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Zonal congestion management mixing large battery storage systems and
generation curtailment

Clementine Straub'2, Sorin Olaru!, Jean Maeght? and Patrick Panciatici?

Abstract— The French transmission system operator (RTE)
needs to face a significant congestion increase in specific zones
of the electrical network due to high integration of renew-
able energies. Network reconfiguration and renewable energy
curtailment are currently employed to manage congestion and
guarantee the system security and stability. In sensitive zones,
however, stronger levers need to be developed. Large battery
storage systems are receiving an increasing interest for their
potential in congestion management. In this paper, a model for
local congestion management mixing batteries and renewable
generation curtailment is developed. Subsequently, an energy
management approach relying on the principles of Model
Predictive Control is presented. Results of simulations on RTE
data sets are presented for the analysis of the degrees of freedom
and sensitive parameters of the design.

I. INTRODUCTION
A. Motivations

The renewable energy sector is fast-growing world-wide
and the latest reports confirm such an increase in renewable
energy generation on the French territory [9]. Consequently,
an increase of transits in fragile zones of the electrical
transportation network is foreseen. As demand is expected
to stagnate, the French Transmission System Operator policy
is to investigate new exploitation methods of the existing
electrical installations and favour their optimal operation in
the renewed context instead of developing new installations.
Congestion management is a sensitive aspect in the current
operation that will become critical in the future. Two means
have been identified as possible technological approaches to
deal with this problem: renewable generation curtailments
and operation of large battery storage systems. Generation
curtailment is already applied with simple strategies. For
example, policies for curtailing all or half of the generation
are currently implemented. These strategies are not optimal
and finding the right amount to curtail, as well as the
concomitant use of storage, opens the way to energy and
economic savings. From a control theoretic point of view,
curtailment and storage are control actions presenting delays.
Their impact cannot be neglected, as the estimated delay
value for curtailment is 45 seconds. In this time-delay control
context [21], the exploitation of the installation is facing
a considerable complexity. Overloads can be allowed on
some electrical lines, but are strictly regulated. The same
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action can clear an overload on a line and worsen flows
on neighbour lines. The human operators in charge of the
operation and supervision need to be assisted by an automatic
policy selection for the optimal use of the new levers which,
while offering new solutions to congestion problems also
increase the complexity of the decision-making. An online
optimization-based strategy is needed to determine what the
most appropriate action is, taking into consideration the
time-delay levers system, the permissible overload remaining
duration and more generally network constraints.

Curtailment and storage have already been studied in
several papers. For instance, [12] and [6] are investigating
wind curtailment as a consequence of congested trans-
portation networks. Taking into account that the prediction
mechanism is the natural counterpart for delays [20], the
work reported in [15] presents a model predictive control
(MPC) approach using battery energy systems to mitigate
wind power intermittencies. The authors of [22] propose a
model and optimization of microgrids bringing into account
energy storage, disturbance on renewable energy generation,
and curtailment schedule. However the latter articles are
focused on balancing generation and load, and are not taking
into account power grid limitations. The approach in [4]
designs a controller for ensuring balance between power
consumption and generation as well as taking into account
grid capacities and thereby reducing congestion problems.
The controller, though, does not take into account long
delays that can occur when using curtailment and more
importantly, the model is designed for tree networks. The
French electrical transportation network under consideration
is a mesh network. The aim of the present paper is to
develop a new congestion management method designed
for mesh networks that combines in a generic receding-
horizon optimization problem the different levers (storage
and generation curtailment) while considering their time-
delay characteristics.

It should be noted that closed-loop systems appear in the
power systems literature [24] [5] for applications that operate
on short timescales or information lacking context. The
presented method needs a feedback mechanism of the system
for both reasons. The controller can only have access to local
measurements and needs to act fast (an action taken every
two seconds). The method relies on the receding-horizon
principle to reach a feedback formulation and benefits from
its intrinsic prediction mechanism to deal with the time-delay
in the control actions.

The main contribution of the problem is to reformulate the
congestion problem in a dynamical state-space description



including the operational constraints, suitable for a Model
Predictive Control formulation [7] [18] [19]. It will be
shown that the structure of the constraints is imposing a
time-varying receding-horizon optimization. The feasibility
in enforced by means of a constraint softening approach
and the performances are studied in a series of simulations
scenarios for a representative test zone.

Notations

We first define some notations.

