
HAL Id: hal-01807294
https://centralesupelec.hal.science/hal-01807294

Submitted on 12 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of 5G Full Dimension Massive MIMO Systems
Qurrat-Ul-Ain Nadeem, Abla Kammoun, Merouane Debbah, Mohamed-Slim

Alouini

To cite this version:
Qurrat-Ul-Ain Nadeem, Abla Kammoun, Merouane Debbah, Mohamed-Slim Alouini. Design of 5G
Full Dimension Massive MIMO Systems. IEEE Transactions on Communications, 2018, 66 (2), pp.726
- 740. �10.1109/TCOMM.2017.2762685�. �hal-01807294�

https://centralesupelec.hal.science/hal-01807294
https://hal.archives-ouvertes.fr


1

Design of 5G Full Dimension Massive MIMO

Systems

Qurrat-Ul-Ain Nadeem, Student Member, IEEE, Abla Kammoun, Member, IEEE,

Mérouane Debbah, Fellow, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

Abstract

Massive multiple-input-multiple-output (MIMO) transmission is a promising technology to improve

the capacity and reliability of wireless systems. However, the number of antennas that can be equipped

at a base station (BS) is limited by the BS form factor, posing a challenge to the deployment of massive

linear arrays. To cope with this limitation, this work discusses Full Dimension MIMO (FD-MIMO),

which is currently an active area of research and standardization in the 3rd Generation Partnership

Project (3GPP) for evolution towards fifth generation (5G) cellular systems. FD-MIMO utilizes an

active antenna system (AAS) with a 2D planar array structure, which provides the ability of adaptive

electronic beamforming in the 3D space. This paper presents the design of the AAS and the ongoing

efforts in the 3GPP to develop the corresponding 3D channel model. Compact structure of large-scale

antenna arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for

its effects, the generalized spatial correlation functions for channels constituted by individual antenna

elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance

matrices of the users, the problem of determining the optimal downtilt weight vector for antenna ports,

which maximizes the minimum signal-to-interference ratio of a multi-user multiple-input-single-output

system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through

the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific

elevation beamforming scenario is devised, which offers significant performance gains as confirmed

through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology has remained a subject of interest in the

last two decades due to its ability to cope with the increase in the wireless data traffic. In order to

be compatible with the existing 3rd Generation Partnership Project (3GPP) Long Term Evolution

(LTE) standard, most of the existing MIMO implementations consider the deployment of fewer

than ten linearly placed antennas at the base station (BS) [1]. The corresponding improvement

in spectral efficiency, although important, is still relatively modest and can be vastly improved

by scaling up these systems by orders of magnitude. This has led to the introduction of massive

MIMO systems, where each BS is equipped with a large number of antennas, allowing it to

serve many users in the same time-frequency resource using linear precoding methods [2]–[4].

While massive MIMO technology is a key enabler for next generation cellular systems, there

are still many practical challenges down the road to its successful deployment [2], [4]. One of

the main challenges is that the number of antennas that can be equipped at the top of the BS

tower is limited by the BS form factor and operating LTE carrier frequency. To circumvent this

problem, some efforts have been made in the 3GPP to come up with practical implementations

of massive MIMO systems. As a starting point, the use of a 2D uniform planar array has been

proposed, which can be readily installed in practice as compared to the conventional uniformly

spaced linear array [5]–[7]. For example, a 16× 16 half wavelength spaced 2D uniform planar

array occupies about 1m×1m space at a typical LTE carrier frequency of 2.5 GHz. By contrast,

about 15m spacing is required in the horizontal direction to install a linear array of 256 antennas.

In addition to the emergence of large-scale antenna arrays, the cell site architecture itself has

evolved in the last decade from the one wherein the base transceiver station (BTS) equipment is

located away from the passive antenna element array, to the one wherein the analogue portion

of the BTS, comprising of amplifiers, phase shifters and other active transceiver components, is

located in the remote radio head closer to the passive antennas. The next stage is the integration

of the active transceiver unit array into the passive antenna element array, resulting in an active

antenna system (AAS) [8], [9]. The AAS can support adaptive electronic beamforming by

controlling the phase and amplitude weights applied to individual antenna elements. The use

of an AAS with a 2D planar array structure results in full dimension (FD) MIMO, which was
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identified as a promising technology for 5G cellular systems in 3GPP Release-12 [10]. Follow-up

study items are under completion [11] and formal standardization will be done in Release-13.

