the monitored
variables. Condition-monitoring data contain information on
the individual degradation process of the target system and
provide the opportunity to update the reliability values before
actual failures occur.

There are a few initial attempts of using condition-
monitoring data in DRA. For example, Zadakbar et al. applied
Kalman filtering to estimate the true degradation states from
condition-monitoring data and conducted DRA based on a
loss function associated with the degradation states [29].
Similar works were also conducted by the same authors
using different condition-monitoring techniques, i.e., Particle
Filtering (PF) [30] and Principal Component Analysis (PCA)
[31]. To deal with nonlinear and non-Gaussian features, Yu et
al. developed a self-organizing map-based approach for DRA
using condition-monitoring data [32]. Wang et al. proposed
the concept of remaining time and used it to develop a DRA
method for multiple condition-monitoring variables [33]. Liu
and Zio [34] presented a Bayesian reliability updating method
using condition-monitoring data considering the dependencies
between two components. Kim et al. conducted a DRA
by monitoring sensitive variables of a passive residual heat
removal system, but without considering the possible noise in
the monitored data [9].

Condition-based Fault Tree Analysis (CBFTA) is developed
by Shalev and Tiran [35] for DRA, where the failure rates of
the basic events are updated using condition-monitoring data,
such as vibration, electrical current, etc. Hu et al. developed
a DRA method based on Dynamic Bayesian Network (DBN),
where condition-monitoring data from a process monitoring
system are used to update the parameters of the DBN mod-
el [36]. Gomes et al. applied Kalman filter to predict the
Remaining Useful Life (RUL) of the components, and then
conduct DRA using a fault tree model [37]. Aizpurua et
al. developed a dynamic dependability assessment framework
where prognostic capability has been introduced to update
the reliabilities of some minimal cut-sequence sets [38]. In
[39], a dynamic Bayesian network is constructed for reliability
centered maintenance planning, where the conditional proba-
bilities of the nodes are updated based on condition-monitoring
data using a Kalman filter.

The works reviewed above use only condition-monitoring
data for risk updating, and do not consider statistical failure
data. How to integrate condition-monitoring data with statisti-
cal failure data, then, remains a challenge for a more informed
DRA. To address this issue, we develop a new DRA method.
Compared to the existing methods, the developed method
integrates statistical failure data and condition-monitoring data
for risk model updating, and, therefore, provides a more
condition-informed result from the risk assessment. It should
be noted that by “integrate”, we mean using both statistical
failure data and condition-monitoring data to update the initial
distribution of the risk index, which is derived based on
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historical data. In this context, both condition-monitoring data
and statistical failure data serve as evidence, i.e., they should
appear in the likelihood function part of the Bayesian updating
framework.

III. A NOVEL METHOD FOR DRA
In this section, we develop a new DRA method that consid-

ers both statistical and condition-monitoring data. The problem
we intend to address in this paper is formally defined in
Subsection III-A. A first step in the DRA is to online update
the reliability of the safety barriers using the two types of data.
For this, a hierarchical Bayesian reliability model is developed
in Subsection III-B. Based on the model, an online assessment
algorithm is developed for the reliability values of the safety
barriers in Subsection III-C and III-D. Finally, a sequential
Bayesian algorithm is developed in Subsection III-E to update
the risk indexes using the revised reliability values of the safety
barriers.

A. Problem definition
Without loss of generality, we consider an ET with n

possible consequences C1, C2, · · · , Cn, m safety barriers
B1, B2, · · · , Bm and an initial event IE. Conceptually, the ET
can be expressed as

rC = gETA(RB1
, RB2

, · · · , RBm
| IE), (1)

where RBi
is the reliability of the ith safety barrier and rC =

[rC1 , rC2 , · · · , rCn ] is the consequence risk index considered
in this paper, which is measured by the conditional occurrence
probability of the consequence given that IE has occurred:

rCi
= Pr{Ci | IE has occurred}, i = 1, 2, · · · , n. (2)

In this paper, we consider the dynamic assessment of the
risk indexes as defined in (1), using both statistical failure
data and condition-monitoring data. Statistical data refer to
the count data of the consequences of accidents that occur
during the operation of similar systems, thus providing “pop-
ulation” information, while condition-monitoring data come
from online monitoring the degradation of the specific target
system of interest and describe system-specific features. More
specifically, it is assumed that:

1) statistical failure data and condition-monitoring data are
collected at predefined observation instants t = tj , j =
1, 2, · · · , q;

2) the collected statistical failure data are denoted by
Nk,j , k = 1, 2, · · · , n, where Nk,j denotes the num-
ber of the kth consequences that occur in the interval
(tj−1, tj ] and t0 = 0;

3) the collected condition-monitoring data on the ith safety
barrier at t = tj are denoted by yi,j , i = 1, 2, · · · ,m
and j = 1, 2, · · · , q;

4) the degradation threshold for the ith safety barrier is
yth,i and failure of the ith safety barrier occurs when
yi,j ≤ yth,i.

The problem of DRA can, then, be defined as: at each t =
tj , j = 1, 2, · · · , q, update the estimation of rC in (1), based
on statistical failure data Nk,j and condition-monitoring data
yi,j .