ZNodes g the set of nodes in the zone considered ; n?

is its cardinal.

o ZBatt — zNodes iq the set of nodes where a battery is
installed ; n® is its cardinal.

o ZCurt ¢ zNodes ig the set of nodes where the gener-
ation can be curtailed ; nC its cardinal.

o Zlines c [(i ) € {1..N}?} is the set of lines in the
zone considered, n’ its cardinal.

o I, refers to the power flow on line ij

o« PSur is the amount of curtailment at node n € ZCurt

o PPatt is the battery power injection at node k € ZBatt

o B refers to the battery energy at node k € ZBatt

II. MODELING
A. Definition of a Zone

The French transmission electrical network is a 6000
nodes network with voltage levels from 63 to 400 kV [13].
The model considered in the present work deals with a small
zone with less than 30 nodes (Fig. [3). Variations in flows are
represented by a linearization, based on report coefficient
called PTDF (Power Transfer Distribution Factor). A short
description is given above and a complete definition can be
found in [23]. PTDF are commonly used in power systems
network modeling and analysis. They are relatively easy
to compute and often very useful in congestion modeling
[16],[2].

B. Principle

The system is modelled with the following linear repre-
sentation of the power flow equations by the mean of PTDF:
F;=Fy+ Y PTDF(ijn)-APM (1)

neZNodes

FZ%- is the measured power flow on line ij before any
system operation and F;; the power flow on line j after an
operation. System operations considered in this article (gen-
eration curtailment and battery operation) are both injection
modifications. AP represents the injection modification
at bus n. Equation (I)) allows us to determine the new power
flow resulting from an operation in a set of buses.

For the sake of illustration of the PTDF notion the 8 nodes
benchmark network described in Fig. [1| will be used.

In order to define PTDF, a slack bus needs to be introduced
in the formalism. The slack node can be any of the 8 nodes,
but can not be changed along the real-time operation and
in particular in the optimization-based decision making. A

Slack bus -1

Fig. 1. Example of PTDF on a small network

PTDF shows the linearized impact on a line of a transfer
of power between a bus of the network and the slack bus.
PTDF(ij,n) is the oriented flow between ¢ and j when the
node n produced 1 MW and the slack bus consumes 1 MW.
In the example of Fig. [l PTDF(ij,n) = 0.8 (in red). A
definition of a PTDF is:

AF;;

PTDF(ij.n) = 35

with AFj; the variation in power through branch ij due to
the transaction from bus n to the slack bus and AP, the
power of transaction from bus n to the slack bus.

Generation curtailment and battery actions at a specific
bus are modelled as a transfer of power between this bus
and the slack bus. PTDF enable us to determine the fraction
of power transfers flowing over each line of the zone. They
are computed on the complete network with the slack bus
chosen far from the zone. In a real case, F are available
via real-time measurements, while in a simulator, they are
computed using the model of the complete network. PTDF
and Fj contain implicitly the interactions between the zone
considered and the rest of the network. It may be noted that
the flows representation with PTDF is equivalent to the DC
modeling [26].

C. System dynamics

The system dynamics can be represented with the help of
PTDF to determine the influence of levers on flows on each
line. The system outputs are curtailment and battery orders.
The system presents delays between the decision-making and
the order realization. The delay is 74"t = 45s for generation
curtailment and 7°%** = 1s for batteries action. The state
is composed of power flows, battery charge, battery power
injections and curtailments. Orders given at each time step
are modifications of curtailment and power injections in the
battery, respectively APt and AP, Power injections
are not constant on all time steps, they evolve according to
APV representing the difference between two consecutive
time steps injections (changes in production or load not
related to orders).

The system dynamics contains with

APinj — APcurt + APbatt + APeUOl



The dynamical model has to include the evolution of
battery charges F, battery power injections P’** and cur-
tailment P¢“"t, described at each discrete-time step k using
a sampling of At on the continuous-time scale:

EFtY = EF + At - P wh € zBatt
Pé)att,k+1 _ Pé)att,k + APpatt i ¢ zBatt
peurth+l _ peurtk | A peurt v o gCurt
The aggregated state dynamics can be written in the form:

k—deur k—d
l’k+1 = Axk—i—Bcwt.u cu”’-‘r-Bbatt.Ubattbatt’-’—Bw’wk (2)

curt

with z* a vector containing power flows for each line of the

zone, batteries energy, amounts of curtailed generation, and

power injections in batteries:
(FF)
o),

((ipbatt,k’))
b

and n = n® +nf +n® + nB. The discrete-time delay is
related to the sampling time:
Teurt Thatt
Qeurt = [ 52| =13 dpare = | 24| — 1
curt At s Wbatt At
uk ., is a vector containing orders on curtailment mod-
ifications and u’lfatt is a vector containing orders on mod-
ifications of power injections in batteries. w” is a vector
representing disturbances in power injections. w* can be
measured at time k, but w*** for ¢t € {1..N} is unknown.
The assumption made in section [IV| for predictions purposes
is whtt = w* for t € {0..N — 1} with N the length of the
prediction window.
C
ulgurt = (A‘Priurt7k) € Rn 9
k batt,k B
Upatt = (Apna ' ) eR" )
k evol,k N
w® = (AP7") e R™

TheNmatrices Beurt € R"X”c, Bypatt € R™*"” and B, €
R™ ™" are defined as follows.

k _—

" = € R"™

Mcurt Mbatt
B | OpBxne B | Atx1,5y4,5
curt — 1 sy DBatt — 0
n%xn¢® nCxnB
0,8 «nc 1,54,B

5= (0 )
O(n—nL)XnB

Myrt, Mypgir and M, contains the PTDF, such that the
k' line in these matrices corresponds to the PTDF of the
k" line of (F;;) at nodes where generation can be curtailed,
at nodes where a battery is installed or at nodes where the
injections may vary.

