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Abstract—We consider a hierarchical network that consists of
mobile users, a two-tiered cellular network (namely small cells
and macro cells) and central routers, each of which follows a
Poisson point process (PPP). In this scenario, small cells with
limited-capacity backhaul are able to cache content under a
given set of randomized caching policies and storage constraints.
Moreover, we consider three different content popularity models,
namely fixed content popularity, distance-dependent and load-
dependent, in order to model the spatio-temporal behavior of
users’ content request patterns. We derive expressions for the
average delay of users assuming perfect knowledge of content
popularity distributions and randomized caching policies. Al-
though the trend of the average delay for all three content
popularity models is essentially identical, our results show that
the overall performance of cached-enabled heterogeneous net-
works can be substantially improved, especially under the load-
dependent content popularity model.

Index Terms—edge caching, Poisson point process, stochastic
geometry, mobile wireless networks, 5G

I. INTRODUCTION

Content caching in 5G heterogeneous wireless networks
improves the system performance, and is of high importance
in limited-backhaul scenarios [1]. Most existing literature
for cache-enabled heterogeneous networks using stochastic
geometry focuses on the characterization of key performance
metrics neglecting the backhaul limitations and the spatio-
temporal content popularity profiles [2]–[5]. In order to capture
these aspects, we analyze in this paper the gains of caching
in heterogeneous network deployment considering the average
delay as a performance metric.

Consider a multi-tier heterogeneous network where base
stations in each tier are deployed according to a homogeneous
Poisson point process (PPP). More precisely, we model a
heterogeneous network which consists of mobile terminals
(users), cache-enabled small base stations (SBSs), macro base
stations (MBSs) and central routers. In this network setting,
a user may experience delays due to downlink transmissions,
backhaul and caches. Supposing that SBSs are able to cache
contents proactively, we derive expressions for the average
delay of typical users when connected to either MBSs or SBSs.
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Moreover, in order to capture the spatio-temporal content
access patterns of users, we suppose fixed content popularity,
distance-dependent and load-dependent content popularities.
Assuming that the content popularity distribution is perfectly
known at the small base stations, we explore three different
caching policies based on content-popularity and randomiza-
tion.

II. SYSTEM MODEL

Topology: We consider a multi-tier heterogeneous network
in the two-dimensional Euclidean plane R2, where nodes in
each tier k are distributed according to a homogeneous PPP
Φk = {r(k)

i }i∈N of intensity λk, and r(k)
i ∈ R2 represents the

location of the i-th node at the k-th tier. The above network
layout models a multi-tier heterogeneous network that consists
of mobile terminals (users), SBSs, MBSs and central routers
with densities λut > λsc > λmc > λcr, respectively. A
typical mobile user is assumed to be located at the Cartesian
origin (0, 0) in order to derive the performance metrics of the
heterogeneous network.

Signal Model: We shall consider that the MBSs and SBSs
are transmitting in the same frequency band and hence in-
terfering with each other. The transmit power is Pmc for
each MBS and Psc for each SBS, where we assume that
Pmc > Psc. For notational convenience, let us denote a
base station (transmitter) by its position. The received power
experienced at a typical user due to a transmitter x is given
by Pxhx`(x), where Px is the transmit power (Pmc or Psc),
hx corresponds to the fast fading power coefficient (square
of the fading amplitude) of the channel between transmitter
x and typical user, and `(x) = ‖x‖−α is the standard
power law pathloss function with α > 2. The channel fading
power coefficients are independent and identically distributed
(i.i.d.) exponential random variables (Rayleigh fading) with
E[hx] = 1.