B. Hierarchical Bayesian model for safety barrier reliability
updating

In this section, a hierarchical Bayesian model is developed
for evaluating the reliability of the safety barriers considering
both statistical and condition-monitoring data. The model is
based on the following assumptions:

1) in each interval (tj−1, tj ], j = 1, 2, · · · , q, the ith
safety barrier in the population of similar systems has
reliability πi,j , where πi,j is a random variable with
prior distribution p0,πi,j

and posterior distribution p1,πi,j

and t0 = 0;
2) the prior distribution of πi,1 is a Beta distribution with

parameter αi and βi :

πi,1 ∼ Beta(αi, βi) (3)

while for j ≥ 2, p0,πi,j = p1,πi,j−1 ;
3) in each interval (tj−1, tj ], j = 1, 2, · · · , q, the reliability

of the ith safety barrier in the target system of interest,
denoted by RB,i,j , is a random variable whose prior
distribution is a Beta distribution:

RB,i,j ∼ Beta (Kπi,j ,K(1− πi,j)) , (4)

where πi,j follows its posterior distribution p1,πi,j .
4) K is a random variable with uniform prior distribution:

K ∼ Uniform(KL,KU ). (5)

From Assumption 1, the statistical count data of occurrence
of accidents with given consequences in each interval can be
modeled by a binomial probability model:

Pr {NS,i,j , NF,i,j | πi,j} ∝ π
NS,i,j

i,j (1− πi,j)NF,i,j , (6)

where NS,i,j and NF,i,j represent the number of successes
and failures of the ith safety barrier in (tj−1, tj ], respectively.
The detailed procedures for calculating NS,i,j and NF,i,j from
the statistical failure data are given in Subsection III-C. The
reason for us to choose the binomial model is that the statistical
failure data on the safety barriers are of failure-on-demand
type [40, 41]. Equation (6) serves as the likelihood function
for the statistical failure data. It should be noted that, for
simplicity, we drop the constants in the likelihood function,
since they do not affect the derivation of posterior distributions
in Bayes theorem [42].

According to Assumption 2, at each tj , j = 1, 2, · · · , q, the
prior distribution in (3) can be updated recursively based on
Bayesian theorem [41]. Since the likelihood function in (6) is
conjugate to the Beta prior in (3), the posterior p1,πi,j

is also
a Beta distribution [41]:

πi,j ∼ Beta

(
αi +

j∑
τ=1

NS,i,τ , βi +

j∑
τ=1

NF,i,τ

)
. (7)

Assumption 3 relates the condition-monitoring data to the
statistical failure data. To explain it, note that the mean value
of the Beta distribution in (4) is calculated by [41]:

E [RB,i,j ] =
Kπi,j

Kπi,j +K(1− πi,j)
= πi,j .
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Therefore, it is assumed that statistical failure data from
similar systems determine the mean value of the reliability
of the target system under condition-monitoring. Let MS,i,j

and MF,i,j denote the number of successes and failures of the
ith safety barrier in (tj−1, tj ], respectively. Assumption 3 also
indicates that MS,i,j and MF,i,j can be modeled by a binomial
model:

Pr {MS,i,j ,MF,i,j |RB,i,j} ∝ R
MS,i,j

B,i,j (1−RB,i,j)MF,i,j .
(8)

Note that MS,i,j and MF,i,j have to be generated from
condition-monitoring data by conducting “pseudo-tests”, since
in practice, we have only one sample, i.e., that of the target
system under condition-monitoring. Detailed procedures of
generating MS,i,j and MF,i,j are discussed in details in
Subsection III-C. Equation (8) is the likelihood function for
the condition-monitoring data. As in (6), the constants in the
likelihood function are dropped since they do not affect the
derivation of the posterior distributions [41].

As discussed in [41], K can be regarded as the “prior sample
size”. Let M = MS,i,j +MF,i,j denote the sample size of the
pseudo-tests based on the condition-monitoring data. Roughly
speaking, the ratio between K and M measures the trust on the
statistical failure data compared to the condition-monitoring
data: a high value of K/M indicates that one has more trust
on the statistical failure data than the condition-monitoring
data, and vice versa. In practice, the value of K should be
determined based on the value of M to reflect the weight of
trust on the two types of data. A detailed discussion on the
effect of K is given in Section IV-C. Assumption 4 accounts
for the uncertainty in determining the precise value of K.

Some existing works can be found in literature for DRA,
e.g., [7], [20], [12], etc. These models, however, do not assume
a hierarchical structure for the reliability and, therefore, can
only be used for modeling statistical failure data. Compared
to the existing models, the uniqueness of the developed model
is that it proposes a hierarchical Bayesian model, which
allows integrating both statistical failure data and condition-
monitoring data.

C. Generating pseudo-test data

Pseudo-test data are an important concept in the developed
DRA method. They are generated, based on the collected data,
(either statistical failure data or condition-monitoring data), to
represent the “equivalent” binomial tests and failure data on
each safety barrier. In this paper, we distinguish two types of
pseudo-tests:

1) Statistical data-based pseudo-tests: Statistical data
(Nk,j , k = 1, 2, · · · , n, j = 1, 2, · · · , q) count the number of
occurrences of the consequences in each observation interval.
Note that in an ET, observing a certain consequence indicates
that the events associated to it have occurred. Since the events
correspond to success or failure of the safety barriers, the
statistical failure data can be viewed as pseudo-tests on the
safety barriers. Take a simple ET in Figure 1 as an example.
From Figure 1, we can see that if consequence C2 occurs,
safety barrier B1 must be working and B2 must be failed.

Therefore, the occurrence of C2 is equivalent to a pseudo-
test on B1 whose result is success and a pseudo-test on B2

whose result is failure. The same reasoning applies to the other
consequences and safety barriers. Let us define an indicator
function 1(Bi, Ck) :

1(Bi, Ck) =


1, if the occurrence of Ck indicates the

success of the ith safety barrier,
0, if the occurrence of Ck indicates the

failure of the ith safety barrier.