All states are considered to be measured along the opera-
tion and can be initialized accordingly. Delay on the controls
Ueyrt and Upgye are known on time windows [0, d““"?] and
[0,d%*]. The system dynamics are thus well-defined in
terms of forward trajectories.

D. Constraints

The electrical lines temperatures should stay within prede-
fined limit values [8]. They depend on power flow (by means
of the Joule effect) and weather conditions and are defined to
avoid an excessive heating and dilatation. Flows must satisfy
these thermal limitations. Congestion appears whenever the
limit of a line is exceeded. Overloads can be tolerated for
a limited time. Fig. [2] illustrates an example of permitted
overloads, where a 15 MW overload can be tolerated for a
1 minute period.

Flow (MW)

pmax
1min
Overload 1
max min
Finin

Overload 2 min

max
Flomin

Overload 10 min

Thermal limit

Time

Fig. 2. Example of overload capabilities

However these overloads are allowed only when an in-
cident occurs on the network (failure of a power plant or
an electric line...) and thus should be considered as event
triggered. In a normal situation, power flows must stay within
the thermal limit. As power flows are constantly evolving, a
margin is taken with this limit to avoid crossing it. Assuming
that control can be applied every At = 2s, the margin must
represent the maximum of the variations during a At period
in normal situation.

When imposing the constraints to the system, it is neces-
sary to distinguish between these two cases : normal situation
and incident situation. Model constraints on power flow are:

[FEH < LEH teN (3)

ij*l is defined on a finite time-horizon either by a constant
function (equal to the thermal limit on line 77, minus the
value of the margin) or a stairway profile as in Fig. [
depending on the type of situation.

If a congestion on a line cannot be eliminated in the
allotted time, the line is automatically disconnected. This can
result in a cascading lines opening, which is one of the main
danger in power system operation. Note however, that this
should not be considered as an instability from the dynamical
point of view but rather as a drastic loss of performances.

The system is subject to power flow limits described
in (). The shape of power flows limits (constant or stairway
profile) depends on the network state. It is fixed before
the resolution of the current optimal control problem and
can only change between two resolutions of the optimal
control problem. System constraints also contain bounds on
batteries capacities (E™", B and pbtett:min pbatt,maz)



and bounds on generation curtailment (P¢“"*™%%) The state
and input constraints can be written in the following form:

C B, k k
H J? +H ('urt+Hu ubattSHO

u

with
Lo, e 0 0 0
0 —1,5xnB 0 0
| o TR 0 0
He=1 0 1oy c 0 ’
0 0 0 —l,s,5
0 0 0 1,545
0,2 xne 0,2 xnB
OTLB xnC At x ]lnB xnB
0,,5 c Atx1,5 B
C _ nBxn B __ ne xn
Hu N ]lncxno ’ Hu N OnCXnB ’
OnBXnC _]lnBXnB
0,5 xnc 1,545
(B
fh = | Bz

(Pcurt,maw) c
n o /n

(Pgatt7mln)n€ZBatt
(Phottima) g

ZCurt

The index k in the matrix H} refers to the limits on the
lines that can vary with time (constant function or stairway
profile).

E. Control strategy

The system is able to receive orders, such as a desired
charge level of batteries (if a battery charges to address the
congestion problem, it will have to discharge at some point
to be able to charge again when a new congestion problem
appears). Orders can also be given regarding the generation
curtailment. However, repetitive curtailment requests should
be penalized. We define two objectives for the controller:
z [k — 252 . The
stage cost represents the desned battery charge and the
desired curtailment level

e a stage cost: Ji(z) =

e a control cost: Jy(u) = Z [|uftt — f:ftHQQ repre-

senting the cost of each control The choice of weight-
ings allows penalizing curtailment more than battery
usage.

|3, = 2" Q1z, with Q1 = 0.

