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Abstract—This paper presents a cooperative multiple-input
multiple-output (MIMO) scheme for a wireless sensor network
consisting of inexpensive nodes, organised in clusters and trans-
mitting data towards sinks. The transmission is affected by hard-
ware imperfections, imperfect synchronisation, data correlation
among nodes of the same cluster, channel estimation errors
and interference among nodes of different clusters. Within this
setting, we are interested in determining the number of nodes
per cluster that maximises the energy efficiency of the network.
The analysis is conducted in the asymptotic regime in which
the number N of sensor nodes per cluster grows large without
bound. Numerical results are used to validate the asymptotic
analysis in the finite system regime and to investigate different
configurations. It turns out that the optimum number of sensor
nodes per cluster increases with the inter-cluster interference and
with the number of sinks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have recently gained

increasing attention as a practical technology being introduced

to different applications. A considerable number of these

applications require transmission of the acquired data over

long distances using transmission resources available only at

sensor nodes. In this situation, direct transmission from a

source node to a sink over a fading channel often presents

difficulties mainly due to the large amount of energy required

to establish a reliable transmission, fostering an inefficient use

of batteries.

Multiple-input multiple-output (MIMO) systems are well

known for their capability of achieving high spectral efficiency

in the presence of fading channels [1]. However, the need to

install multiple antennas in sensor nodes can be problematic

for economic and practical reasons. To extend the advantages

of MIMO systems to single antenna devices, the idea of

deploying a cooperative (also known as virtual or distributed)

MIMO architecture appears to be very promising. Many works

in the literature deal with cooperative schemes for WSNs: one

of the first studies was presented in [2], where nodes cooperate

to establish virtual antenna arrays; [3] presents a multi-hop co-

operative WSN, minimising end-to-end outage probability; in

[4] and [5] cooperative beamforming is considered. Despite its

promises, the deployment of a cooperative MIMO architecture

in WSNs poses several technical challenges mainly because
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of the large amount of signalling packets required to enable

cooperation among different nodes.

Many works in the literature deal with the optimisation of

cluster size in non-cooperative WSNs (see, e.g., [6]). Some

works address this issue considering cooperative schemes: [5]

derives a close-to-optimal number of nodes and a selection

method for distributed beamforming; in [7], the optimal cluster

size minimizing the outage probability under a Rayleigh fading

channel is derived for a cooperative WSN. The aforementioned

works, as many others in the literature, do not account for

many realistic aspects of WSNs, such as hardware limitation

and imperfect synchronisation.

To overcome the issue of overhead in cooperative WSN, this

work presents a simple mechanism, which does not require

any signalling and is suitable for cheap sensor nodes with

limited hardware capabilities. More precisely, we consider a

WSN organised in clusters, wherein nodes of each cluster

cooperate to transmit data to one or more sinks located in the

same cluster [8]. This multi-cluster scenario is analysed by

employing the Wyner model [9], which simplifies the analysis

and allows for intuitive interpretation of results. Furthermore,

in order to facilitate the mathematical computation, we per-

form the analysis of the asymptotic regime where the number

of sensor nodes grows without bound. Results, confirmed by

simulations, show that the asymptotic analysis and subsequent

optimisation are valid even for relatively small number of

sensor nodes.

The main contribution of this work is the analysis and the

optimisation of a cooperative WSN affected by inter-cluster in-

terference, imperfect synchronisation and channel estimation,

hardware impairments and data correlation within clusters.

We provide insights into the most energy efficient cluster

configuration, i.e., number of nodes and sinks per cluster, and

the system performance under previously mentioned realistic

phenomena.

The remainder of this work is organised as follows.1 Sec-

tion II describes system and signal models whereas the prob-

lem formulation is illustrated in Section III. The asymptotic

analysis is presented in Section IV. Numerical results are given

in Section V while conclusions are drawn in Section VI.

1Matrices and vectors are denoted by uppercase boldface and lowercase
boldface letters respectively, {·}H denotes the Hermitian operator, tr{·}
denotes the trace of a matrix, diag{·} denotes a diagonal matrix while Z+

represents the set of all strictly positive integer numbers.
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Fig. 1. Reference scenario and Wyner model.