(9)

The pseudo-test data NS,i,j and NF,i,j can, then, be calculated
from Nk,j :

NS,i,j =

n∑
k=1

1(Bi, Ck) ·Nk,j ,

NF,i,j =

n∑
k=1

(1− 1(Bi, Ck)) ·Nk,j .
(10)

Fig. 1. An illustrative ET

2) Condition-monitoring data-based pseudo-tests:
Condition-monitoring data (yi,j , j = 1, 2, · · · , q) are collected
by online-monitoring the degradation process of the ith safety
barrier at t = tj , j = 1, 2, · · · , q. Since condition-monitoring
data are often subject to process and observation noises,
PF is used in this paper to estimate the true degradation
states. PF is chosen for its flexibility and ability to handle
complex nonlinear system dynamics and non-Gaussian
noises. Although other methods, such as extended Kalman
filter and unscented Kalman filter, might also be applied on
nonlinear and non-Gaussian problems, they are based on
Taylor approximation of a non-linear function. PF, on the
other hand, does not require such approximation and fully
represent the nonlinear system dynamics.

It is assumed that the degradation process of the ith safety
barrier follows a state space model [43]:{

xi,j = gi (xi,j−1, εi) (state equation),
yi,j = hi (xi,j , δi) (observation equation),

(11)

where xi,j is the state variable, yi,j is the observation, εi is
the process noise and δi is the observation noise. In PF, the
forms of gi(·) and hi(·) are assumed to be known and the
true system state xi,j , j = 1, 2, · · · , q are estimated recursively
based on Bayesian theorem [43, 44] (Eq. (13)), where in
(13), p (xi,j | yi,1, yi,2, · · · , yi,j) is the posterior density for
xi,j , updated at t = tj ; p (yi,j | xi,j) is determined by the
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observation equation in (11) and p (xi,j | yi,1, yi,2, · · · , yi,j−1)
is determined based on the output of the PF at t = tj−1.

In practice, (13) is evaluated using sequential Monte Carlo
simulations: at each tj , p (xi,j | yi,1, yi,2, · · · , yi,j) is approx-
imated by

p (xi,j | yi,1, yi,2, · · · , yi,j) ≈
NP∑
k=1

w
(k)
i,j δ

(
xi,j − x(k)i,j

)
(12)

where
{

x(k)
i,j , w

(k)
i,j

}
, k = 1, 2, · · · , NP are the samples (re-

ferred to as “particles”) and the associated weights generated
by sequential importance sampling, and δ(·) is the Dirac delta
function.

It is shown in [43] that if at each t = tj , the particles are
generated by

x(k)i,j ∼ p(xi,j | xi,j−1), (14)

where p(xi,j |xi,j−1) is the proposal density of the importance
sampling and is determined by the state equation in (11), then,
the weights can be updated by

w
(k)
i,j =

w
(k)
i,j−1p

(
yi,j | x(k)i,j

)
∑NP

k=1 w
(k)
i,j−1p

(
yi,j | x(k)

i,j

) . (15)

Algorithm 1 [43] summarizes the major steps of the PF
here employed. The purpose of resampling in Algorithm 1 is
to avoid the well known problem of particle degeneracy and
resampling is often conducted by sampling with replacement

from
{

x(k)
i,j−1, w

(k)
i,j−1

}NP

k=1
[45].

Algorithm 1 PF-based estimation of the states of the safety
barriers [43]

Inputs:
{

x(k)i,j−1, w
(k)
i,j−1

}NP

k=1
, yi,j

Outputs:
{

x(k)i,j , w
(k)
i,j

}NP

k=1
1: for k = 1 : NP do
2: Sample x(k)

i,j using (14);
3: end for
4: Update w(k)

i,j , k = 1, 2, · · · , NP , using (15);

5: ˆNeff ←
(∑NP

k=1

(
w

(k)
i,j

)2)−1

;

6: if ˆNeff < NP /2 then
7: Update x(k)i,j and w(k)

i,j by resampling;
8: end if
9: return

{
x(k)i,j , w

(k)
i,j

}NP

k=1
.

At each t = tj , the posterior density of xi,j is approxi-
mated by the updated particles and weights from sequential
importance sampling. Therefore, the particles can be viewed
as pseudo-tests on the reliability of the safety barriers, based
on which MS,i,j and MF,i,j can be generated (Algorithm 2).

D. Updating the reliability of the safety barriers

In this section, we discuss how to update the reliability of
the safety barriers based on the pseudo-test data generated

Algorithm 2 Generating pseudo-test data based on PF

Inputs:
{

x(k)i,j , w
(k)
i,j

}NP

k=1
, yi,th

Outputs: MS,i,j , MF,i,j

1: MS,i,j = 0, MF,i,j = 0
2: for k = 1 : NP do
3: x(k)pseudo ← Randomly select one element from{

x(k)i,j

}NP

k=1
, where x(k)

i,j is selected with probability w(k)
i,j ;

4: Calculate y
(k)
pseudo using the observation equation in

(11);
5: if y(k)pseudo > yi,th then
6: MS,i,j = MS,i,j + 1;
7: else
8: MF,i,j = MF,i,j + 1;
9: end if

10: end for
11: return MS,i,j ,MF,i,j .

in Subsection III-C. The updating is done in two stages. In
the first stage, statistical failure data are used to update the
reliability of similar systems (πi,j). As shown in Assumption
2, the prior distribution of πi,j and the statistical failure data
follow a beta-binomial model [41]. Therefore, the posterior
density of πi,j can be recursively updated using (7). The
updated posterior density is, then, combined with condition-
monitoring data in the second stage to update the reliability
of the safety barriers (RB,i,j).

