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Abstract. The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive 
model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical 
model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model 
for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials.  
The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in 
a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were 
developed taking into account both influences of the main effect and the interactive effects on the considered factors. The 
DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, 
and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors 
were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we 
conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy. 

INTRODUCTION 

The Design of Experiments (DoE) method can be adapted in order to offer a practical way for studying, 
modeling, and characterizing the influence of the pertinent parameters involved in the response of PV panels. 
Indeed, the DoE method has been successfully introduced in industrial systems and research and has built its 
principles from statistical and mathematical methods [1]. Several domains use the DoE method as those mentioned 
in Refs [2,3]. Substantially, the DoE method is used to design new industrial products based on both a set of 
experimental trials and a statistical analysis process [4] in order to optimize the settings of a manufacturing process 
[5], to improve its performances [6], or to predict and characterize its behavioral model [7-9]. Based on a few 
experiments in a strict closed study domain of input parameters variation, DoE appears as an alternative method for 
evaluating the significant factors, correlation between factors and their influence on the response of the system. The 
method does not require to know the physical model of the studied process. By cons, other physical methods [10-
12], which can vary only one parameter at a time, are not able to measure the correlation between different input 
parameters that influence the system response. 

To overcome the shortcoming of these physical techniques, the DoE method allows to predict the self-effects as 
well as the interactions between the different variables involved in the experiment [4,13-14]. Otherwise, to 
characterize and model any system, the DoE method strongly minimizes the number of experiment trials without 
influencing accuracy of the response [15]. To model any system, the DoE is concerned with a set of input variables 
that can modify a specific output variable named by a response of the system. The DoE leads to deduce a 
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mathematical model of factorial design of the response as a function of input factors that can vary in a bonded study 
domain limiting the input parameters variations [16]. 

In the present work, one can stand out the characterization, the predictive modeling, and the study of the 
behavior of m—PV module by using the DoE technique. We consider in our study, as input parameters of the 
established predictive model, both variations of the solar irradiation and the PV cell module temperature. For the 
output responses we consider the short-circuit current, the open-circuit voltage, and the maximum available power 
of the tested PV module. 

FUNDAMENTALS OF DESIGN OF EXPERIMENT METHODS 

Introduction to the DoE Methods 

In the DoE method theory, an experimental domain is geometrically represented by the input factors and output 
responses as indicated on Fig. 1. Orthogonally factor axes define this experimental domain. Each factor is 
represented on a graduated axis. To standardize the units, the axis graduations can be with original units or in 
reduced values [17]. The domain of the study is limited between two important levels: “lower level” and “upper 
level”. The intersection of the factor levels gives an “experimental point”. We are focusing in our study on the use of 
only two input factors; this kind of design is named two-level factorial design and denoted 22. All factorial design 
can be represented by a table when factors exceed two levels or in the other case with a domain of the study that 
experimental points can be plotted on. 

 
 

 

 

 

 

 

 

 

FIGURE 1. The 22 experimental factorial design presentation in reduced values.  
 
For graphical representation and unit basis changing, -1 value is attributed to the lower level of the considered 

factor and +1 value is reserved to its upper level. Two transformations are necessary to obtain the reduced centered 
values (RCV) named also the coded values: the first one moves the center of measurement and the second one 
changes the unit of measurement [17,18]. The conversion from original values to RCV values and vice versa uses 
the following formula: 

  (1) 

where A0 is the central value in the coded units ( ) and Step is the half of the difference between the 

upper and the lowest levels (  ). 

Factor 2 
Experimental    

point 

Experimental 
space 

+1 

Domain of 
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-1 

Factor 1 
-1 +1
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The Predictive Mathematical Model of Response 

The predictive mathematical model that links the response y to the factors xi using the DoE method is established 
based on the linear regression as follows [7,8,19,20]: 

∑ ∑ ∑ 	
,   (2) 

where xi and xj are the levels of the factors i and j (i, j = 1,2, ...., k: number of factors) are the reduced centered 
values of factors, they are determined without error.  

a0, ai, aij, aii denote, respectively, the constant coefficient, the coefficients relative to the principal effect of the 
factors, the coefficients representing the interactions between several factors, and the coefficients of the second-
degree terms. These coefficients must be calculated from the measurements of trials using our developed code under 
Matlab. 

The matrix form of equation 2 is: 

.   (3) 

with y representing the individual response recorded for the n trials in the study domain, a is the vector of the n 
corresponding coefficients to be calculated, and X is the design matrix that must be a square matrix. 

From Eq. 3, the coefficients of the model can be estimated: 

  (4) 

 
Solving equation 4 using a script developed under Matlab software allows to obtain the needed coefficients. 