FD-MIMO has two important distinguishing features as compared to the conventional LTE

systems. Firstly, the number of antennas supported within a feasible BS form factor has increased.

Secondly, the 2D arrangement of active antenna elements provides the ability of adaptive elec-

tronic beam control over both the elevation and the traditional azimuth dimensions [12], [13].

These elements are organized into antenna ports, where each port is mapped to a group of physical

antenna elements arranged in the vertical direction [7]. Controlling the phase, amplitude and delay

of these individual elements allows for the dynamic adaptation of the vertical dimension of the

antenna port radiation pattern, resulting in an electric downtilt feature [8], [9], [14]. Popularly

known as elevation beamforming, this technique can help realize more directed and spatially

separated transmissions to a large number of users [15], [16]. In order to facilitate the evaluation

of FD-MIMO techniques, a large effort in 3D channel modeling is needed. The 3GPP has recently

outlined a 3D channel model in [6], which now forms the basis of most studies on FD-MIMO.

The additional control over the elevation dimension enables a variety of strategies such as

sector-specific and user-specific elevation beamforming, and cell splitting [12], [17], [18]. The

authors in [16] used lab and field trials to show that 3D beamforming can achieve significant

performance gains in real indoor and outdoor deployments, by adapting the vertical dimension of

the antenna port radiation pattern at the BS individually for each user according to its location.

Some 3D beamforming designs were proposed in [14] for a single user multiple-input-single-

output (MISO) system, wherein the authors used the approximate antenna port radiation pattern

expressions proposed in [19], [20] to find the optimal downtilt angle. This approach, also used in

works dealing with multi-user scenarios [21], [22], discards the role played by physical antenna

elements constituting an antenna port in performing the downtilt. The actual radiation pattern of

a port depends on the number of elements constituting it, their patterns, relative positions and

corresponding weights [7], [11]. More sophisticated elevation beamforming methods need to be

developed that take into account the underlying physical construction of the antenna port.

The compact structure of large-scale antenna arrays and the small values of elevation angular

spread in realistic propagation environments drastically increase the spatial correlation in FD-

MIMO systems, making it imperative to account for it while studying the performance benefits

of elevation beamforming techniques. There have been some works that study spatial correlation

in 3D propagation scenarios [23]–[26]. An important contribution appears in [24], wherein the
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authors developed closed-form expressions for the spatial correlation and large system ergodic

mutual information (MI) for a 3D cross-polarized channel model, assuming the angles to follow

Von Mises (VM) distribution. The authors in [23] expressed correlation in a closed-form as

a function of angular and array parameters for several antenna arrays and used the developed

covariance matrices to study the impact of angular spreads on the system capacity. However, these

works consider passive omnidirectional antenna elements arranged in the azimuth plane only,

and the correlation analysis is done for only specific forms of underlying angular distributions.

This paper introduces the design of the 2D planar active antenna array, which plays a key role

in the implementation of FD-MIMO systems. The array constitutes of columns of active antenna

elements, where each column is referred to as an antenna port and is fed with a corresponding

downtilt weight vector to steer the vertical radiation pattern of that port in the targeted direction.

For the analysis of these systems, the 3D channel model outlined in the 3GPP technical report

(TR) 36.873 [6] is introduced and explained. In our study of FD-MIMO systems, we make

two main contributions. Firstly, the exact spatial correlation function (SCF) for the FD channels

constituted by individual antenna elements in the array is derived in Theorem 1, exploiting the

spherical harmonic expansion (SHE) of plane waves. The final analytical expression depends on

the angular parameters and the geometry of the array through the Fourier series (FS) coefficients

of the power spectra, and can be used for any arbitrary 3D propagation environment. The

correlation between the ports is then expressed as a function of the correlation matrix of the

elements constituting the ports and the downtilt weight vectors. The second contribution is to

devise efficient elevation beamforming algorithms that optimize these weight vectors, utilizing

the quasi-static channel covariance matrices of the users obtained from the derived SCF, and

thereby releasing the high dependence on the instantaneous channel state information. The closed-

form expression for the signal-to-noise ratio (SNR) maximizing weight vectors for the single user

MISO system is given in Theorem 2. The downlink of a multi-user MISO system is studied next

under the assumption that all antenna ports transmit using a single optimal downtilt weight vector.