Since we assume that the network is interference-limited
(i.e., the interference power dominates over the noise power),
we simply consider the signal-to-interference ratio (SIR). For
a typical user connected to a MBS located at x, the SIR is
given as

SIRmc(x) =
Pmchx`(x)

Imm + Ism
(1)



where Imm =
∑

y∈Φmc\{x}
Pmchy`(y) is the interference ex-

perienced from all MBSs except the serving MBS at x,
and Ism =

∑
y∈Φsc

Pschy`(y) is the aggregate interference

experienced from SBSs. For a typical user connected to a SBS
located at x, the SIR is given as

SIRsc(x) =
Pschx`(x)

Iss + Ims
(2)

where Iss =
∑

y∈Φsc\{x}
Pschy`(y) is the interference experi-

enced from all SBSs except the serving SBS, and Ims =∑
y∈Φmc

Pmchy`(y) is the aggregate interference from MBSs.

The target SIR in our system model is denoted by γ.
Connectivity and Backhaul: Mobile user terminals are as-

sociated with the closest base station, either SBS or MBS.
As alluded to earlier, each MBS or SBS is also connected
to its nearest central router. Each central router has a high-
rate broadband Internet connection. The wired backhaul is
used to provide this broadband connection to MBSs and SBSs
via backaul links, such that users’ requests can be satisfied.
Supposing that a content request is generated by a user,
the base station is then in charge of starting immediately
its distribution. An illustration of this heterogeneous network
under limited-capacity backhaul is illustrated in Fig. 1.

A. Caching Model

When a user has a content request, we assume that the
request is drawn from the distribution fpop, which is in
decreasing order of content popularities. More formally, the
content popularity distribution of a user is a right continuous
and monotonically decreasing probability distribution function
(PDF), given by [6]

fpop (f, η) =

{
(η − 1) f−η, f ≥ 1,

0, f < 1,
(3)

where f indicates a point in the support of the corresponding
content, and η > 1 parametrizes the steepness of the popularity
distribution curve.

In fact, higher values of η results in steeper distribution,
which in turn means that certain contents are highly popular
than the rest of contents in fpop (f, η). Conversely, lower
values of η yield a more uniform distribution, which in
turns say that almost all contents have similar popularities.
The content popularity of a user may be evolving over time
and space, influenced by the choice of other users, and can
be partially known at the base stations. This is somewhat
equivalent to say that the parameter η can take different values
depending on the scenario. In our case, each base station
perfectly observes the content popularities according to three
different models as follows:

- Fixed: The content popularity is identical for all users,
with fixed steepness factor of η = η0. Therefore, all SBSs
observe the same distribution given by fpop (f, η0).

- Distance-dependent: The users have different content
popularity distributions, each of them having a distance-
dependent steepness factor η = r, where r is the (random)
distance between a user and its serving SBS. Therefore,
we assume that each SBS observes on average a content
popularity distribution given by fpop (f, r̄), where r̄ is
the average distance between the SBS and its users.
This model is used to mimic the behavior of content
popularity based on the distance (i.e., flat distribution in
short distances).

- Load-dependent: The content popularity of users is load-
dependent on average, each of SBS having parameter
η = λut/λsc. Therefore, all SBSs observe the content
popularity distribution given by fpop (f, λut/λsc). This
model is used to mimic the behavior of content popularity
based on the load (i.e., steep distribution in heavy loads).

Note that the choice of such a continuous content distri-
bution is in fact for ease of analysis. When practical issues
or analytical tractability are not a priority, Zipf-like discrete
power laws can also be considered for modeling [6]. Indeed,
content access statistics in cache-enabled web proxies [7], or
more relevantly in base stations [8], [9] are characterized by
such discrete power laws (or arguably distributions).

For the (some of) caching policies described below, we shall
assume that the content popularity distribution fpop (f, η) is
perfectly known at the base stations. Practically, in order to
have partial knowledge of fpop (f, η) for the caching policies,
statistical estimation methods can be employed either at the
base stations in a distributed manner or alternatively at the
central routers, by using statistical tools from machine learning
(see [10], [11] for relevant discussions).