III. MODEL PREDICTIVE CONTROL FOR CONGESTION
MANAGEMENT

A. MPC for time-delay systems

The foregoing model offers the key elements for a
prediction-based control strategy allowing the evaluation of
the impact of the decisions beyond the dead-time. By con-
sidering a finite receding-horizon optimal control problem,

the following formulation can be obtained for the decision
making at time step k:

min  Ji(z) + J2(u)

__qgecurt
s.t. mk+t+l k+t d

Ucyrt

= A$k+t + Bcurt .
batt
+ Beatt - Ub;;i d )
+ By, - w"t t € {0,N — 1},
Hpo" 4 Hub T < BHEP € {0, N},

Within the predictive control formulation, the length of
the prediction window represents the main tuning parameter
from both feasibility/stability and performance point of view
[17], [14]. In order to enhance the prediction and ensure
its capability to cope with the time-delay, the length of the
horizon must be greater than the maximal time-delay (in this
case Tt = 455 corresponding to d°*"t = 22):

N > max(deurt, dpatt)-

The state estimation problem for z* is avoided as long as
this information is available via measurements. However, the
uncertainty has to be considered with respect to the power
flow along the prediction horizon.

The matrix H(])H't contains the time-dependant constraint
on the overloaded lines flow (3)). This constraint also depends
on the initial flow on lines. The change in constraints from
one time step to another can be handle with a reformulation
of the problem as a multiparametric program. This reformu-
lation will also deal with the problem of orders previously
sent. These orders do not appear in the state 2* and have
been considered as parameters for the optimization problem.
This choice is mainly related to the length of the delay and
the impact on the structure of the constraints in the finite-
time optimal control problem (@).

B. MPC as a parameterized optimization problem

The previous problem is reformulated as a parameterized
optimization problem [3], [10]. The parameters are including
the past control inputs, the current state and the measured
disturbance. The constraints taken into account are time vary-
ing but their structure remains linear along one prediction
window. Thus, the finite-dimensional optimization can be
written as:

min J(xkv Wk, Ulfzttv Uzirta Ubatt, UcuTt)

Uvatt Ucurt (5)

S.L. 9(Tk, w, Ulitta Uc}Zrtv Ubatts Ucurt) <0
with a quadratic cost J(.), a linear set of constraints g(.) and

Ul .., UL ., the vectors collecting the orders sent previously
to the input of the system.

k dbatt k dbatt+1 k—1
Ubatt [Whare Upgtt ey Upgg |
k—d Tf k dewrt+1 k—1
Ucurt [ curtcu curt “r PR ucurt]?
—_ k k+1 k+N—-1
Ubatt - [ubatt’ Upatts -+ Wpatt ]’

k k+1

_ k+N—1
Ucurt - [ucurt’ Ueyrts -+

curt ]



The optimal solution Up,,,(wk, wg, UL,,,UL.,) and
Usyri (@, wi, UL, UL ) can be computed online effi-
ciently based on Quadratic Programming (QP) solvers as
the optimization problem is convex. For the simulations
presented in section the solver Fico Xpress [25] was

used .

C. Feasibility

The recursive feasibility of the optimization problem can-
not be guaranteed using the classical arguments [19] which
employ the tail of the optimal sequence at the previous
time instant. Indeed, the structure of the constraints in (E])
is time-varying and the switch in the structure is activated
by the exogenous signal wy, and thus a priori unknown in
the prediction scheme. For instance, gaps between power
flows and lines capabilities can be too important to be
addressed, or sudden increases in power flow cannot be
reduced immediately because of input delays. The feasi-
bility can be studied with two methods: the elimination of
time-dependence or the introduction of slack variables. The
elimination of time-dependence in the formulation (§) is
computationally prohibitive and over-conservative from the
performance viewpoint as it relies on the enumeration of
all the possible structural constraints and is therefore not
employed here. The second method is to introduce slack
variables ¢ € ZLi"¢s on the constraint :

[FiH ) < LEF + et t e {1.N}

k+1
€; =0

and e is included in the cost function by adding the penalizing

term: N
JS:Z Z (Efaﬂ)Q

t=1 ijeZLines

The problem is then feasible for each time ¢ at the price of
overloads whenever ¢ > 0. It is obvious to see that it exists
€ > 0 to render Upqs = 0 and U,y = 0 as an admissible
solution.

IV. SIMULATIONS

The behaviour of the MPC scheme has been simulated on
a zone around Savignac in the Auvergne region (center of
France), see the map of the zone in Fig. [3] The dimensions
of the problem () are n’V = 21, n® =1, n® = 11, nt =
22. Tt follows that dim(z*) = 35, dim(u®,,) = 22 and
dim(ul]fatt) =1

A major growth in renewable generation is expected in
this area and congestions are anticipated. The introduction
of a battery is currently studied. For our simulations, we
situate the battery in Massiac and consider a capacity of
30MW —30MW L. The section shows the behaviour of the
MPC controller facing three cases:

o Constant loads and generation with one overloaded line
« Constant loads and generation with two overloaded lines
« Volatile injections

In the three cases, overloads appear due to incidents on the
network. This means as described in [[I-Dl that flows can cross
thermal limits, but should stay below the stairway profile
describing permitted overloads. We show that in the three
cases, flows respect the permitted overloads, thanks to the
MPC controller action.