The problem of determining this vector that maximizes the minimum signal-to-interference ratio

(SIR) of the system is formulated as a fractional optimization problem, for which a quasi-

optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s

method. Finally, we devise a user-group specific elevation beamforming scenario, wherein the

user population is partitioned into groups based on the users’ channel covariance matrices and

each user-group is served by a subset of ports which transmit using an optimal downtilt weight
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vector. Simulations results show that even the single optimal downtilt beamforming scenario

yields significant performance gains, while the user-group specific beamforming is even more

effective. The derived results are directly applicable to the analysis of 5G FD-MIMO systems.

The rest of this article is organized as follows. Section II discusses the design of the 2D

AAS for FD-MIMO implementation and presents the corresponding 3GPP 3D channel model.

In section III, the exact SCFs for channels constituted by individual antenna elements and the

overall antenna ports are derived. Section IV presents the elevation beamforming algorithms that

optimize the downtilt weight vectors of the antenna ports in the single user and multi-user MISO

settings. User-group specific elevation beamforming scenario is devised in section V. Section VI

provides simulation results and finally, in section VII some concluding remarks are drawn.

II. TWO-DIMENSIONAL ACTIVE ANTENNA ARRAY AND 3D CHANNEL MODEL

The idea of exploiting the elevation domain of the channel for performance optimization has

led to the development of FD-MIMO systems. In fact, several field trials results have shown

that the arrangement of active antenna elements in the vertical dimension provides additional

degrees of freedom that can be exploited to form multiple elevation domain beams, resulting in

significant performance gains [16], [27]. Most commercial solutions, however, deploy a smaller

set of antennas arranged in the horizontal domain only, to be compatible with the existing LTE

standards. The recent 3GPP reports on FD-MIMO envision that an AAS, utilizing a large number

of antenna elements arranged in a 2D planar array structure, can be designed to realize spatially

separated transmission links to a large number of users. In this section, we introduce this 2D

AAS and outline the corresponding 3GPP FD-MIMO channel model.

A. Active Antenna Array for FD-MIMO

In order to realize the performance benefits of FD-MIMO techniques, an efficient implemen-

tation of an AAS with a 2D planar array structure is a key requirement. The AAS is an advanced

BS technology, which integrates the active transceiver unit array into the passive antenna element

array, allowing the gain, beamwidth and downtilt of the transmit beam to be controlled adaptively

by active electronic components connected directly to each element [8], [9]. These active antenna

elements should be placed in both the vertical and horizontal directions to provide the ability

of adaptive electronic beamforming in the elevation and the traditional azimuth dimensions. In

doing so, the array should also have a form factor that is adequate for actual deployments.
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Fig. 1. Antenna port. Fig. 2. Active antenna array.

The 3GPP proposes the organization of the radio resource on the basis of antenna ports, where

each port is mapped to a group of physical antenna elements arranged in the vertical domain.

The elements in a port carry the same signal and are fed with corresponding downtilt weights to

focus the wavefront in the direction of the targeted user. The structure of a typical antenna port

is shown in Fig. 1. Several such ports can be arranged in the horizontal and vertical directions to

serve digitally precoded signals to different users at different downtilt angles in the same time-

frequency slot. The higher is the number of vertically stacked elements in a port, the narrower

is the transmitted beam. This work configures the entire column of elements as a port.

A generic AAS architecture as defined in section V of the 3GPP TR37.840 [7] takes a 2D

planar array structure for the antenna elements. Each antenna port comprises of NE antenna

elements arranged along the êz direction. There are NBS such ports placed at equidistant positions

in the êy direction, where the downtilt angle, θtilt, of the radiation pattern of every port is

controlled through the weights wk(θtilt), k = 1, . . . , NE . The resulting configuration for vertically

polarized elements is shown in Fig. 2. The form factor for an 8 × 8 array with 0.5λ inter-port

and inter-element spacing at 2.5 GHz LTE frequency is 0.5m× 0.5m, which is quite practical.

B. Antenna Element Approach towards 3D Channel Modeling

Preliminary studies on 3D channel modeling consider the channels between the overall antenna

ports rather than between the physical elements constituting these ports and use the approximate

antenna port radiation pattern expression proposed in [19], [20]. The focus of the ongoing 3GPP’s

standardization efforts is to develop a 3D channel model that takes into account the geometry
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and properties of the individual elements constituting the AAS. The resulting model introduced

in TR 36.873 [6], has not been utilized exactly in theoretical works on FD-MIMO so far.