To do this, first note that RB,i,j is modeled by a hierarchical
Bayesian model with a hyper-parameter K (see Assumptions
(3) and (4) in Subsection III-B). It should be mentioned that
the πi,j in (4) is not regarded as a hyper-parameter, but as
a random variable with a fixed probability distribution (i.e.,
p1,πi,j

yielded by the first stage updating). Based on Bayes
theorem [41], the joint posterior density of RB,i,j and K,
denoted by p1(RB,i,j ,K), can be expressed as

p1(RB,i,j ,K) , p (RB,i,j ,K |MS,i,j ,MF,i,j)

∝ p (MS,i,j ,MF,i,j |RB,i,j) ·
p (RB,i,j |K) · p(K),

(16)

where p (MS,i,j ,MF,i,j |RB,i,j) is the likelihood function in
(8), p (RB,i,j |K) is the prior distribution of RB,i,j in (4), and
p(K) is the prior distribution of K in (5). Equation (16) can
be further expressed as (20) where B(·) is the Beta function
and ∆ is a proportional constant.

Due to the complexity of (20), it is hard to derive the
analytical form of p1(RB,i,j ,K). Therefore, we use Markov
Chain Monte Carlo (MCMC) to generate samples from
p1(RB,i,j ,K). For a detailed discussion of MCMC, readers
might refer to Chapter 3 in [41]. Note that in this case, if
we fix the value of K in (20), we have (21), which indicates
that conditioned on K and the data, RB,i,j follows a Beta
distribution:

RB,i,j | K,MS,i,j ,MF,i,j

∼ Beta(MS,i,j +Kπ,MF,i,j +K(1− π)).
(17)
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p (xi,j | yi,1, yi,2, · · · , yi,j) =
p (yi,j | xi,j) p (xi,j | yi,1, yi,2, · · · , yi,j−1)∫
p (yi,j | xi,j) p (xi,j | yi,1, yi,2, · · · , yi,j−1) dxi,j

, (13)

Therefore, in the MCMC, RB,i,j can be updated using Gibbs
sampler based on (17) [41]. On the other hand, if we condition
on RB,i,j and the data, we have:

p(K |RB,i,j ,MS,i,j ,MF,i,j) ∝

RKπB,i,j · (1−RB,i,j)K(1−π) · 1

B(Kπ,K(1− π))
,

(18)

which cannot be expressed as any known probability distri-
bution. Therefore, the Metropolis-Hastings (MH) algorithm
is used to update K. In this case, we choose the proposal
distribution to be a Uniform distribution over [KL,KU ],
i.e., the same as the prior distribution of K. Therefore, the
acceptance probability pacc becomes [41]:

pacc = min

(
1,

p(θ∗ | data)

p(θ(l−1) | data)

f(θ(l−1) | θ∗)

f(θ∗ | θ(l−1))

)
= min

(
1,

p
(
K(∗) |RB,i,j ,MS,i,j ,MF,i,j

)
p
(
K(l−1) |RB,i,j ,MS,i,j ,MF,i,j

)) , (19)

where f(· | ·) is the proposal density and the ratio in (19) is
calculated based on (18).

A hybrid Gibbs/MH algorithm is developed to dynamically
update the reliability of the safety barriers, as shown in
Algorithm 3, where Nl is the number of the iterations. As
l becomes large,

{
R(l),K(l)

}
converge to a random sample

from the joint posterior distribution [41]. In practice, the
first Nburn−in samples are dropped to reduce the correla-
tion between the samples [42]. Therefore, at each t = tj ,
Algorithm 3 is used to update the reliability of the ith safety
barrier and the posterior density of RB,i,j is approximated by
R(l), l = Nburn−in + 1, Nburn−in + 2, · · · , Nl.

One thing that needs special attention when applying Algo-
rithm 3 is to check the convergence of the MCMC samples.
Normally, the MCMC algorithms start from initial values that
might be far away from the center of the posterior distribution.
As the algorithm iterates, the MCMC samples tend to converge
to samples from the posterior distribution. In this paper, we
use trace plots for the convergence checks: a stable trace plot
indicates good convergence, while a trace plot with significant
increasing or decreasing trends means that more iterations are
needed for convergence [41]. Some numerical indicators, e.g.,
autocorrelation coefficient, sample standard deviation of the
batch means, potential scale reduction, etc., can also be used
to monitor the convergence of the MCMC. For more details,
readers might refer to Chapter 3 of [41].

E. A sequential Bayesian updating algorithm for DRA

Once the reliability of the safety barriers are updat-
ed, DRA can be done using Algorithm 4. The resulting{

r(l)C
}Nl−Nburn−in

l=1
approximate the posterior distribution of

rC updated at t = tj . At each t = tj , j = 1, 2, · · · , q,
Algorithm 4 is recursively applied for the DRA.

Algorithm 3 A hybrid Gibbs/MH algorithm to update the
reliability of the safety barriers
Inputs: MS,i,j , MF,i,j , NS,i,j , NF,i,j
Outputs:

{
R(l),K(l)

}Nl

l=1

1: Set initial values for R(0),K(0), π(0);
2: for l = 1 : Nl do
3: R(l) ← Generate a random sample from (17), where
K = K(l−1), π = π(l−1);

4: K∗ ← Generate a random sample from the proposal
density, i.e., Uniform(KL,KU );

5: pacc ← Calculate pacc using (19), where RB,i,j =
R(l), π = π(l−1);

6: r ← Generate a sample from Uniform(0, 1);
7: if r ≤ pacc then
8: K(l) ← K∗;
9: else

10: K(l) ← K(l−1);
11: end if
12: π(l) ← Generate a random sample from (7);
13: end for
14: return

{
R(l),K(l)

}Nl

l=1
.

