
HAL Id: hal-01789307
https://centralesupelec.hal.science/hal-01789307

Submitted on 25 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial correlation characterization of a uniform circular
array in 3D MIMO systems

Qurrat-Ul-Ain Nadeem, Abla Kammoun, Merouane Debbah, Mohamed-Slim
Alouini

To cite this version:
Qurrat-Ul-Ain Nadeem, Abla Kammoun, Merouane Debbah, Mohamed-Slim Alouini. Spatial correla-
tion characterization of a uniform circular array in 3D MIMO systems. 17th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), Jul 2016, Edinburgh, United
Kingdom. �10.1109/SPAWC.2016.7536796�. �hal-01789307�

https://centralesupelec.hal.science/hal-01789307
https://hal.archives-ouvertes.fr


Spatial Correlation Characterization of a Uniform
Circular Array in 3D MIMO Systems

Qurrat-Ul-Ain Nadeem∗, Abla Kammoun∗, Mérouane Debbah†, and Mohamed-Slim Alouini∗
∗ CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Email: {qurratulain.nadeem,abla.kammoun,slim.alouini}@kaust.edu.sa
† Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France
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Abstract—In this paper, we consider a uniform circular array
(UCA) of directional antennas at the base station (BS) and the
mobile station (MS) and derive an exact closed-form expression
for the spatial correlation present in the 3D multiple-input
multiple-output (MIMO) channel constituted by these arrays.
The underlying method leverages the mathematical convenience
of the spherical harmonic expansion (SHE) of plane waves
and the trigonometric expansion of Legendre polynomials. In
contrast to the existing results, this generalized closed-form
expression is independent of the form of the underlying angular
distributions and antenna patterns. Moreover, the incorporation
of the elevation dimension into the antenna pattern and channel
model renders the proposed expression extremely useful for the
performance evaluation of 3D MIMO systems in the future.
The simulation results not only verify the derived analytical
expression but also highlight the dependence of the spatial corre-
lation on channel and array parameters. An interesting interplay
between the mean angle of departure (AoD), angular spread and
the positioning of antennas in the array is demonstrated.

I. INTRODUCTION

Antenna arrays have become increasingly popular in the

recent years to enhance signal quality, coverage and capacity.

The performance of these arrays is governed by the spatial

properties of the multiple-input multiple-output (MIMO) channels

constituted by them. An important such statistical property is

the spatial correlation. The spatial constraints at the base station

(BS) and the mobile station (MS) limit the achievable user

throughput by increasing the correlation in contemporary cellular

networks. Consequently, it is imperative to characterize this

correlation and study its impact on the system performance.

MIMO systems were initially designed to support antenna

configurations capable of adaptation in the azimuth only.

Consequently, most of the prior works on spatial correlation

considered 2D cellular layouts and investigated the correlation in

the azimuth only [1]–[3]. However, because of the 3D nature of

real world transmission channels, beamforming in the azimuth

alone can not fully exploit all the degrees of freedom offered by

the channel. With the advent of 3D directional smart antennas,

the elevation plane of the antenna pattern can also be used for

performance optimization [4], [5].

An efficient approach to maximize the system capacity while

meeting the spatial constraints is to pack these directional

antennas intelligently such that the resulting antenna configuration

minimizes the overall correlation. This has led to the emergence

of several compact antenna array topologies. One such candidate

antenna topology is the uniform circular array (UCA). The

existing correlation models developed for the UCA topology

are derived for a particular distribution of Angle of Departure

(AoD) and Angle of Arrival (AoA) [1]–[3], [6]. The authors in

[1] derived the spatial correlation expressions for Gaussian and

uniform angular distributions. The proposed method could not

admit a closed-form solution for the Gaussian angular distribution

and relied on numerical integration methods to compute the

correlation coefficients. Similarly, the spatial correlation could

only be evaluated numerically for a cosine-shaped angular

distribution in [3]. Some closed-form expressions were derived

in [2] for the Laplacian azimuth AoA distribution, by making

small angular spread approximations. Such assumptions might

lead to useful expressions but do not accurately represent the

characteristics of realistic propagation environments.