II. SYSTEM AND SIGNAL MODELS

Consider a WSN composed of L clusters, each consisting

of N sensor nodes and K sinks (see Fig. 1). All sensor nodes

and sinks are equipped with a single antenna and operate over

a bandwidth B. A double index notation is used to refer to

each node or sink in a given cluster. Under this convention,

we refer to node ni as “node n in cluster i” and to sink kl as

“sink k in cluster l”.

A. Channel model

We consider a block flat-fading channel with coherence time

T and assume that the transmission takes place according to

the time-division duplex (TDD) protocol shown in Fig. 2,

with Ts being the time required to transmit a symbol and

M being the number of symbols transmitted within a frame.

As seen, the transmission phase is preceded by a training

phase during which pilots, of length τ symbols, are sent by

sinks with 0 ≤ τ ≤ M . Pilots enable sensors to estimate the

channels. The TDD protocol is assumed to be matched to the

coherence time (i.e., MTs ≤ T ). Therefore, the channel can

be considered as reciprocal and the sensors can make use of

pilot-based estimates for data transmission. Let us denote as

hnikl the channel coefficient between node ni and sink kl and

assume that

hnikl =
√

dniklwnikl (1)

where wnikl ∼ CN (0, 1) is the small-scale fading chan-

nel and dnikl accounts for the pathloss. For the sake of

compactness, we call hikl = [h1ikl . . . hNikl]
T

, Hikl =
diag {h1ikl . . . hNikl}, wikl = [w1ikl . . . wNikl]

T
and Wikl =

diag {w1ikl . . . wNikl} to denote the channel/fading vec-

tor/matrix between all nodes in cluster i and sink kl.
To facilitate the analysis, the Wyner model is employed [9]:

• All the nodes within a cluster experience the same

pathloss towards the sink antennas, dnlkl = dll, ∀nl, kl;
• All the nodes from the neighbouring cluster experience

the same pathloss towards the sink antennas in the

observed cluster, dnikl = dil = αdll, ∀ni, kl;
• All the nodes from the second neighbouring cluster

experience the same pathloss towards the sink antennas

in the observed cluster, dnjkl = djl = α2dll, ∀nj, kl;

Pilot signals Data transmission

t

MTs

τTs

Fig. 2. Time division duplex protocol.

• Interference from all the other clusters is neglected;

where 0 < α < 1 is the parameter defined by the proximity

between the clusters (see Fig. 1).

B. Signal model

We assume that sensors within a cluster l measure the

same parameter such that the transmit data vector sl =
[s1l, . . . , sNl]

T has correlation matrix C = E[sls
H
l ], with

[C]n,n = E[|snl|2] = 1 ∀n and [C]n,m = E[s∗nlsml] = c
∀n 6= m, where c defines the level of correlation between data

of different nodes within the same cluster. On the other hand,

data from different clusters are assumed to be uncorrelated.

We denote by vnl the precoding coefficient used by node

nl and assume that it is computed as:

vnl =
1√
λnl

K
∑

k=1

hnlkl (2)

where λnl is chosen such that the following average constraint

E{|vnl|2} = 1 is satisfied. Therefore, from (1) it follows that

λnl =
∑K

k=1 dnlkl. In a more compact form, we may write

Vl = diag{v1l, . . . , vNl} as

Vl = Λ
−1/2
l

K
∑

k=1

Hlkl (3)

with Λ
−1/2
l = diag{λ−1/2

1l , . . . , λ
−1/2
Nl }. Let V̂l be an estimate

of Vl and assume that hardware impairments (such as non-

linearities in amplifiers, clock drifts, I/Q imbalance in mixers,

finite-precision ADCs and so forth) affect transmission. Sim-

ilar to [10]–[12], we model the hardware impairments as a

reduction of the original signal by a factor
√

(1− ǫ2) (where

ǫ is related to error vector magnitude) and replacing such a loss

with Gaussian distortion noise with same power. We denote by

Φl the matrix that describes imperfect synchronisation among

nodes of cluster l. Then, the signal received at sink kl takes

the form:

ykl = h
H
lklΦl

(

√

p (1− ǫ2)V̂lsl + ηl

)

+
L
∑

i=1,i6=l

yikl + nkl (4)

where p is the transmit power, nkl ∼ CN (0, σ2) is the thermal

noise while ηl =
√
pǫV̂lξl accounts for non-ideal hardware.