Algorithm 4 Sequential Bayesian updating for DRA (for t =
tj)

1: for i = 1 : m do
2: {NS,i,j , NF,i,j} ← Generate pseudo-test data based

on statistical failure data, using (10);

3:
{

x(k)
i,j , w

(k)
i,j

}NP

k=1
← Particle filtering based on

condition-monitoring data, using Algorithm 1;
4: {MS,i,j ,MF,i,j} ← Generate pseudo-test data based

on
{

x(k)i,j , w
(k)
i,j

}NP

k=1
, using Algorithm 2;

5:
{
R

(l)
B,i,j

}Nl−Nburn−in

l=1
← Update RB,i,j using Algo-

rithm 3;
6: end for
7: for l = Nburn−in + 1 : Nl do
8: RBi ← R

(l)
B,i,j , i = 1, 2, · · · , n;

9: r(l−Nburn−in)
C ← Calculate the risk indexes using (1);

10: end for
11: return

{
r(l)C
}Nl−Nburn−in

l=1
.

IV. APPLICATIONS

In this section, we consider the High-Flow Safety System
(HFSS) analyzed in [12] as a case study to demonstrate the
application of the developed methods. The configuration of the
HFSS is introduced first in Subsection IV-A. Then, in Subsec-
tion IV-B, pseudo-test data are generated based on statistical
failure data and condition-monitoring data, respectively. The
reliability of the safety barriers are updated in Subsection IV-C
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p1(RB,i,j ,K) =

{
0, K > KU or K < KL,

∆ ·RMS,i,j+Kπ−1

B,i,j · (1 −RB,i,j)
MF,i,j+K(1−π)−1 · 1

B (Kπ,K(1 − π))
· 1

KU −KL
, otherwise.

(20)

p (RB,i,j |K,MS,i,j ,MF,i,j) ∝ R
MS,i,j+Kπ−1
B,i,j · (1−RB,i,j)MF,i,j+K(1−π)−1. (21)

and the results of the DRA for the HFSS are presented in
Subsection IV-D.

A. Description of the HFSS

The HFSS is a system installed on a hazardous material
storage tank to defend against potential accidents that might
be caused by a High-Flow (HF) event, i.e., the flow rate of
the input pipeline becomes abnormally high for some reasons
[12]. A defense-in-depth strategy is implemented by five safety
barriers in the HFSS (Table I): when the HF event occurs, it is
detected by the Basic Process Control (BPC) and the Bypass
Line (BL) is activated by the BPC to prevent the excess flows
from entering the tank. If the BPC does not work properly,
the High Level Alarm (HLA) is triggered and an alarm is
sent to the operator. The operator can close the Manual Valve
(MV) to stop the excess flows. If, by any chance, all the above
measures fail, excess flows generate high-pressure vapors in
the tank. These vapors can be detected and the Pressure Safety
Valve (PSV) will open automatically to reduce the pressure
inside the tank.

An ET is constructed in [12] for the HFSS. Depending
on the states of the safety barriers, 11 consequences, i.e.,
C1, C2, · · · , C11 can result from an initial HF. These con-
sequences are grouped into three categories based on their
severity: normal operation (CA), overflow of hazardous mate-
rials (CB) and excessively high pressure inside the tank (CC),
where CA = C1 ∪C2 ∪C7, CB = C3 ∪C5 ∪C8 ∪C10, CC =
C4∪C6∪C9∪C11. The risk of incursions in the three different
consequence categories, can, then, be evaluated as

rCA
= R1R2 +R1(1−R2)R3R4 + (1−R1)R3R4,

rCB
= R1(1−R2)R3(1−R4)R5+

(1−R1)(1−R3)R5+

R1(1−R2)(1−R3)R5+

(1−R1)R3(1−R4)R5,

rCC
= R1(1−R2)R3(1−R4)(1−R5)+

R1(1−R2)(1−R3)(1−R5)+

(1−R1)(1−R3)(1−R5)+

(1−R1)R3(1−R4)(1−R5).
(22)

where R1, R2, · · · , R5 represent the reliability of the BPC,
BL, HLA, MV and PSV, respectively, and rCi

is defined by
(2).

B. Statistical and condition-monitoring data

Statistical data of occurrence of consequences CA, CB and
CC , Nk,j , k = A,B,C, are available from similar HFSS, as
tabulated in Table II [12]. The data are collected annually
for 10 years, i.e., t = 1, 2, · · · , 10 (years). Pseudo-test data

NS,i,j , NF,i,j , i = 1, 2, · · · , 5, j = 1, 2, · · · , 10 are, then,
generated using (10) and listed in Table III.

TABLE II
STATISTICAL DATA FROM SIMILAR SYSTEMS [12]

Year 1 2 3 4 5 6 7 8 9 10
C1 1 0 0 1 0 1 2 3 1 2
C2 1 1 0 0 1 0 1 2 2 2
C3 0 0 1 1 1 0 2 5 2 2
C4 1 1 1 3 1 1 2 1 1 1
C5 0 1 0 1 0 2 2 1 1 1
C6 1 1 1 1 0 2 2 1 1 1
C7 1 1 1 0 0 2 1 1 1 1
C8 0 1 1 0 0 1 1 1 1 1
C9 1 1 1 0 2 2 0 0 1 1
C10 0 1 1 0 0 1 1 1 1 0
C11 1 1 1 1 0 0 0 0 1 1

In this paper, we assume that the failure of the BPC and the
HLA are primarily caused by the degradation of the Lithium-
ion battery, which provides the needed electrical power for
their operation. Typically, degradation of Lithium-ion batteries
is measured by its capacity q(t), which is subject to condition-
monitoring. For illustrative purposes, we use the real data
from CALCE (see [46] and [47] for details) as the condition-
monitoring data for the BPC and the HLA. The condition-
monitoring data, shown in Fig. 2, are collected in real time
by measuring the current of the battery during each charging-
discharging cycle. The capacities, are, then, estimated using
coulomb counting method [46, 47]. The failure threshold is
defined as yth = 0.8 [46, 47]. Note that to better illustrate
the idea of dynamic risk assessment, we transformed the time
scales of the condition-monitoring data.