Given fpop (f, η), the content in the interval [1, f0) is the
cacheable content and is called as catalogue, whereas the
remaining part [f0,∞] is considered as non-cacheable content
(i.e., sensor data, voice streaming and online gaming). An
interval [f, f + ∆f) in the support of fpop (f, η) is dedicated
to represent the probability of the f -th content. Each SBS
has a storage capacity of S, thus it caches contents according
to a given caching policy. Having such a request behavior
described above and caching capabilities at the SBSs, we
consider the following offline caching policies:

- StdPop [12]: The most popular content from the catalogue
is stored in the cache of SBSs and requires Sp ≥ 0
amount of storage. We additionally assume that the track
of content popularity in a SBS requires S0 amount of
storage, defined as a function of the number of contents
in the catalogue and the type of algorithm employed
for content popularity estimation, thereby it holds that
S = Sp + S0 ≥ 0.

- UniRand [13]: The S amount of contents are cached
uniformly at random. Note that this policy is not aware
of the content catalogue, therefore it does not require any
memory to track the content popularity profile.

- MixPop: The Sp amount of storage is used to cache
the most popular content deterministically. The storage



overhead is S0 ≥ 0 and again defined as a function
of number of content and the employed algorithm. In
addition, we suppose that Su ≥ 0 amount of storage
is used to cache content uniformly at random, thus
S = Sp + S0 + Su ≥ 0.
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Figure 1: An illustration of the considered system model. The
snapshots of i) central routers, ii) MBSs, iii) SBSs and iv)
mobile user terminals are provided on the right side of figure.

In fact, if the catalogue size is sufficiently small, the storage
overhead in StdPop and MixPop, due to the track of content
popularity can be neglected. However, such an overhead may
dominate the total storage space when a large catalogue with
low-sized chunks is considered. One can also observe that the
StdPop and UniRand policies are special cases of the MixPop
policy and are given here for the sake of exposition.

The performance of any statistics-aware online cache re-
moval policy (i.e., least-recently used (LRU) and least-
frequently used (LFU)) would be upper bounded by its offline
successor that has perfect content statistics; as such an online
approach would require iterative estimation of content popu-
larity in a finite time window, yielding to overall performance
degradation. Such online policies can also be incorporated
to our system model after some specific assumptions (see
Independent Reference Model [14] for instance).

B. Delay and Quality of Service

Quality-of-service (QoS) is closely related to the delay
experienced by users. We consider three different sources of
delay which are detailed separately as follows.

Delay in downlink: When MBSs and SBSs have to deliver
the contents to their intended mobile users, it is evident
that the downlink transmission over the wireless medium
incurs a delay mainly due to the interference from concurrent
transmissions and channel fading. Consider now a simple
retransmission protocol where a packet of requested content

is repeatedly transmitted until its successful delivery, up to
a pre-defined number of retransmission attempts M . Indeed,
inferring whether a packet delivery is successful or not at
the base station essentially relies on the signal-to-interference-
plus-noise ratio (SINR) (or SIR in our case) being higher
than the predefined threshold γ. If a packet is delivered
successfully, we shall assume that the base station (macro or
small cell) receives a one-bit acknowledgement message from
the mobile user with negligible delay and error. Otherwise, if
the delivery fails, the base station receives a one-bit negative
acknowledgement message in the same vein. These attempts
take T0 amount of time. An outage event occurs if the packet
is not delivered after M attempts. In the remainder, we denote
the downlink delay experienced by the typical macro cell
users (MUs) and small cell users (SUs) as Ddm and Dds

respectively.
Delay in backhaul: The delay caused in a wired back-

haul link is modeled by an exponentially distributed ran-
dom variable whose mean being proportional to the product
of the average link distance (from typical base station to
its nearest central router) and the average number of base
stations connected to a single central router. In particular,
representing the delay in macro and small cell backhaul links
as Dbm ∼ Exponential(µ̄bm) and Dbs ∼ Exponential(µ̄bs)
respectively, we (in general) suppose that Dbs stochastically
dominates Dbm.1 This implies that small cell backhaul links
are subject to higher delays compared to those of MBSs.