Massiac
Allan Brioude

1 Savignac
{
{

Pratclaux

a
Production @ Load
8 Battery — Overloaded line
Fig. 3. Map of Savignac zone

Data used has been extracted from RTE network analysis
tool Convergence{ﬂ Limitations and injections have been
modified in the data, so that congestion can be observed. The
modifications are representative of the increase in power flow
due to the growth of renewable energy. Data for the first two
cases has been simplified to better illustrates the behaviour of
the controller. Generation and loads are kept constant once
the incident has occurred, meaning that flows without any
action of the controller are constant. A drop in a flow on a
line is thus the result of the controller action only and not
just the result of a variation in generation or loads.

Constant loads and generation with one overloaded line

Fig. [] and Fig. [3] illustrate the behaviour of the controller
when one line is congested: the line between Massiac and
Brioude. Fig. ] shows the flow on the congested line with
and without the controller action, as well as the actions taken.
Fig. [j] illustrates the control: when the actions are taken and
when they are carried out.

An incident occurred at time O, meaning that the flow
should stay under the stairway profile describing permitting
overloads. The flow increases progressively until ¢ = 24s
and then is stabilizing around 88 MW. The reference flow
(without any action of the controller) is settled at 88 MW
after 24s. This flow is violating capacity constraints. The
graph shows the difference between the reference flow and
the flow on Massiac-Brioude when the controller is acting
and when it is not. The controlled flow respects these
constraints: the battery charges at its maximal power (30
MW) and generation is curtailed to bring the flow down.

I'See [13] for Convergence software short description



The controller can curtail generation in 11 places: it chose
Massiac because of the values of the PTDF (see TABLE
). The biggest PTDF is in Massiac ; for the same amount
of curtailment, the decrease in Massiac-Brioude flow will be
more important if the curtailment is in Massiac in comparison
to other places. The battery, located in Massiac, is used
at its maximum power as it is cheaper than curtailment.
The curtailment order in Massiac is sent at ¢ = 27s, 46s
before the order realization at ¢ = 72s : the optimization
problem shows that the battery action is not sufficient for
guaranteeing the feasibiblity of the congestion problem and
a complementary lever is used. The other lines are considered
to be far from their limit and are not represented in the graph
for readability.

The strategy of the controller here is simple to analyze:
the battery is used in priority as the cheapest lever and
generation with the largest impact (PTDF) is then curtailed.
Optimal curtailment comes as an automatic decision with the
resolution of the optimization problem.

Power flow (MW)

U UV SO SISO |

o 1w P "
Time steps (s)
—Reference flow on Massiac-Brioude

Limit on Massiac-Brioude
-+++«Production curtailment

——Flow on Massiac-Brioude with automate
- - -Battery charge (MW)
- = Limit-2sigma

Fig. 4. Power flows on Massiac-Brioude with constant generation and
load, one overload

Power flow (MW)

- - -Battery charge :«:-- Curtailment «eee-- Curtailment order

Fig. 5. Control with constant generation and load, one overload

Constant loads and generation with two overloaded lines

Fig.[6] and Fig.[7] show a situation where several overloads
appear at the same time. Massiac-Peyrusse line is now
congested, in addition to Massiac-Brioude. As before, we
see on the graph that the controller acts to reduce the flows
on the overloaded lines in order to respect the capacity

Power flow (MW)

Time steps (s)
—Reference flow on Massiac-Brioude ——Reference flow on Massiac-Peyrusse

——Flow on Massiac-Brioude with automate Flow on Massiac-Peyrusse with automate

Limit on Massiac-Peyrusse Limit on Massiac-Brioude

- - -Battery charge (MW) +++++Production curtailment

Fig. 6.  Power flows on Massiac-Brioude with constant generation and
load, two overloads

g 60
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O 40
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o : |
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0 i s+ s s -+ et e+ s S
0 0 20 40 60 80 100 120 140
Time steps (s)
- . -Battery charge «:--- Curtailment «eeee+ Curtailment order
Fig. 7. Control with constant generation and load, two overloads

constraints. Both flows on Massiac-Brioude and Massiac-
Peyrusse decreases with the controller action. The graph
shows that the battery charges 23 MW (instead of 30 MW
in the previous case), curtails more generation and not in
the same place: the curtailment is here in Allan. It can be
explain by the values of the PTDF (TABLE [[). The PTDF
for Massiac on the lines Massiac-Brioude and Massiac-
Peyrusse have an opposite sign: an action in Massiac will
have an opposite effect on Massiac-Brioude and Massiac-
Peyrusse lines. Curtailment and battery charge in Massiac
only is not an admissible solution as it will increase the flow
on Massiac-Peyrusse. PTDF in Allan have the same sign:
curtailment in Allan decreases both the flows on Massiac-
Brioude and Massiac-Peyrusse. It is the optimal solution of
the optimization problem. We observe that the battery is also
charging: this action decreases the flow on Massiac-Brioude
and increases the flow on Massiac-Peyrusse. The drop needed
on Massiac-Peyrusse is less important than the one needed
on Massiac-Brioude: curtailment in Allan decreases the flow
on Massiac-Peyrusse more than necessary and the battery
action, by decreasing the flow on Massiac-Brioude to stay
under the limit, increases the flow on Massiac-Peyrusse,
while respecting the limitation.