As in [45], the state-space model in (23) is used to character-
ize the degradation behaviors of the two Lithium-ion batteries.
The true degradation states (in terms of mean value and 95%
credibility interval) are, then, estimated from the condition-
monitoring data using PF (Algorithm 1) and presented in
Fig. 2. The number of particles simulated is NP = 5000.
It should be noted that for both safety barriers, the state
variable vector x in Algorithm 1 contains nine elements, i.e.,
p1, p2, p3, p4, σ1, σ2, σ3, σ4, σy , where the first four elements
are updated recursively using (23) and the other elements are
assumed to be constants (but unknown to us). The initial values
for the state variables are drawn uniformly in the intervals of
values given in Table IV.

p1,t = p1,t−1 + N(0, σ2
1),

p2,t = p2,t−1 + N(0, σ2
2),

p3,t = p3,t−1 + N(0, σ2
3),

p4,t = p4,t−1 + N(0, σ2
4),

yt = p1,t exp (p2,t · t) + p3,t exp (p4,t · t) + N(0, σ2
y). (23)
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TABLE I
SAFETY BARRIERS IN THE HFSS

Labels Safety barriers Function
SB 1 Basis Process Control (BPC) • Monitor if the HF occurs;

• activate the bypass line to resolve the HF if it occurs.
SB 2 Bypass Line (BL) Bypass the input materials and prevent them from entering the tank.
SB 3 High Level Alarm (HLA) Trigger HF alarms to the operator.
SB 4 Manual Valve (MV) Once closed by the operator, it stops the excessive materials from entering the tank.
SB 5 Pressure Safety Valve (PSV) • Detect if there is high-pressure vapors in the tank;

• if there is, automatically opened to release the high-pressure vapors.

TABLE III
PSEUDO-TEST DATA

Year NS,1,j NF,1,j NS,2,j NF,2,j NS,3,j NF,3,j NS,4,j NF,4,j NS,5,j NF,5,j MS,1,j MF,1,j MS,3,j MF,3,j

1 4 3 1 3 4 2 2 2 0 4 5000 0 5000 0
2 4 5 0 4 5 4 2 3 3 4 5000 0 5000 0
3 3 5 0 3 5 3 1 4 3 4 5000 0 5000 0
4 7 1 1 6 4 3 0 4 2 5 5000 0 5000 0
5 3 2 0 3 5 0 1 4 1 3 5000 0 5000 0
6 6 6 1 5 6 5 2 4 4 5 5000 0 5000 0
7 11 3 2 9 7 5 2 5 6 4 4999 1 5000 0
8 13 3 3 10 10 3 3 7 8 2 1536 3464 4998 2
9 8 5 1 7 8 4 3 5 5 4 0 5000 2036 2964
10 9 4 2 7 8 3 3 5 4 4 0 5000 0 5000

(a) Condition-monitoring data for the BPC

(b) Condition-monitoring data for the HLA

Fig. 2. Condition-monitoring data from [46, 47]

The pseudo-test data MS,i,j and MF,j,j , i = 1, 2, j =
1, 2, · · · , 10, are, then, generated using Algorithm 2, and the
results are also given in Table III.

C. Dynamic reliability analysis

In this section, we demonstrate how to proceed with the
dynamic reliability analysis method (Algorithm 3) of the BPC.
The same procedure is applied to update the reliability of the
HLA.

1) Parameter setting and convergence analysis: At each
t = tj , j = 1, 2, · · · , 10 (years), the initial values
R(0),K(0), π(0) are set as the expected values of the corre-
sponding prior distributions:

R(0) ←
α1 +

∑j
τ=1NS,1,τ

α1 +
∑j
τ=1NS,1,τ + β1 +

∑j
τ=1NF,1,τ

,

K(0) ← KU +KL

2
,

π(0) ←
α1 +

∑j
τ=1NS,1,τ

α1 +
∑j
τ=1NS,1,τ + β1 +

∑j
τ=1NF,1,τ

.

(24)

As in [12], we assume that α1 = 2.1, β1 = 0.25. Also, we
choose KL = 800 and KU = 1000. Posterior distributions of
RB,1,j are generated by Nl = 104 MCMC samples, where
the first Nburn−in = 500 samples are dropped for burn-in.
The convergence of the MCMC is monitored using the trace
plots. Normally, the MCMC algorithms are initialized with
parameter values that happen to fall far from the center of
the posterior distribution, updates obtained early in the chain
exhibit a systematic drift toward the region of the parameter
space where the posterior distribution is concentrated. There-
fore, an increasing or decreasing trend in the parameter values
in the trace plot indicates that the burn-in period is not over.
When the trace plot stabilizes, the samples converge to the
posterior distribution. Due to page limits, we only show the
trace plots for t = 6 (years) in Fig. 3. It is seen that both
RB,1,j and K converge well to their posterior distributions
after the “burn-in” period, since both the two trace plots are
stable and do not exhibit significant increasing or decreasing
tendency.
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TABLE IV
INITIAL INTERVALS FOR THE STATE VARIABLES

p1,0 p2,0 p3,0
[0.85, 1.2] [−1× 10−3, 0] [−1× 10−3, 0]

p4,0 σ1 σ2
[3× 10−2, 0.13] [0.9× 10−2, 1.1× 10−2] [0.9× 10−4, 1.1× 10−4]

σ3 σ4 σy
[0.9× 10−4, 1.1× 10−4] [0.9× 10−2, 1.1× 10−2] [0.9× 10−2, 1.1× 10−2]

a) Trace plot for RB,1,j

b) Trace plot for K

Fig. 3. Trace plots at t = 6 (years)