Delay in caches: Serving a user by fetching its content from
the local cache is subject to delay as the storage medium is
prone to errors, whereas such a delay may also vary depending
on the storage type and the underlying mechanisms (i.e., hard
disk, solid-state disk (SSD)). In this regard, we model this
phenomenon as Dca ∼ Exponential(µ̄ca), an exponentially
distributed random variable with mean µ̄ca being proportional
to the storage type. We also assume that the delay of small cell
backhaul links stochastically dominates the delay of reading a
content from local caches, meaning that the speed of content
reads from caches is stochastically higher than the speed of
small cell backhaul links.

III. PERFORMANCE ANALYSIS

Considering the aforementioned sources of delay, namely
downlink, caching and backhaul, the delay experienced by the
typical MUs and SUs are respectively defined as

Dm = Ddm +Dbm, (4)

Ds = Dds + 1{fs∈∆0}Dca +
(
1− 1{fs∈∆0}

)
Dbs (5)

where fs is the content requested by the typical small cell
user and ∆0 is the cache of its associated small cell. The
indicator function 1{...} returns 1 if the statement holds, 0
otherwise. Before proceeding to the next step, let us de-
fine functions B1(T0,M, γ, α, Px, Py, λx, λy), B2(Sp, η) and
B3(Su, Sp, f0, η) given on the top of the next page.

1Given two random variables A and B, we say that A stochastically
dominates B if P(A > x) ≥ P(B > x) for all a, or alternatively,
FA(x) ≤ FB(x) for cumulative distribution functions FA(x) and FB(x).



B1(T0,M, γ, α, Px, Py, λx, λy) = T0

M−1∑
i=0

(−1)i
(
M

i+ 1

)
1

1 + i
[
ρ(γ, α) + (Px/Py)2/α(λx/λy)γ2/αA(α)

] (6)

B2(Sp, η) = 1−
(
1 + Sp

)1−η (7)

B3(Su, Sp, f0, η) =
Su

f0 − Sp

(
1−

(
1 + f0

)1−η
+
(
1 + Sp

)1−η) (8)

We now state the following result related to the average
delay experienced by the typical MUs.

Theorem 1. The average delay for a typical user connected
to its nearest MBS is given by

D̄m = B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) +
1

2
βλmcλ

−3/2
cs

(9)

where B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) is given in (6). The
parameter β is a scaling factor, relating to the importance of
backhaul delay over the non-backhaul delay.

Proof. See Appendix B.2 in [15].

In Theorem 1, the function B1 models the average downlink
delay whereas the remaining term in D̄m incorporates the
average delay caused due to the backhaul. The summation of
terms is due to the consideration of independent PPPs. We now
turn our attention to SU with and without caching capabilities
at the SBSs.

Corollary 1. The average delay for a typical user connected
to its nearest small cell (with no caching) is given by

D̄m = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +
1

2
βλscλ

−3/2
cs (10)

where B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) is given in (6).

Proof. The result is a direct application of Theorem 1, thus
it is immediately proved by following similar steps given in
Appendix B.2 in [15].

Theorem 2. When MixPop caching policy is employed at
the SBSs, the average delay for a typical user connected to its
nearest small cell under fixed content popularity distribution
is given by

D̄
(mix)
fix = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp, η0) +B3(Su, Sp, f0, η0)

)
(11)

where B2(Sp, η0) and B3(Su, Sp, f0, η0) are given in (7) and
(8) respectively.

In case of distance-dependent content popularity, the aver-
age delay is given by

D̄
(mix)
dist = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp,

1

2
√
λsc

)+

B3(Su, Sp, f0,
1

2
√
λsc

)
)
. (12)

In case of load-dependent content popularity, the average
delay is given by

D̄
(mix)
load = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp,

λut

λsc
)+

B3(Su, Sp, f0,
λut

λsc
)
)
. (13)

Proof. See Appendix B.3 in [15].