We assume ξl ∼ CN (0, IN ) such that the distortion noise at

sensor nl is distributed as ηnl ∼ CN (0, pǫ2|v̂nl|2). The term

yikl accounts for the interference generated by cluster i at sink

kl given by

yikl = h
H
iklΦi

(

√

p (1− ǫ2)V̂isi + ηi

)

. (5)



III. PROBLEM STATEMENT AND ENERGY-EFFICIENCY

OPTIMISATION

One of the most common way to define the EE is as a

benefit-cost ratio, where the service quality is compared with

the associated energy costs. The objective of this work is to

solve the following problem:

max
N∈Z+

EEl=

(

1− τ
M

)

K
∑

k=1

rkl

PTl

. (6)

where rkl denotes the achievable rate (in bit/s) at sink kl and

PTl
accounts for the total consumed power (in Joule/s) in

cluster l. The factor 1 − τ
M accounts for pilot overhead. The

total consumed power is computed as

PTl
=
(

1− τ

M

)

PTXl
+

τ

M
PCE +NPSEN +KPSINK (7)

where PTXl
accounts for the power consumption of the sensor

nodes in transmission state, PCE of the pilot transmission

phase whereas PSEN and PSINK are constant quantities ac-

counting for the fixed power consumption required by each

sensor and sink, respectively, for running the circuitry.

In the sequel, we show how to model and compute all

the terms in EEl when the transmission is affected by inter-

cluster interference, imperfect synchronisation and channel

state information (CSI) as well as hardware impairments.

A. Pilot-based Estimation of Precoding Coefficients

Observe that dnlkl corresponds to the long-term average

channel attenuation, which changes in time some orders of

magnitudes slower that the fast fading component wnikl. In

practice, this means that dnlkl is constant for a sufficiently

large number of reception phases to be accurately estimated

at the sensor. For this reason, in all subsequent discussions

we assume that the quantities {dnlkl; ∀k, l} are known at

sensor nl. Therefore, we are only left with the estimation of
∑K

k=1 hnlkl.

In the training phase, we assume sinks of the same cluster

to be perfectly synchronised. This can be justified by the fact

that sinks can be complex devices employing sophisticated

synchronisation mechanisms. Moreover, relatively low number

of sinks per cluster guarantees the feasibility of the procedure

and limits the overhead. The pilot signal transmitted by sinks

in cluster l can be represented by a deterministic vector ul ∈
Cτ×1 with elements of power pτ . Therefore, we have that

PCE = Kpτ/µSINK, where 0 < µSINK ≤ 1 accounts for the

transceiver efficiency of sinks. We assume that pilot sequences

used in different clusters are mutually orthogonal and that the

pilot reuse factor is such that the so-called pilot contamination

effect is negligible. The collective received signal xnl ∈ Cτ×1

at sensor nl is given by

xnl =

K
∑

k=1

hnlklul + nnl = νnlul + nnl (8)

where nnl ∼ CN (0, ς2IN ) represents the additive noise at

node nl during the pilot signalling. To keep the complexity

of nodes at a tolerable level, we employ the least-squares

estimator of νnl defined as

ν̂nl =
1

τpτ
u
H
l xnl. (9)

The variance of the estimation error is given by E{|νnl −
ν̂nl|2} = ς2

τpτ
. Plugging (8) into (9) and using (2) yields

V̂l = Vl +El (10)

where El ∼ CN
(

0, 1
λnl

ς2

τpτ
IN

)

is the diagonal estimation

error matrix.