2) Results and discussions: The posterior distribution for
the reliability of the BPC at each t = 1, 2, · · · , 10 (years) is
given in Fig. 4. It can be seen from Fig. 4 that, in general, the
reliability degrades as time evolves. In particular, the reliability
degrades slowly for t < 7 (years) and a dramatic decrease
occurs for 7 ≤ t ≤ 8 (years). The trend can be more clearly
seen by computing the posterior mean of the reliability for
each tj , as shown in Fig. 5. To explain such phenomenon, first
note that the posterior distribution is obtained by considering
both condition-monitoring data from the target system and
statistical failure data from a population of similar systems.
For comparison, we compute also the posterior mean of the
reliability using only statistical failure data (see [12] for
details) and only the condition-monitoring data (see [45] for
details), respectively. The results are also shown in Fig. 5.
When t < 7 (years), it can be seen that the posterior estimates
from both statistical failure data and condition-monitoring data
are quite stable. Therefore, the estimated posterior reliability
is also stable in this region. On the other hand, the estimated
posterior reliability remains at relatively high values when
compared to that calculated using only statistical failure data.
This is because, from Fig. 2, we can see that the condition-
monitoring data suggest that the BPC is highly reliable, since
the safety margin (distance of the monitored variable from
the failure threshold) is relatively large compared with the
uncertainties in the estimation, which are represented by the

95% credibility interval in Fig. 2. When 7 ≤ t ≤ 8 (years),
the condition-monitoring data suggest that the degradation is
approaching its threshold and the estimated posterior reliability
drops coherently (see Fig. 2).

A further comparison is made in Fig. 6 by showing the
posterior densities for t = 5, 6 · · · , 10 (years). It can be seen
from the comparison that the posterior reliability estimated by
the developed method always lies between the estimates using
statistical failure data and condition-monitoring data, only.
This shows that the proposed method integrates information
from the population of similar systems with the system-
specific information contained in the condition-monitoring
data. Also, it can be seen from Fig. 6 that at different times,
the two data sources have different importance to the estimated
reliability. Before t = 7 (year), the reliability estimated from
condition-monitoring data is close to 1, indicating that it
is highly unlikely for the safety barrier to fail due to the
degradation process. The reliability estimated by integrating
the two data sources, however, is much lower and determined
primarily by the statistical failure data. This is because, other
than the degradation process, the safety barrier can also fail
due to other failure causes, e.g., random shocks. Statistical
failure data contain information from a population of similar
systems, and, therefore, can capture well such “extra” failure
causes. When t > 7 (year), the contribution of condition-
monitoring data is higher than that of the statistical failure
data. This is because, in this range, the safety barrier has
already failed due to the degradation process, as suggested
by the condition-monitoring data.

Fig. 4. Updated posterior distributions for the BPC reliability

Figure 7 shows how the initial value of K influences the
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Fig. 5. Updated posterior mean of the BPC reliability

Fig. 6. Comparison of the posterior densities estimated using different data

trust on statistical failure data and condition-monitoring data.
In Fig. 7, posterior distributions of the reliability are calculated
at t = 7 (years) using different initial distributions of K. The
pseudo-test sample size from statistical failure data is NP =
5000. It can be seen from Fig. 7 that a larger value of K
tends to shift the posterior distribution towards the one yielded
by statistical failure data. Therefore, K can be viewed as the
“prior sample size” of (4). In practice, the initial interval of K
is set based on the assumed trust on the condition-monitoring
data when compared to the statistical failure data: if we trust
more the condition-monitoring data than the statistical failure
data, the values of KL and KU should be set to be less than
the pseudo-test sample size of the condition-monitoring data
(NP ), and vice versa.

D. Dynamic risk assessment (DRA)

DRA of the HFSS is made using Algorithm 4. Note that for
safety barriers 2, 4, 5, we do not have condition-monitoring
data. By assuming the beta-binomial model as [12], their
reliability can, then, be updated using (7), based on the pseudo-
test data NS,i,j and NF,i,j in Table III, i = 2, 4, 5. Therefore,

Fig. 7. Posterior distributions under different initial distributions of K

the posterior samples for RB,2,j , RB,4,j and RB,5,j can be
generated directly from the corresponding posterior distribu-
tions from (7). The posterior samples for RB,1,j and RB,3,j , on
the other hand, are generated following the dynamic reliability
analysis procedures discussed in the previous subsection. The
prior distributions for RB,1,j , RB,2,j , · · · , RB,5,j are assumed
to take the same values as Table 2 of [12].

The posterior means of the risk indexes, rCA
, rCB

and rCC

are, then, calculated based on (22) and the results are given
in Fig. 8. It can be seen from Fig. 8 that, as expected, the
conditional probability of CA, which indicates the normal
operation after the occurrence of the high flow event, decreases
as time evolves. This is because, in general, the reliability of
the five safety barriers are decreasing over time, as suggested
by their posterior means in Fig. 9. The risk of accidents,
therefore, becomes more severe as the safety barriers age. A
closer look at Fig. 8 shows that the variation of the risk indexes
can be divided into four ranges:

• A dramatic change of the risk indexes (decrease of rCA

and increase of rCB
and rCC

) occurs in the first range,
where t ≤ 5 (years). As shown in Fig. 9, the dramatic
change is caused primarily by the degradation of safety
barriers 2 and 4, which affect the risk indexes according
to (22).

• When 5 ≤ t ≤ 7 (years), the reliability of the safety
barriers are relatively stable (see Fig. 9). Therefore, the
risk indexes are also stable in this range.

• The risk indexes start changing again from t = 7 (years)
to t = 9 (years). This is primarily caused by, as shown in
Fig. 9, the dramatic decrease of the reliability of safety
barriers 1 and 3, which, as indicated in Fig. 2, is the result
of the degradations reflected in the condition-monitoring
data.

• Finally, in the last range when 9 ≤ t ≤ 10 (years), both
the reliability in Fig. 9 and the risk indexes in Fig. 8
become stable again.