The strategy of the controller is more complex to analyze
than in the previous case. The controller arbitrates between
the two levers to find the optimal solution. The arbitration



Massiac | Allan | Brioude
Massiac-Brioude 0.36 0.3 0.32
Massiac-Peyrusse -0.27 0.48 0.14
TABLE I

PTDF FOR MASSIAC AND ALLAN ON THE OVERLOADED LINES

between the different levers depends on several factors: the
PTDF values, the initial flows values, the activated capacity
constraints and the levers costs in the objective function. The
notion of delays has not been mentioned here because of the
constant loads and generation but is presented in the next
paragraph.

Volatile injections

Overloads in Fig. [§] and Fig. [9] case appear on the same
lines: Massiac-Brioude and Massiac-Peyrusse. The other
lines, far from their limits, are not represented. The two
graphs illustrate the behaviour of the system with volatile
injections.

Power flow (MW)

Time steps (s)

~ - -Battery charge (MW) —Reference flow on Massiac-Brioude

Reference flow on Massiac-Peyrusse  ——Flow on vith automate

e with automate Limit on I

Limit on Massiac-Brioude +Production curtailment

Fig. 8. Power flows on Massiac-Brioude with volatile generation and load

Power flow (MW)

140

= - Battery charge Curtailment order

Fig. 9.  Control with volatile generation and load

Fig. [§] shows that flows on the two overloaded lines
respect their capacity constraints as a result of the controller
action. Levers used are the same as in Fig. [6} curtailment
in Allan and battery charge, the constraints being the same.
The delays influence can be noted here. The system can
not foresee variations in flows due to variations in load

and generation. Its prediction horizon is constant and the
assumption on the power injections (wy4+¢ = wy) does not
hold. As curtailment is decided 45 seconds before its real
impact on the system, the amount of generation curtailed
is not always optimal because of the variations between
the time of the decision making and order realization. The
battery is used to compensate the errors in curtailment as
its action is not delayed. The controller begins to send
curtailment orders at ¢ = 26s. The first order is effective
at t = 72s. We can note that no generation is curtailed
between t = 96s and ¢t = 106s. It results from the decrease
in the reference flows between ¢ = 50s and ¢ = 60s which
are below limitations. The battery charges between ¢ = 78s
and ¢t = 84s to compensate the insufficient curtailment (sent
between t = 32s and t = 38s).

This section illustrates the behaviour of the MPC con-
troller and shows that levers used depend strongly on the
situation of overloaded lines and on the overload on each
line. On the positive side, the use of levers is accurate within
considered scenario. On the negative side, the performance
is strongly related to the assumptions made regarding power
injections. Two options being available to mitigate this prob-
lem : either increase the prediction capability on disturbances
or accept a decrease in performance by considering several
scenarios and optimizing the worst case.

V. FUTURE WORK
A. Uncertainties

Several uncertainties are present in the system and were
not taking into account. It is essential to consider a system
robust to these uncertainties. If a flow exceeds the capacity
line, it result in an activation of the line protection : the line
is opened automatically. It can disturb the electrical network
operation in a dramatic way. The uncertainties are due to:

o The absence of load and generation forecast. The
controller prediction horizon is constant. It is relatively
short and it is not possible in practice to have precise
forecasts on a short notice. For the controller, flows can
vary only with control (curtailment and batteries) over
the horizon, which means flows variations due to other
factors (demand, wind, sun...) are not considered for the
predicted trajectory.

o The approximation of the DC modelization. It results in
prediction errors.

e Unknown topology outside the observed zone. PTDF
depend on the network topology. The topology can
be changed upon network operation. If PTDF are not
updated, it will introduce an error in the controller flows
representation.

e Imperfect measures. Additive disturbances in the pre-
diction model.

B. Network reconfiguration

Network reconfiguration is another possible lever. Network
reconfiguration for congestion management has been studied.



[11] presents a methodology to find the optimal topolog-
ical configuration of a power transmission system using
genetic algorithms. [1] presents an interactive line switching
algorithm for overload alleviation. Discrete variables are
introduced for topological changes. Adding network recon-
figuration as one of the possible level in the MPC controller
will lead to an hybrid formulation. This formulation will
necessitate the resolution of a Mixt Integer Programming
problem every two seconds. Moreover, PTDF used in the
formulation depend on the topology. Modification of the
topology will lead to PTDF variations. The model will have
to deal with this problem.