Observe that a single pilot signal (i.e., τ = 1) from all sinks

would be sufficient to estimate the precoding coefficients at all

sensors. This is a consequence of the adoption of the precoding

scheme in (2), which requires sensor nl to have only knowl-

edge of the composite channel
∑K

k=1 hnlkl. Different precod-

ing schemes based on knowledge of {hnlkl; k = 1, . . . ,K}
would require τ ≥ K . This might not be possible when K is

relatively large.

B. Synchronisation Errors

In any distributed system (such as the one considered in

this work), nodes within a cluster cannot be assumed to be

perfectly synchronised in time. The cause for imperfect syn-

chronisation ranges from hardware to communication protocol

limitations. The transmissions of nodes will be dispersed in

time. Considering as a reference time the target time instant

of transmission, t0, the actual transmission instants of each

node can be modelled as a random variable tnl, uniformly

distributed in range [−tmax/2, tmax/2], where tmax is the

maximum synchronisation error represented as a fraction of

symbol time Ts. Assuming an OFDM-based system, i.e., WiFi-

based WSN, the dispersion in time domain can be represented

by phase shift in frequency domain [13] φnl = ej2πtnl .

The overall effect of synchronisation error is expressed as

a complex diagonal matrix Φl = diag{φ1l, . . . , φNl} which

multiplies the channel matrix Hll. Synchronisation error only

introduces phase shift implying that the elements of matrix

Φl are complex numbers with unit modulus. Matrix Φl is

unknown to the transmitters, like the channel estimation error,

therefore these effects cannot be compensated.

We are interested in observing separately real and imaginary

part, R{φnl} = cos (2πtnl) and I{φnl} = sin (2πtnl). First

and second order moments of the two random variables are

given by:

E[R{φnl}] = sinc (tmax) (11)

E[|R{φnl}|2] =
1

2
(1 + sinc (2tmax)) (12)

and

E[I{φnl}] = 0 (13)

E[|I{φnl}|2] =
1

2
(1− sinc (2tmax)) . (14)

where sinc(x) = sin(πx)
πx . The effect of imperfect synchroni-

sation is twofold: it reduces the useful signal and introduces

an interference-like term due to unmatched phases.



γkl =

p(1−ǫ2)dll

K A
p(1−ǫ2)dll

K B + p(1−ǫ2)dll

K C(α) + p
K

ς2

τpτ
D(α) + pǫ2dll

K E(α) + σ2
(15)

EEl =

(

1− τ
M

)

B
K
∑

k=1

log2 (1 + γkl)

(

1− τ
M

)

p
µSEN

1
K

(

tr{∑K
k=1 W

H
lkl

∑K
k=1 Wlkl}+ ς2

τpτ

N
dll

)

+ τ
MK pτ

µSINK
+NPSEN +KPSINK

(16)

γl (α) =

(

1− ǫ2
)

dllc sinc
2 (tmax)

(1− ǫ2) dll (1− sinc (2tmax)) +
ς2

τpτ
(1 + α+ α2) + ǫ2dll (K + 1) +Kdll (α+ α2)

(17)

C. Energy Efficiency

Plugging (3) and (10) into (4) and exploiting properties of

Wyner model (described in Section II-A) one gets2

ykl =

√

p (1− ǫ2) dll
K

w
H
lklR{Φl}Wlklsl

+

√

p (1− ǫ2) dll
K

w
H
lklI{Φl}Wlklsl

+

√

p (1− ǫ2) dll
K

w
H
lklΦl

K
∑

m=1,m 6=k

Wlmlsl

+
√

p (1− ǫ2) dllw
H
lklΦlElsl

+ ǫ
√

pdllw
H
lklΦl

(

√

1

K

K
∑

m=1

Wlml +El

)

ξl

+ yikl + yjkl + nkl. (18)

The achievable rate at sink kl is thus given by rkl =
B log2 (1 + γkl) where γkl is Signal to Interference and Noise

Ratio (SINR) computed as in (15) with

A = w
H
lklR{Φl}WlklCW

H
lklR{Φl}wlkl (19)