In this paper, we derive a general closed-form expression

for the spatial correlation for the UCA topology in a 3D

cellular layout by leveraging the mathematical convenience

of the spherical harmonic expansion (SHE) of plane waves

and the trigonometric expansion of Legendre polynomials. The

final closed-form expression depends on the channel and array

parameters through the Fourier Series (FS) coefficients of power

azimuth and elevation spectrums. The novelty of the proposed

method lies in the fact that it is valid for any 3D propagation

environment. The analysis follows the guidelines in [7], where the

spatial correlation in a uniform linear array (ULA) of antennas

was investigated. The derivation for the UCA is not only more

involved due to the intricate nature of the array response vector

but also important owing to the several advantages the UCA

offers over the ULA topology [8]. Numerical results corroborate

the proposed expression and provide some useful insights into the

impact of different channel conditions on the spatial correlation.

The dependency of the correlation on array parameters like

the relative position of antennas and the angular parameters

parametrized by the mean and the spread is investigated.

The rest of the paper is organized as follows. Section II

describes the 3D channel model. The closed-form expression

for the spatial correlation is derived in section III. Section IV

provides numerical results and section V concludes the paper.

II. CHANNEL MODEL AND ANTENNA CONFIGURATION

The 3D MIMO channel model used in this work is based

on the latest 3GPP standards and WINNER+ [9], [10], which



follow a geometry-based stochastic channel modeling approach.

Channel realizations are generated by summing contributions of

N multiple paths with channel parameters like delay, power,

AoD and AoA including both azimuth and elevation. In this

section, we discuss the antenna configuration under investigation

and present the corresponding 3D channel model.
In the UCA configuration, antenna ports are arranged in a

circle of radius r in the (êx, êy) plane with the reference point

at the center of the circle. The configuration is shown in Fig. 1.

The 3GPP standards and ITU approximate the main lobe of the

antenna pattern of each port by a narrow beam in the elevation

[11], [12]. The horizontal and vertical antenna patterns at the

transmitter can be approximated in dB as [7], [12],

gt,H(φ) = −12

(
φ

φ3dB

)2

dB, (1)

gt,V (θ, θtilt) = −12

(
θ − θtilt
θ3dB

)2

dB, (2)

where φ3dB and θ3dB are the horizontal and vertical 3 dB
beamwidths respectively. The individual antenna radiation pattern

at the MS, gr(ϕ, ϑ), is taken to be 0 dB since the MS should

generally not favor any direction.
Based on the 3GPP activity around 3D channel modeling, the

effective channel between the BS antenna port s and the MS
antenna port u is given by [9], [13],

[H]su =

N∑
n=1

αn

√
gt(φn, θn, θtilt)

√
gr(ϕn, ϑn)[ar(ϕn, ϑn)]u

× [at(φn, θn)]s, (3)

where αn is the complex amplitude of the nth path, assumed to

be an i.i.d N (0, 1
N ) random variable (RV), θtilt is the downtilt

angle, (φn, θn) are the azimuth and elevation AoDs and (ϕn, ϑn)
are the azimuth and elevation AoAs of the nth path respectively.

Note that gt(φn, θn, θtilt) ≈ gt,H(φn)gt,V (θn, θtilt), where

gt,H(φ) and gt,V (θ, θtilt) are given by equations (1) and (2)

respectively. Finally, vectors at(φ, θ) and ar(ϕ, ϑ) capture the

antenna array responses. Their entries are given by,

[at(φ, θ)]s = exp(ikt.xs), (4)

[ar(ϕ, ϑ)]u = exp(ikr.xu), (5)

where xs is the location vector of the sth transmit (Tx) antenna,

xu is the location vector of the uth receive (Rx) antenna, . is

the scalar product, kt and kr are the Tx and Rx wave vectors,

where k = kv̂, with k = 2π
λ , λ being the carrier wavelength

and v̂ being the direction of wave propagation.
Given the UCA configuration in Fig. 1, v̂t.x̂s = cos(φ −

ψs) sin θn, where ψs =
2πs
NBS

, s = 0, . . . NBS − 1 and v̂r.x̂u =

cos(ϕ − υu) sinϑn, where υu = 2πu
NMS

, u = 0, . . . NMS − 1.