C. Discrete generation curtailment

As of now, the curtailment of a renewable farm is all or
nothing. It is impossible to curtail only a part of the gener-
ation and the technical interface with Distribution System
Operators is difficult to change. It could be necessary to
introduce discrete generation curtailment in the model. Wind
farms will be curtailed taking into account not only their
position but also their size.

VI. CONCLUSION

We have presented a MPC controller for congestion man-
agement in electrical transmission network using high power
batteries along with renewable generation curtailment. The
MPC strategy proved to be well suited for this problem as it
takes into account the permitted overloads and their different
duration, as well as the delays and orders on the reference
charge batteries. The MPC scheme allows us to exploit the
batteries speed of action and to combine them with the slower
acting lever: generation curtailment. Simulation results show
the behaviour of the controller in representative scenarios.

REFERENCES

[1] LD Arya, SC Choube, and DP Kothari. Line switching for alleviating
overloads under line outage condition taking bus voltage limits into
account. International Journal of Electrical Power & Energy Systems,
22(3):213-221, 2000.

[2] Jean-Baptiste Bart and Marc Andreewsky. Network modelling for con-
gestion management: zonal representation versus nodal representation.
15th Power Systems Computation Conference, Liege, 2005.

[3] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N
Pistikopoulos. The explicit linear quadratic regulator for constrained
systems| Automatica, 38(1):3-20, 2002.

[4] Benjamin Biegel, Jakob Stoustrup, Jan Bendtsen, and Palle Andersen.
Model predictive control for power flows in networks with limited
capacity. In American Control Conference (ACC), 2012, pages 2959—
2964. IEEE, 2012.

[5] Saverio Bolognani, Ruggero Carli, Guido Cavraro, and Sandro
Zampieri. Distributed reactive power feedback control for voltage
regulation and loss minimization. IEEE Transactions on Automatic
Control, 60(4):966-981, 2015.

[6] Daniel J Burke and Mark J O’Malley. Factors influencing wind energy
curtailment. /IEEE Transactions on Sustainable Energy, 2(2):185-193,
2011.

[7]1 Eduardo F Camacho and Carlos Bordons Alba.
control. Springer Science & Business Media, 2013.

Model predictive

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

Reseau de Transport d’Electricte (RTE) France. Memento sur la surete
du systeme electrique. \http.//clients.rte-france.com, 2004.

Reseau de Transport d’Electricte (RTE) France. Generation ade-
quacy report on the electricity supply-demand balance in France.
http://www.rte-france.com, pages 53-60, 2016.

Alexandra Grancharova and Tor Arne Johansen. Explicit nonlin-
ear model predictive control: Theory and applications, volume 429.
Springer Science & Business Media, 2012.

G Granelli, M Montagna, F Zanellini, P Bresesti, R Vailati, and M In-
norta. Optimal network reconfiguration for congestion management by
deterministic and genetic algorithms, Electric power systems research,
76(6):549-556, 2006.

Yingzhong Gu and Le Xie. [Fast sensitivity analysis approach to
assessing congestion induced wind curtailment. [/EEE Transactions
on Power Systems, 29(1):101-110, 2014.

Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panci-
atici. AC power flow data in MATPOWER and QCQP format: iTesla,
RTE snapshots, and PEGASE! arXiv preprint arXiv:1603.01533, 2016.
Mohammed-Tahar Laraba, Sorin Olaru, and Silviu-Iulian Niculescu.
Linear Model Predictive Control and Time-delay Implications, /FAC-
PapersOnLine, 50(1):14406-14411, 2017.

Chiao-Ting Li, Huei Peng, and Jing Sun. MPC for reducing energy
storage requirement of wind power systems. In American Control
Conference (ACC), 2013, pages 6607-6612. IEEE, 2013.

Minghai Liu and George Gross. Effectiveness of the distribution factor
approximations used in congestion modeling. In Proceedings of the
14th Power Systems Computation Conference, Seville, 24-28 June
2002, 2002.

Warody Lombardi, Sorin Olaru, Silviu-Iulian Niculescu, and Laurentiu
Hetel. A predictive control scheme for systems with variable time-
delay. International Journal of Control, 85(7):915-932, 2012.

Jan Marian Maciejowski. Predictive control: with constraints. Pearson
education, 2002.

David Q Mayne, James B Rawlings, Christopher V Rao, and
Pierre OM Scokaert. |Constrained model predictive control: Stability
and optimality, Automatica, 36(6):789-814, 2000.