B = w
H
lklI{Φl}WlklCW

H
lklI{Φl}wlkl (20)

C(α) = w
H
lklΦl

∑

m 6=k

WlmlC

∑

m 6=k

W
H
lmlΦ

H
l wlkl

+ αwH
iklΦi

K
∑

k=1

WikiC

K
∑

k=1

W
H
ikiΦ

H
i wikl

+ α2
w

H
jklΦj

K
∑

k=1

WjkjC

K
∑

k=1

W
H
jkjΦ

H
j wjkl (21)

D(α) = w
H
lklwlkl + αwH

iklwikl + α2
w

H
jklwjkl (22)

E(α) = w
H
lkl

K
∑

k=1

Wlkl

K
∑

k=1

WH
lklwlkl

+ αwH
ikl

K
∑

k=1

Wiki

K
∑

k=1

WH
ikiwikl

+ α2
w

H
jkl

K
∑

k=1

Wjkj

K
∑

k=1

WH
jkjwjkl (23)

2Terms yikl and yjkl can be expanded in a similar way.

being coefficients depending on fading and synchronisation

error only. Regarding the power consumption, starting from

(4) and using assumptions from II-A, we obtain

PTXl
=

p

µSEN

1

K

(

tr{
K
∑

k=1

W
H
lkl

K
∑

k=1

Wlkl}+
ς2

τpτ

N

dll

)

. (24)

where 0 < µSEN ≤ 1 accounts for the transceiver efficiency

of sensor nodes.

Putting all the above results together, the EE takes the

form in (16). At this point one can find EE-optimising N
by performing an exhaustive search over the integer set, i.e.,

performing Monte Carlo simulations of (16) for each possible

value of N . However, to gain more intuitive insights in the

solution of (6) we perform the asymptotic analysis, described

in the next section.

IV. ASYMPTOTIC ANALYSIS

The analysis is conducted in the regime in which the number

of sensors N is infinitely large.

Lemma 1. If N grows without bound, then 1
N γl − γl → 0

almost surely with γl given by (17). Moreover, we have that
1
N PTXl

− PTXl
→ 0 almost surely with

PTXl
=

p

µSEN

(

1 +
ς2

τpτ

1

Kdll

)

. (25)

Proof. The results easily follow using simple statistical argu-

ments and asymptotic results.

Lemma 1 shows that the SINR and the transmit power

increase linearly with N . Although valid for N growing

without bounds, next we use this result for a system with a

large but finite number of sensors. This yields

EEl =

(

1− τ
M

)

BK log2 (1 + γl (α)N)

κ+Nθl
(26)

where we have defined (for notational compactness)

θl =
(

1− τ

M

) p

µSEN

(

1 +
ς2

τpτ

1

Kdll

)

+ PSEN (27)

and

κ = KPSINK +
τ

M
K

pτ
µSINK

. (28)



TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

Intra-cluster distance: a 100 m Transceiver efficiency sensor nodes: µSEN 0.08

Pathloss model: dll 10−3.53a−3.76 Transceiver efficiency sinks: µSINK 0.4

Sensor nodes transmit power: p 1 mW Hardware impairments: ǫ2 0.17
Pilot transmit power: pτ 100 mW Bandwidth: B 5 MHz

Circuit power sensor nodes: PSEN 20 mW Symbol time: Ts 32 µs
Circuit power sinks: PSINK 100 mW Number of symbols in a frame: M 256

Total noise power: Bσ2 −107 dBm Pilot sequence length: τ 1

We now look at the EE-optimal value of N when α is given.

Lemma 2. For α given, the value of N maximising (26) is

given by

N⋆ =
e(z

⋆+1) − 1

γl

(29)

where

z⋆ = W

(

γl (α) κ

θle
− 1

e

)

(30)

and W (x) is the Lambert function defined by the equation

t = W (t)eW (t) for any t ∈ C.