The effective channel between the sth Tx antenna port and the

uth MS antenna in (3) can therefore be written as,

[H]su =

N∑
n=1

αn

√
gt(φn, θn, θtilt) exp

(
i
2π

λ
r cos(φn − ψs) sin θn

)

√
gr(ϕn, ϑn) exp

(
i
2π

λ
r cos(ϕn − υu) sinϑn

)
. (6)

III. SPATIAL CORRELATION BASED ON THE FOURIER

COEFFICIENTS OF POWER SPECTRUMS

In this section, a general analytic expression for the spatial

correlation between the Tx antenna ports is derived for the

UCA configuration, considering realistic antenna patterns and

arbitrary AoD and AoA distributions. The novelty of the proposed

method lies in the fact that it is valid for any 3D propagation

environment. We start this section by presenting the necessary

tools and definitions required for the derivation.

A. Power Spectrums
The spatial correlation will be shown to have a direct

dependence on the power azimuth spectrum (PAS) and the power

elevation spectrum (PES), which describe the spatial distribution

of the power in the azimuth and the elevation respectively. They

are defined at the transmitter as,

PASt(φ) = gt,H(φ)pφ(φ), (7)

PESt(θ, θtilt) = gt,V (θ, θtilt)pθ(θ), (8)

where the azimuth angular power density function pφ(φ)=fφ(φ),
with fφ(φ) being the probability density function (pdf) of the

azimuth angle. Similarly, the elevation angular power density

function, pθ(θ)=
fθ(θ)
sin(θ) , with fθ(θ) being the pdf of the elevation

angle.

B. Spherical Harmonics
Spherical harmonics, Y m

n (φ, θ), provide orthonormal basis

functions for the representation of functions on the 2-sphere

(defined by S
2 � {x ∈ R

3 : |x| = 1}) and are defined for

integer degree n ≥ 0 and integer order |m| ≤ n as,

Y m
n (x̂) = Y m

n (φ, θ) = Nm
n Pm

n (cos θ) exp(imφ), (9)

where Nm
n =

√
2n+1(n−m)!
4π(n+m)! is the normalization constant .

In a 3D propagation environment, the antenna array response

can be expanded using the spherical harmonic expansion (SHE)

of plane waves given in the Jacobi-Anger result as [14],

eikv̂.x =

∞∑
n=0

in(2n+ 1)jn(k||x||)Pn (v̂.x̂) , x ∈ R
3, (10)

Fig. 1. Antenna configuration.



where jn is the spherical Bessel function of order n and Pn

is the Legendre polynomial function of order n. Let (φ1, θ1)
and (φ2, θ2) be the spherical coordinates of vectors v̂ and x
respectively, then by the Legendre addition theorem [15],

Pn(v̂.x̂) =
4π

2n+ 1

m=n∑
m=−n

Y m
n (v̂)Y m∗

n (x̂)

= Pn(cos θ1)Pn(cos θ2) + 2

n∑
m=1

(n−m)!

(n+m)!
Pm
n (cos θ1)

× Pm
n (cos θ2) cos[m(φ1 − φ2)] (11)

where Pm
n are the associated Legendre polynomials.