The functions B2 and B3 in Theorem 2 are related to
caching popular contents and caching uniformly at random
respectively, and captures the cache hit behavior of the MixPop
policy. By slightly modifying the steps in the proof of Theorem
2, similar results for StdPop and UniRand caching policies can
be readily obtained. Note that the results above are based on
the assumption that the typical users are connected to their
nearest base stations.

In the above, we have provided the average delay expres-
sions for typical MUs and SUs. The total average network
delay, total network cost (including deployment and opera-
tional costs), and optimization of these metrics with respect to
system design parameters are left for future work.

IV. NUMERICAL RESULTS

In this section, we numerically validate our approximations
derived in the previous section. The impact of critical system
parameters are discussed as follows.

Impact of MBS density λmc: The change of average delay
with respect to the MBS density is given in Fig. 2a. Therein,
as the number of MBSs increases, we observe an increment in
average delay. This is mainly due to the backhaul as the delay
in backhaul is proportional to the distance and average number
of connected MBSs. In this setup, even though the average
distance from a MBS to its central central router decreases
(thus less delay in the backhaul), the increasing number of base
stations contributes more to the average delay, thus yielding
such a behaviour. On the other hand, the average delay in SBSs
remains static in this setup. However, we note that the average
delay experienced by a typical small cell user is reduced by
adding caching capabilities at the base stations. For instance,
when content popularity is load-dependent and caching policy
is MixPop, the average delay is reasonably less than other
candidates (including typical users with no caching at SBSs).

Impact of small cell density λsc: The change of the average
delay with respect to the small cell density is depicted in
Fig. 2b. Similarly to the previous figure for MBS density, we
see that the average delay increases for all kind of small cell
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Figure 2: Evolution of average delay with respect to the a) macro cell density, b) small cell density, c) target SIR and d)
storage size. λcr = 1.4 × 10−6, λmc = 2.8 × 10−6, λsc = 3.6 × 10−6, λut = 7.2 × 10−6; Pmc = 20, Psc = 2 Watts; α = 4;
γ = 3 dB; M = 4; T0 = 0.1, µca = 0.01 ms; η0 = 1.45; f0 = 500, S = 100, Sp = 9.5, S0 = 0.5, Su = 90 GByte.

users. However, in this numerical setup, the rate of increment
in delay with no-caching capabilities at the SBSs is higher
than the delay experienced by the typical users with cache-
enabled SBSs. Compared to the fixed and load-dependent
content popularities, the typical user under load-dependent
content popularity experiences less delay when the number
of SBSs increases.

Impact of target SIR γ: In our setup, yet another important
design parameter is the target SIR. In this regard, the average
delay variation with respect to the target SIR is illustrated in
Fig. 2c. As observed in the figure, the average delay increases
by imposing higher target SIR values. This change is only
visible in low values of target SIR, whereas the variation
of delay in higher values of target SIR is negligible. This
might stem from the fact that the downlink delay is not a
dominating factor in our scenario compared to the backhaul
delay. A typical user connected to the small cell with no
caching capabilities experiences the highest delay, whereas the
minimum delay is achieved by using MixPop policy under
load-dependent content popularity. The delay of a typical
MU remains between a SU with no-caching and caching
capabilities at the base stations.

Impact of storage size S: Yet another crucial design
parameter in our setup is the storage size. The impact of
storage size on the average delay is shown in Fig. 2d. Indeed,
as observed from the figure, dramatical decrease in delay is
observed by increasing the storage size of small base stations.
Similarly to previous observations, the most sensitive content
popularity for the average delay is the load-dependent content
popularity.

V. CONCLUSIONS

In this work, we have characterized the average delay of
MUs and SUs under backhaul constraints and caching capa-
bilities at the small base stations. Several content popularity
distributions and caching policies have been considered. The
main conclusion from this work is that caching at the small
base stations allows for balancing the average access delay to
the contents, especially if heterogeneous network densification
under limited backhaul is considered.
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