The One Level Predictive Model  

In the one level predictive model, four trials are enough to have a factorial design 22 composed by two factors 
having two levels each. The 22 factorial design is obtained from Eq. 2 when we can stop at the first level term that is 
based on Eq. 5: 

  (5) 

where coefficient a0 is the response to the center of the domain of the study corresponding to x1= x2=0, x1 and x2 are 
the measured values of the factors expressed in RCV, the coefficients a12 represents the interaction between the two 
considered factors and y is the measured response values. 

The Two Level Predictive Model  

This predictive model considers the second terms of equation 2. Compared to the previous model, this second 
order predictive model improves strongly the accuracy of response. Named by the two levels model, this model 
includes the one level model plus the second terms and the errors corresponding to the difference between the data 
measurement and the calculated response denoted e. The two level predictive model is governed by equation 6: 

 (6) 

Thus, equation 6 in its matrix form is:  

.   (7) 
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The resolution of this system of equations needs an algebraic calculation using the least squares method to 
estimate both the coefficients (a), and the errors (e) [21,22]. 

The least squares values â of coefficient a are [14,17,18,23]: 

â 	    (8) 

where: The result of the matrix product X' X is a square matrix denoted the “information matrix” and if it is 
invertible one can find (X'X)-1 named the “dispersion matrix” in the DoE theory. 

Validation criterion 

It is necessary to validate the predictive model characterizing the mc-PV module behavior by calculating the 
error (Er) corresponding to each experiment [24, 25]. In this field, the determination coefficient R2, ranged between 
zero and one, is a relevant coefficient to predict the accuracy of the model [18, 26]. As R2 is closer to the unit, the 
predictive model is better adjusted. 

CHARACTERIZATION OF A PV MODULE WITH THE DOE METHOD 

The behavior of the maximum power available on the mc-PV panel, the short-circuit current, and the open-
circuit voltage are modeled according to the environmental variable changes. Figure 2 shows the experimental bench 
installed at LMOPS Laboratory (at the Université de Lorraine and CentraleSupelec). The experimental bench is 
composed of a mc-PV module, a dynamic load used to save the current and the voltage data of PV module, ampere-
meter, voltage-meter, and scope for plotted I-V characteristics. 

 

                                                                                                      
(a)                                                                                                  (b) 

 

FIGURE 2.  Presentation of schematic experimental bench used for characterizing PV module (a) schematic diagram of 
experimental bench, (b) experimental bench installed in laboratory. 

 
Table 1 summarizes the datasheet of the considered mc-PV module that is built with 76 cells (4 rows of 19 cells), 

each row in the module is bypassed by a diode. 

Table 1. Electrical characteristics from datasheet of PV module under standard test conditions (1000 W/m2, AM1.5 and 25 ° C). 

PV technology Module 
reference 

Pm 
(W) 

Vpm  
(V) 

Ipm  
(A) 

Voc  
(V) 

Isc  
(A) 

Ns Np 
 

Monocrystalline PS040PR 40 17 2.34 21 2.56 38 2 
   
The illumination of PV module was provided by an artificial source: the Deltalab 6 kW, as in Ref. [16,27], 

composed by 6 quartz-halogen bulbs placed at various distances of the experimented PV module and considered as 
illumination factor. The second considered factor is the temperature of the module, with a permanent controlled 
ventilation cooling system during experiments. 

V

A

Load

Vpv 

Ipv 

Scope  

PV 
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The experimental parameters measured are: the illumination I (W/m2) using a pyranometer, represented by the 
factor x1, the surface temperature T (°C) of PV panel using infrared thermometer, represented by the factor x2, and 
the short-circuit current Isc and open-circuit voltage Voc of the panel. The maximum power is obtained from 
experimental calculation using the formula ≃ 0.72. .   as presented in Ref. [28]. 

Table 2 summarizes the experimental data measurements and the observed responses of experimental design 
saved after a set of experiments. 