C. Closed-form Expression for the Spatial Correlation

The parameters describing the propagation paths in (6) are i.i.d,

which allows us to simplify the double sum in the expression of

the spatial correlation, ρ = E[HsuHH
s′u′ ] as,

ρ = E[HsuHH
s′u′ ] = ρt(s, s

′)ρr(u, u′),where (12)

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
r sin θ(cos(φ− ψs)

− cos(φ− ψs′))
)]

, (13)

ρr(u, u
′) = E

[
gr(ϕ, ϑ) exp

(
i
2π

λ
r sinϑ(cos(ϕ− υu)

− cos(ϕ− υu′))
)]

, (14)

where ψs =
2πs
NBS

, ψs′ =
2πs′
NBS

and υu = 2πu
NMS

, υu′ = 2πu′
NMS

.

We now derive a general analytical expression for (13). The

analysis for the UCA is harder than that for the ULA topology

because (13) and (14) do not correspond directly to the SHE

expression and need to be reformulated. We start our analysis by

reformulating the expression in (13) in a way that the SHE result

in (10) can be directly employed. Defining Z1 = cosψs−cosψs′

and Z2 = sinψs − sinψs′ , ρt(s, s
′) can be written as,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
r sin θ(Z1 cosφ+ Z2 sinφ)

)]

= E

[
gt(φ, θ, θtilt) exp

(
i2πr

λ
sin θ

√
Z2

1 + Z2
2 cos

(
φ− tan−1 Z2

Z1

))]
(15)

Defining ζ = tan−1(Z2/Z1) and c =
√
Z2
1 + Z2

2 , we have,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
rc sin θ cos(φ− ζ)

)]

(16)

The spherical coordinates (φ1, θ1) of the wave vector kv̂ are

(φ, θ), and the spherical coordinates (φ2, θ2) of x i.e., the vector

between the positions of sth and s′th Tx antennas are (ζ, π
2 ).

Combining the addition theorem in (11) with the SHE of the

exponential term in (16) and using the resulting expression in

(16) would expand ρt(s, s
′) to yield (17).

Next we exploit the properties of Legendre and associated

Legendre polynomials followed by some trigonometric ma-

nipulations to systematically expand (17) to yield (18), where

P̄m
n (x)=

√
(n+ 1

2 )
(n−m)!
(n+m)!P

m
n (x). The expansion looks involved

at first sight but it will now be shown to yield an interesting

closed-form expression that works for any arbitrary choice of

antenna patterns and angular distributions. A sketch of the proof

is provided here for readers’ convenience.

It is not easy to derive a closed-form expression for the

correlation, because the RVs, AoDs and AoAs, appear as

arguments of Legendre polynomials in (18), making it difficult

to compute the expectations with respect to these variables.

However, the trigonometric expansion of Legendre polynomials

given in [16] and stated below can be exploited to yield an

interesting closed-form expression for ρt(s, s
′).

P2n(cosx) =

n∑
k=−n

pn−kpn+k cos(2kx), (19)

P̄ 2m
2n (cosx) =

n∑
k=0

c2m2n,2k cos(2kx), (20)

P̄ 2m−1
2n−1 (cosx) =

n∑
k=1

d2m−1
2n−1,2k−1 sin((2k − 1)x), (21)

where pn, c
2m
2n,2k and d2m−1

2n−1,2k−1 are generated using recursion

relations in [16]. Using (19)-(21), the expectations in (18) can

be expressed analytically as a linear combination of the FS

ρt(s, s
′) = E

[
gt(φ, θ, θtilt)

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
rc

)(
Pn(cos θ)Pn(0) + 2

n∑
m=1

(n−m)!

(n+m)!
Pm
n (cos θ)Pm

n (0) cos (m(φ− ζ))
)]

(17)

ρt(s, s
′) = E[gt(φ, θ, θtilt)]j0

(
2π

λ
rc

)
+

∞∑
n=1

(−1)n(4n+ 1)j2n

(
2π

λ
rc

)
P2n(0)E[P2n(cos θ)gt,V (θ, θtilt)]E[gt,H(φ)]

+
∞∑

n=1

4(−1)nj2n

(
2π

λ
rc

)( n∑
m=1

P̄ 2m
2n (0)E[P̄ 2m

2n (cos θ)gt,V (θ, θtilt)]
(
cos(2mζ)E[cos(2mφ)gt,H(φ)] (18)