Proof. The proof relies on using the same augments of The-

orem 2 in [14]. Let EE = g log(1+bN)
c+dN denote the objective

function in (26). Note that ∂EE/∂N = 0 if and only if

1

ln(2)

b(c+ dN)

1 + bN
− d log(1 + bN) = 0 (31)

or, equivalently,

bc− d

1 + bN
= d
(

ln(1 + bN)− 1
)

. (32)

Plugging z = ln(1 + bN)− 1 into (32) yields bc
de − 1

e = zez

whose solution is eventually found to be z⋆ = W ( bcde − 1
e )

where W (·) is the Lambert function. Since z⋆ = ln(1+bN)−
1, the result in (29) follows.

A close inspection of (29) reveals that N⋆ increases with

α. This is because higher interference level brings to lower

SINR, with ensuing reduction of the achievable rate. This can

only be compensated by increasing N⋆. Another interesting

observation is that N⋆ must increase with K . This is due to

the fact that when K increases, the energy consumption of

sinks becomes the dominant component of the overall energy

consumption, due to the high transmit power of pilots and

complex circuitry of sinks (PSINK). In this setting, increasing

N , while being beneficial for the achievable rate, does not

affect the total energy consumption too much, implying that

EE-optimal N should be higher.

V. NUMERICAL RESULTS

Monte Carlo simulations have been used to validate the

analysis above. Results are obtained averaging over 1000
realisations of all the random variables, such as fading, noise,

etc. The network parameters are given in Table I. Those related

to the energy consumption are taken from the datasheet of

a popular WSN device, TI CC2530 [15], while PHY layer

parameters are inspired by the IEEE 802.15.4 standard [16].

Unless otherwise specified, the level of correlation of data

within a cluster is c = 0.8 and the maximum synchronisation

error is tmax = 0.5 (symbol time).
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Fig. 3 plots the energy efficiency as a function of N for

K = 3 and different values of α. The curves obtained from

the asymptotic results of Lemma 1 closely follow the ones

obtained through Monte Carlo simulations. This proves that

the asymptotic analysis is accurate even for a relatively low

number of sensor nodes. As expected, the energy efficiency

decreases with α due to the higher level of interference.

Fig. 4 illustrates the EE-optimal value of sensor nodes as

a function of α for K = 1, 3 and 5. Firstly, notice that the

closed form solution obtained through (29) is very close to the

values obtained through simulations. The difference between

the two is higher for higher values of K . However, for high

values of K , i.e., K ≥ 5, a wider range of values of N
achieves similar energy efficiency (see Fig. 5) such that N⋆

computed by (29) achieves energy efficiency very close to the

optimal one. Secondly, as predicted at the end of Section IV,

N⋆ increases with α and K .

Fig. 5 reports energy efficiency as a function of N for

α = 0.5 and different values of K and tmax. We can observe a

large performance gap between the case where synchronisation

is perfect, tmax = 0, and the case where the maximum
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synchronisation error is tmax = 0.5. The global maximum of

the energy efficiency is obtained for K = 1, while the value of

N⋆ depends on the level of desynchronisation among nodes.

Fig. 5 also gives an insight about the solution of the reverse

problem: if N is given, find the EE-maximising value of K .

These remarks would not change for other values of α and c.

VI. CONCLUSIONS

In this paper, we focused on the maximisation of the

energy efficiency in a cooperative MIMO scheme for WSN

in which low-cost sensor nodes are organised in clusters

and transmit data to sinks. Wyner model was considered for

analytic tractability. The analysis took into account hardware

limitations that typically affect low-cost devices, imperfect

synchronisation and data correlation among nodes of the same

cluster, imperfect CSI as well as inter-cluster interference.

The asymptotic analysis was used to compute a closed form

expression for the EE-optimal number of nodes per cluster,

N⋆. This allowed to get some insights on how N⋆ is affected

by the network parameters. In particular, it turned out that

N⋆ must increase with the inter-cluster interference level as

well as with the number of sinks in each cluster. We also

provided an insight on how imperfect synchronisation affects

the performance, however this aspect is yet to be analysed

in details. Monte Carlo simulations were eventually used

to validate the asymptotic analysis, which is proved to be

accurate even for a relatively low number of sensor nodes.
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