Table 2. Experimental design and responses measurements  

 Factors  Responses  

N° I (W/m2) T (°C) Pm (W) Isc (A) Voc (V) 
A001 571 28,9 9,93 0,706 20,1 
A002 571 32,6 9,92 0,712 19,9 
A003 571 34,7 9,87 0,716 19,7 
A004 823 30,5 12,83 0,894 20,5 
A005 823 33,2 12,99 0,914 20,3 
A006 823 37 12,52 0,908 19,7 
A007 823 45,6 12,84 0,935 19,62 
A008 1317 34,2 18,12 1,263 20,5 
A009 1317 37,1 18,03 1,269 20,3 
A010 1317 41,1 17,77 1,282 19,8 
A011 1317 43,9 17,44 1,284 19,4 
A012 1781 38,1 23,28 1,638 20,3 
A013 1781 40,8 23,22 1,65 20,1 
A014 1781 48,5 22,76 1,659 19,6 
A015 1781 52,5 22,55 1,678 19,2 

 
The application of the DoE method for characterizing the mc-PV module begins by the detailed development of 

the method for the maximum power response output Pm, and is based on the same procedure, the other output 
responses are given, i.e. the short-circuit current and the open-circuit voltage responses. 

Validation of the One Level Predictive Model  

Firstly, the DoE method is applied to get the one level predictive model, mentioned above by equation 5, using 
only the four trials: A05, A06, A08, A09, close to the vertices of the domain of the study. Therefore, the RCV of the 
corresponding factors values denoted x1 for illumination and x2 for temperature were calculated. Then, the factors x1 
and x2 are replaced by their RCV (Eq. 1) in Eq. 5. The observed response y, which is the maximum power Pm for the 
four trials, is given by the following linear system with four equations: 

12.99
0.4872 0.4872 18.12
0.9487 0.9487 12.52

18.03

  (9) 

This system in its matrix form is:  

1.0000 1.0000 1.0000 1.0000	
1.0000	 1.0000 0.4872 	 0.4872
1.0000 	 1.0000 0.9487 0.9487
1.0000 1.0000 1.0000 		1.0000

12.99
18.12
12.52
18.03

 (10) 

 
Resolution of the linear system in eq. 10 allows to obtain the calculated coefficients as indicated in Eq. 4: 
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15.4197
2.6709
0.1509
0.0903

  (11)  

 
By substituting these coefficients in Eq.5, we obtain the one level predictive model of the maximum power 

response: 

15.4197 2.6709 0.1509 0.0903  (12) 

 
The same procedure to predict the maximum power model is performed to model the short-circuit current Isc and 

the open circuit voltage Voc:   

20.2133 0.2212 0.2212 0.0867  (13) 

1.0879 0.177 0.0005 0.0036   (14) 

Thanks to the DoE method, Eq. 12, 13 and 14 offer the possibility to find the correct response values for any 
factor in its domain of study without performing experiments for all the points. 

Validation of the Two Level Predictive Model  

Secondly, the DoE method improves the accuracy of the model by considering the second terms coefficients 
even so it requires more experimental trials than the one level predictive model. Using the same procedure as in the 
first part, by replacing the factors x1 and x2 by their RCV calculated from table 2, we obtain the system of equations:  

9.93
0.6864 0.6864 0.4712 9.92

…
…

22.55

  (15) 

This system requires fifteen trials; each trial corresponds to an equation adding an error which is the difference 
between the measured response and its calculated value; mentioned e1. Therefore, this system possesses 15 error 
values and 6 coefficients to be calculated. In total there are 21 unknowns and, with 15 equations, this system cannot 
be solved by the Eq.3, but it can be resolved by the use of the least square method indicated by Eq.7. The model 
coefficients are calculated using the Eq.8: 
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1.0000 1.0000 1.0000 1.0000	 1.0000 1.0000
1.0000 1.0000 0.6864 0.6864 1.0000 0.4712
1.0000 1.0000 0.5085 0.5085 1.0000 0.2585
1.0000 0.5840 0.8644 0.5085 1.0000 0.7472
1.0000 0.5840 0.6356 0.3712 0.3411 0.4040
1.0000 0.5840 0.3136 0.1831 0.3411 0.0983
1.0000 0.5840 0.4153 0.2425 0.3411 0.1724
1.0000 0.2320 0.5508 0.1278 0.0538 0.3034
1.0000 0.2320 0.3051 0.0708 0.0538 0.0931
1.0000 0.2320 0.0339	 0.0079 0.0538 0.0011
1.0000 0.2320 0.2712 0.0629 0.0538 0.0735
1.0000 1.0000 0.2203 0.2203 1.0000 0.0485
1.0000 1.0000 0.0085 0.0085 1.0000 0.0001
1.0000 1.0000 0.6610 0.6610 1.0000 0.4369
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9.93
9.92
9.87
12.83
12.99
12.52
12.84
18.12
18.03
17.77
17.44
23.28
23.22
22.76
22.55

 (16) 

The developed code under Matlab software applied for eq.16 gives the following coefficients:  

	 	

		16.2608	
6.5152
0.2553	
0.8218
	0.3399
0.5431

	   (17)    