+ sin(2mζ)E[sin(2mφ)gt,H(φ)]
))

−
∞∑

n=1

4i(−1)nj2n−1

(
2π

λ
rc

)( n∑
m=1

P̄ 2m−1
2n−1 (0)E[P̄ 2m−1

2n−1 (cos θ)gt,V (θ, θtilt)]

×
(
cos((2m− 1)ζ)E[cos((2m− 1)φ)gt,H(φ)] + sin((2m− 1)ζ)E[sin((2m− 1)φ)gt,H(φ)]

))



coefficients of PAS and PES, which are defined as,

aφ(m) =
1

π

∫ π

−π

PASt(φ) cos(mφ)dφ, (22)

bφ(m) =
1

π

∫ π

−π

PASt(φ) sin(mφ)dφ, (23)

aθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) cos(kθ)dθ, (24)

bθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) sin(kθ)dθ. (25)

We expand one of the expectation terms in (18) as,

E[P2n(cos θ)gt,V (θ, θtilt)] =

n∑
k=−n

[
pn−kpn+k

∫ 2π

0

cos(2kθ)

× gt,V (θ, θtilt)p(θ) sin(θ)dθ
]
,

=

n∑
k=−n

pn−kpn+k

[1
2

∫ 2π

0

sin((2k + 1)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

sin((2k − 1)θ)PESt(θ, θtilt)dθ
]
, (26)

=

n∑
k=−n

pn−kpn+k
π

2
[bθ(2k + 1)− bθ(2k − 1)].

The same can be done for the other expectation terms. With

the help of all these tools, we now present in (27) the generalized

closed-form expression for the correlation between any pair of

Tx antenna ports. An expression for ρr(u, u
′) can be obtained

similarly. Consequently, the correlation between any pair of

channels constituted by distinct pairs of Tx antenna ports and

Rx antenna ports is given by (12). Note that (27) involves an

infinite summation over n, which can be truncated to a small

finite number, N0, of terms such that the truncation error has a

bound that decreases exponentially with N0 [7].

IV. SIMULATION RESULTS

In order to validate the proposed generalized spatial correlation

expression, we simulate (27) using the angular distributions

and antenna patterns specified in the standards. The elevation

AoD and AoA are drawn from the Laplacian elevation density

spectrum with parameters, (θ0, σ) that denote the mean AoD/AoA

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r/λ

|ρ
t|

Monte−Carlo simulated, Ports (1,2)
Theoretical, Ports (1,2)

Fig. 2. Correlation between adjacent Tx antenna ports.
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Fig. 3. Correlation between different pairs of Tx antenna ports for μ = 0. The
solid lines correspond to κs = 20 and the dotted lines correspond to κs = 40.

and the angular spread in the elevation respectively. In the recent

years, the Von Mises (VM) distribution has received great

attention in modeling nonisotropic propagation. This distribution,

with parameters (μ, 1
κ ) that denote the mean AoD/AoA and the

measure of dispersion in the azimuth respectively, is used to

generate the azimuth angles. Using these angular densities and

the vertical antenna pattern in (2), the FS coefficients of PAS

and PES are computed.

For the purpose of validation, we compute the correlation

coefficients between antenna ports 1 and 2 in Fig. 1 using the

theoretical result in (27) and the Monte-Carlo simulation of

(13) over 10000 channel realizations. For the simulations, we

set N0 = 20, θtilt = 95o, θ3dB = 15o, φ3dB = 70o, σs = 10o,

θ0 = 90o, κs = 20 and μ = 0. The result is shown in Fig. 2.