Figure 8 provides a condition-informed online assessment
of the risk indexes and can be used to support condition-
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informed maintenance planning to reduce the risk of unde-
sirable accident consequences along the life of the system.
For example, maintenance interventions might be needed at
t = 5 (years), since the risk of accident becomes comparable
to the conditional probability of normal operation. As our
previous discussions show, maintenance on safety barriers 2
and 4 can help to reduce the risk, since the change in this range
is primarily caused by these two safety barriers. Also, it can
be seen from the DRA that maintenance actions are needed
on safety barriers 1 and 3, after t = 7 (years), since based
on the condition-monitoring data in Fig. 2, the degradation of
safety barriers 1 and 3 approaches the threshold and become
critical when t ≥ 7 (years).

Fig. 8. Posterior means for the risk indexes

A comparison is made between the results obtained by the
developed method and those of the DRA method that only
considers statistical failure data [12]. By using the method in
[12], the reliability of safety barriers 1 and 3 are updated using
only the statistical failure data in Table II. It can be seen from
Fig. 10 that before t = 7 (years), the risk indexes estimated
by both methods show the same trend (decrease of rCA

and
increase of rCB

and rCC
) but in this region, the risks estimated

by the developed method is less severe than that estimated by
the method in [12]. This is because, as shown in Fig. 2, the
corresponding condition-monitoring data suggest that both the
BPC and the HLA have high reliability in this region, since
their safety margins are large compared to the uncertainties in
their estimates. Having this information, we are more confident
that the HFSS can reliably work to reduce the potential risk
from an accident.

Fig. 9. The mean posterior reliability for the 5 safety barriers

Significant differences between the two methods are ob-
served when t ≥ 7 (years) in Fig. 10: the developed method
suggests that rCA

, the conditional probability of normal opera-
tion, begins to decrease from t > 7 (years), while the method
in [12] suggests that it remains relatively stable. Also, the
credibility interval becomes significantly narrower than the one
obtained from [12]. The same phenomenon is also observed
in rCB

and rCC
. This can be explained by the differences in

the posterior reliability values of safety barriers 1 and 3 given
by the two methods: as shown in Fig. 5, if we only use the
statistical failure data, RB,1,t is relatively stable over the entire
range [0, 10] (years); if we introduce the condition-monitoring
data in Fig. 2, RB,1,t is stable from t = 1 to t = 7 (years),
while it decreases dramatically when t > 7 (years). The same
phenomenon can be observed on safety barrier 3, which results
in the deviation of the two methods in Fig. 10.

a) Dynamic risk assessment of rCA

b) Dynamic risk assessment of rCB

c) Dynamic risk assessment of rCC

Fig. 10. Comparison to the method in [12]
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V. CONCLUSIONS

In this paper, we present a newly developed sequential
Bayesian algorithm to support DRA using both statistical and
condition-monitoring data. The former refer to the count data
of accidents or near misses from similar systems and reflect
statistical population characteristic while the latter come from
realtime monitoring of the degradation process of the target
system of interest and reflects the system-specific conditions.
In the first stage of the algorithm, condition-monitoring data
are treated by a PF and integrated with statistical failure
data in a MCMC-based framework to update the reliability
of the safety barriers in an ETs. The updated ET is, then,
used to revise the estimated risk indexes in the second stage
of the algorithm. A case study on a HFSS is conducted
to demonstrate the developed methods and a comparison is
made to an existing DRA method based only on statistical
failure data. The results show that by introducing condition-
monitoring data, the developed method is able to capture the
system-specific characteristics related to the degradation of
the target system, and, therefore, provides a more informed
description of the risk of the target system.

Note that in this paper, we have used the PF only to estimate
the degradation state of the target system. On the other hand,
PF can also be applied to predict the system degradation
evolution in the future. Future work is, therefore, to extend the
developed method from “risk updating” to “risk prognostics”
by predicting the future evolution of the risk indexes using
statistical and condition-monitoring data. Also, PF is a model-
based method and it requires the availability of physical
models to describe the degradation process. Such premise is
not always held in practice. In the future, data-driven methods,
e.g., support vector machine, artificial neural network, etc., will
also be considered for DRA. Besides, importance measures
can be defined to quantify the relative importance of different
data sources and to determine the required number of data in
each source to support risk-informed support decision making.
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ACRONYMS

ASP Accident Sequence Precursor
BL Bypass Line
BN Bayesian Network
BPC Basic Process Control
BT Bow-Tie
CBFTA Condition-based Fault Tree Analysis
DBN Dynamic Bayesian Network
DRA Dynamic Risk Assessment
ET Event Tree
HFSS High-Flow Safety System
HLA High Level Alarm
MCMC Markov Chain Monte Carlo
MH Metropolis-Hasting
MV Manual Valve
PCA Principal Component Analysis
PF Particle Filtering
PSV Pressure Safety Valve
QRA Quantitative Risk Assessment
RUL Remaining Useful Life

NOTATIONS

rCi Conditional occurrence probability of the conse-
quence given that IE has occurred

Nk,j Number of the kth consequences that occur in the
interval (tj−1, tj ]

yi,j Condition-monitoring data on the ith safety bar-
rier at t = tj

RB,i,j Reliability of the ith safety barrier at t = tj
πi,j Prior mean of RB,i,j
K Prior sample size of RB,i,j
αi, βi Parameters of the prior distribution of πi,1
NS,i,j Number of successes in the pseudo test data

generated from statistical failure data
NF,i,j Number of failures in the pseudo test data gener-

ated from statistical failure data
MS,i,j Number of successes in the pseudo test data

generated from condition-monitoring data
MF,i,j Number of failures in the pseudo test data gener-

ated from condition-monitoring data
Bi The ith safety barrier
NP Sample size of PF
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