The substitution of these coefficients in Eq. 6 leads to the calculated response of the maximum power of the 
predictive model, the short-circuit current and the open-circuit voltage models respectively:                     

16.2608 6.5152 0.2553 0.8218 0.3399 0.5431  (18) 

19.7808 0.2927 0.7768 0.6136 0.0043 0.593  (19) 

1.1748 0.4524 0.0309 0.0107 0.0159 0.0126  (20) 

These predictive models help to detect the significant factor and to inform about the direction of response 
variation. As for the previous three predictive models, the coefficient a1 corresponding to illumination presents a 
positive sign, its means that the maximum power, the open-circuit voltage and the short-circuit current change in the 
same direction as the illumination changes. Then, the Pm and Isc models are strongly depend on the coefficient a1, but 
the Voc model varies with coefficient a2 corresponding to temperature changes greater than the illumination, which 
confirm the practical behavior of mc-PV panel [29]. 

RESULTS AND DISCUSSION 

Table 3 summarizes the results of the two predictive models previously detailed. The maximum power response 
given by the one level predictive model of Eq. 12, provided high error values, that explains an excluded 
experimental point characterized by an error superior to 10 %. The two level predictive model mentioned by Eq. 18, 
gives a small difference between the measured and calculated values of maximum power, as indicated by error 
values smaller than that of the first model.  

For the one level predictive model established from four trials, the coefficient R2 is equal to one. Nevertheless, 
with only four trials, the whole phenomenon cannot be fully understood. The two level predictive model gives a 
determination coefficient R2 = 0.9995, close to the unit, that means the high dependence of the observed and 
estimated maximum power responses. 

030059-7



Table 3. Results of the calculated maximum power response and their errors      
Trials  Maximum power value (VA) 

Experimental Mod. 1 /Eq. 12 Er (%) Mod. 2 /Eq. 18 Er (%) 

A001 9,93    11.09  -10.46    10.06     1.27 
A002 9,92    10.46    -5.16     9.95     0.32 
A003 9,87    10.1    -2.28     9.94     0.67 
A004 12,83    13.32    -3.68    12.78    -0.38 
A005 12,99    12.99          0    12.65    -2.6 
A006 12,52    12.52          0    12.55     0.23 
A007 12,84    11.46    12.04    12.76    -0.63 
A008 18,12    18.12          0    18.2     0.42 
A009 18,03    18.03          0    17.98    -0.29 
A010 17,77    17.91    -0.78    17.78     0.06 
A011 17,44    17.82    -2.13    17.71     1.57 
A012 23,28    23.27     0.04    23.38     0.45 
A013 23,22    23.42    -0.85    23.11    -0.45 
A014 22,76    23.86    -4.61    22.64    -0.53 
A015 22,55    24.08    -6.35    22.58     0.12 

 

 

FIGURE 3. Surface responses (a), (b), (c) for the maximum power, the open-circuit voltage and short-circuit current and their 
contour curves (d), (e), (f), respectively. 

 
The surface response in the DoE method is another way to represent the response variation in the considered 

predictive models. Figures 3 shows the surface response of the maximum power, the open-circuit voltage and the 
short-circuit current as functions of the temperature and the irradiation for the two level predictive model. From this 
figure, one can notice that the maximum power calculated by the DoE method is close to that measured given by the 
experiment trials. Power changes in the same direction of the irradiation changes and inversely with temperature 
changes. The influence of the two factors in the same response can be obtained by a simple clicking on the 
considered point on the curves. The same conclusion can be performed on the contour curves graphical 
representation. 
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CONCLUSION 

The DoE method was implemented and tested for characterizing and modeling the behavior of a monocrystalline 
photovoltaic module. The DoE method is proposed to enhance the system study and to save time. It does not require 
physical details of the studied system but only needs a few trials of experiments by varying inputs parameters and 
measuring concerned output factors for each case. The main aim of this work is to model the behavior of 
monocrystalline PV module and to validate the results by experimentation. In order to perform the DoE modeling of 
our process, only a set of fifteen experimental trials is enough to take into account all pertinent input and output 
variables. The influence of both input factors: irradiations solar and temperature on the different outputs response 
factors (maximum power, short-circuit current and open-voltage) are studied. One can notice the greater dependence 
of the maximum power and short-circuit current responses with the illumination than with the temperature, whereas 
the open-circuit voltage response is inversely related to the temperature variation. The correlation between the two 
input factors for output influence is carried out. The results show a strong correspondence between the calculated 
form of the predictive model. Moreover the measured responses and the difference between both prove that the DoE 
method is an efficient tool, well adapted to model photovoltaic modules within a good accuracy. 
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