ρt(s, s
′) = π2aφ(0)bθ(1)j0

(
2π

λ
rc

)
+

∞∑
n=1

(−1)n(4n+ 1)j2n

(
2π

λ
rc

)
P2n(0)aφ(0)π

2
n∑

k=−n

pn−kpn+k
1

2
[bθ(2k + 1)

− bθ(2k − 1)] +

∞∑
n=1

4(−1)nj2n

(
2π

λ
rc

)( n∑
m=1

P̄ 2m
2n (0)π2 (cos(2mζ)aφ(2m) + sin(2mζ)bφ(2m))

×
n∑

k=0

c2m2n,2k
1

2
[bθ(2k + 1)− bθ(2k − 1)]

)
−

∞∑
n=1

4i(−1)nj2n−1

(
2π

λ
rc

)( n∑
m=1

P̄ 2m−1
2n−1 (0)π2 (27)

× (cos((2m− 1)ζ)aφ(2m− 1) + sin((2m− 1)ζ)bφ(2m− 1))

n∑
k=1

d2m−1
2n−1,2k−1

1

2
[aθ(2k − 2)− aθ(2k)]

)
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Fig. 4. Correlation between different pairs of ports for μ = π/2. The solid
lines correspond to σs = 10o and the dotted lines correspond to σs = 40o.

As expected, the correlation is seen to decrease as the radius of

the array increases and more importantly, the theoretical result

provides a perfect fit to the Monte-Carlo simulated correlation

using less than 20 summations over n.

Next we study the correlation between different pairs of

Tx antenna ports to see how this correlation varies with the

position of the ports. The ports are numbered from 1 to 8 in

order in Fig. 1. The validation of the theoretical result is done

for different pairs of ports and is shown in Fig. 3. The values

of the correlation are governed by the interplay between the

relative positions of the ports and the values of the channel

parameters like the mean AoD/AoA and the angular spread. The

incorporation of antenna patterns also impacts the correlation.

For example, out of (1, 4), (1, 7), (3, 4) and (3, 7) pairs of ports

for which the result is shown, the correlation values between

port 3 and port 4 are the highest since the relative distance

between them is the shortest. The relative distance between the

pair (1, 7) is shorter than that between (1, 4), but the correlation

values for (1, 7) are lower than the values for the correlation

between ports 1 and 4. This is explained by observing that for

the mean azimuth AoD μ = 0o, the mean radiation is in êx
direction and the spread is measured along êy. The distance

along êy is shorter for the pair (1, 4) yielding higher values of

correlation for this pair as compared to the values for (1, 7). It

is important to know that increasing κ will cause the correlation

values for all pairs to increase due to a decrease in the azimuthal

spread. This can be seen by observing the dotted lines in Fig.

3 plotted for κs = 40. Also, the effect of shorter inter-port

distance will dominate with the decrease in spread.

Changing the value of μ to π/2 yields a very different trend

in the values of correlation as shown in Fig. 4. Now between

(1, 4) and (1, 7) pairs of antenna ports, the correlation in the pair

(1, 7) is higher because of the shorter relative distance along the

direction of the azimuthal spread, which is now measured along

êx. Also the pair (3, 7) has the highest correlation among the

simulated cases because for μ = π/2, port 7 is directly behind

port 3 and in line with the mean AoD. We also show in the

same figure the effect of increasing σs (see dotted lines) that

causes the correlation to decrease. The value of ρt at 0 antenna

spacing is the average Tx power of the antenna which also

decreases with the increase in spread due to the incorporation of

the vertical antenna pattern into the channel model. Therefore

the values of correlation are governed by both the channel and

array parameters. The mean AoD/AoA and angular spread play

a crucial role in governing the overall correlation in the channel.

V. CONCLUSION

We derived a closed-form expression for the spatial correlation

in 3D MIMO channels with directional antennas arranged

in a uniform circular fashion. Our approach leverages the

mathematical convenience of the SHE of plane waves and the

trigonometric expansion of Legendre and associated Legendre

polynomials. The resulting expression is independent of the

form of the underlying angular distribution and form of antenna

pattern. Application of the result reveals a strong interplay

between the array and channel parameters in determining the

overall spatial correlation present in the channel.
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