Julio E Normey-Rico and Eduardo F Camacho. Dead-time compen-
sators: A survey, Control engineering practice, 16(4):407-428, 2008.
Sorin Olaru and S-I Niculescu. Predictive control for linear systems
with delayed input subject to constraints. /FAC Proceedings Volumes,
41(2):11208-11213, 2008.

Alessandra Parisio, Evangelos Rikos, and Luigi Glielmo. A model
predictive control approach to microgrid operation optimization, /EEE
Transactions on Control Systems Technology, 22(5):1813-1827, 2014.
Darko Soié, Ivan Skokljev, and Nemanja Pokimica. Features of power
transfer distribution coefficients in power system networks. INFOTEH-
JAHORINA, 13, 2014.

Yujie Tang, Krishnamurthy Dvijotham, and Steven Low. |Real-time
Optimal Power Flow. IEEE Transactions on Smart Grid, 2017.
FICO Xpress. Optimization commercial solver.
http://www.fico.com/en/products/fico-xpress-optimization,

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education. IEEE Transactions on Power Systems,
26(1):12-19, Feb 2011.


http://www.sciencedirect.com/science/article/pii/S0142061599000447
http://www.sciencedirect.com/science/article/pii/S0142061599000447
http://www.sciencedirect.com/science/article/pii/S0142061599000447
https://www.pscc-central.org/uploads/tx_ethpublications/fp612.pdf
https://www.pscc-central.org/uploads/tx_ethpublications/fp612.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/cb82/5a12a3140be1639be375ff03daf0fa4a1ad9.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/cb82/5a12a3140be1639be375ff03daf0fa4a1ad9.pdf
http://benjaminbiegel.com/files/Model_Predictive_Control_for_Power_Flows_in_Networks_with_Limited_Capacity.pdf
http://benjaminbiegel.com/files/Model_Predictive_Control_for_Power_Flows_in_Networks_with_Limited_Capacity.pdf
https://arxiv.org/pdf/1303.7173.pdf
https://arxiv.org/pdf/1303.7173.pdf
http://irserver.ucd.ie/bitstream/handle/10197/3305/factorsinfluencingwindenergycurtailment.pdf
http://irserver.ucd.ie/bitstream/handle/10197/3305/factorsinfluencingwindenergycurtailment.pdf
https://pdfs.semanticscholar.org/cb72/cda27a8c8086bc08e15c02c62572b02117f2.pdf
https://pdfs.semanticscholar.org/cb72/cda27a8c8086bc08e15c02c62572b02117f2.pdf
http://clients.rte-france.com/htm/fr/mediatheque/telecharge/memento_surete_2004/memento_surete_2004_complet__.pdf
http://www.rte-france.com/sites/default/files/bp2016_complet_va.pdf
http://www.rte-france.com/sites/default/files/bp2016_complet_va.pdf
http://www.rte-france.com/sites/default/files/bp2016_complet_va.pdf
http://www.sciencedirect.com/science/article/pii/S0378779605002257
http://www.sciencedirect.com/science/article/pii/S0378779605002257
http://ieeexplore.ieee.org/abstract/document/6616024/
http://ieeexplore.ieee.org/abstract/document/6616024/
https://arxiv.org/pdf/1603.01533.pdf
https://arxiv.org/pdf/1603.01533.pdf
https://www.sciencedirect.com/science/article/pii/S2405896317326678
http://ieeexplore.ieee.org/document/6580876/
http://ieeexplore.ieee.org/document/6580876/
https://pdfs.semanticscholar.org/afcb/fb90866f133c4551bf05165df2ea2cc8ce7d.pdf
https://pdfs.semanticscholar.org/afcb/fb90866f133c4551bf05165df2ea2cc8ce7d.pdf
http://www.tandfonline.com/doi/abs/10.1080/00207179.2012.669847
http://www.tandfonline.com/doi/abs/10.1080/00207179.2012.669847
http://control.disp.uniroma2.it/galeani/CO/materiale/automatica2000.pdf
http://control.disp.uniroma2.it/galeani/CO/materiale/automatica2000.pdf
https://www.sciencedirect.com/science/article/pii/S0967066107001141
https://www.sciencedirect.com/science/article/pii/S0967066107001141
http://ieeexplore.ieee.org/document/6705582/
http://ieeexplore.ieee.org/document/6705582/
http://ieeexplore.ieee.org/abstract/document/7929408/
http://ieeexplore.ieee.org/abstract/document/7929408/
http://www.fico.com/en/products/fico-xpress-optimization

	INTRODUCTION
	Motivations

	Modeling
	Definition of a Zone
	Principle
	System dynamics
	Constraints
	Control strategy

	Model predictive control for congestion management
	MPC for time-delay systems
	MPC as a parameterized optimization problem
	Feasibility

	Simulations
	Future work
	Uncertainties
	Network reconfiguration
	Discrete generation curtailment

	Conclusion
	References