In theory, the global radiation pattern of an antenna port depends on the positions and number

of the antenna elements within it, their patterns and corresponding weights. In other words, the

antenna port radiation pattern is created by the superposition of the element radiation pattern

and the array factor for that port, where the element radiation pattern is given by [6], [7],

AE(φ, θ) = GE,max − min{−(AE,H(φ) + AE,V (θ)), Am}, where, (1)

AE,H(φ) = −min

[
12

(
φ

φ3dB

)2

, Am

]
dB, (2)

AE,V (θ) = −min

[
12

(
θ − π

2

θ3dB

)2

, SLAv

]
dB, (3)

where φ and θ denote the azimuth and elevation angles respectively, AE,H(φ) and AE,V (θ) are the

radiation patterns in the horizontal and vertical directions respectively, GE,max is the maximum

directional element gain, φ3dB and θ3dB are the half power beamwidths in the azimuth and

elevation domains respectively, Am is the maximum attenuation and SLAv is the vertical side

lobe attenuation level. The global field pattern of a vertically polarized element in linear scale

is

√
10

GE,max
10 gE(φ, θ), where gE(φ, θ) ≈ gE,H(φ)gE,V (θ) with,

gE,H(φ) = exp

(
−1.2

(
φ

φ3dB

)2

ln 10

)
, (4)

gE,V (θ) = exp

(
−1.2

(
θ − π

2

θ3dB

)2

ln 10

)
. (5)

The overall array radiation pattern is a function of this individual element radiation pattern

and the array factor matrix, A, for the AAS given by [7],

A = W ◦ V, (6)

where ◦ is the Hadamard product, V is a NE × NBS matrix containing the array responses of

the individual radiation elements with each entry given by,

[V]k,s = exp(ik.xk,s), k = 1, . . . , NE, s = 1, . . . , NBS, (7)

where . is the scalar dot product, xk,s is the location vector of the kth antenna element in the

sth Tx antenna port, and k is the Tx wave vector, where k = 2π
λ

v̂, with v̂ being the unit wave

vector. For the configuration shown in Fig. 2, every entry of V will have a form given by,

[V]k,s(φ, θ) = exp

(
i2π

(
(s− 1)

dy
λ

sinφ sin θ + (k − 1)
dz
λ

cos θ

))
, (8)
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Fig. 3. Antenna port radiation pattern at different downtilt

values.
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Fig. 4. Antenna port radiation pattern at different values

of NE and dz .

where dy is the horizontal separation between the antenna ports and dz is the vertical separation

between the antenna elements, with the phase reference at the origin.

Also W is a NE × NBS matrix comprising of the weights to be applied to the individual

radiation elements, with each entry given by [7],

[W]k,s(θtilts) =
1√

NENBS

exp

(
−i2π

(
(s− 1)

dy
λ

sinφscan sin θtilts + (k − 1)
dz
λ

cos θtilts

))
,

(9)

where φscan is the horizontal steering angle and θtilts is the downtilt angle for the sth port,

defined between 0o and 180o. Denoting the (k, s)th entries of W and V as wk
s (θtilts) and vks (φ, θ)

respectively, the small-scale 3D channel model constituted by the BS antenna port s is given by,

[h]s =
NE∑
k=1

wk
s (θtilts)

N∑
n=1

αn

√
gE(φn, θn)v

k
s (φn, θn), (10)

= ws(θtilts)
T

N∑
n=1

αn

√
gE(φn, θn)vs(φn, θn), s = 1, . . . , NBS, (11)

where φn and θn are the azimuth and elevation angle of departure (AoD) of the nth path

respectively, and αn ∼ i.i.d CN (0, 1
N
) is the amplitude of the nth path. Also ws(θtilts) is the

weight vector for the sth antenna port, given by the sth column of W, and vs(φn, θn) is the sth

column of V. The channel with a given antenna port is therefore a weighted sum of channels with

the NE elements inside it. This new representation is different from the ‘antenna port approach’

based models in [19], [13], where the channel is directly characterized between the ports.
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The objective of the channel representation based on antenna elements is two fold: first, it

allows for more flexibility in controlling the downtilt angle of every port since the channel is

linearly dependent on the downtilt weights applied to the elements within it; second, it takes

into account the pattern of side lobes in the antenna port radiation pattern, an effect which was

discarded by the channel representation in ITU [19] and 3GPP TR36.814 [20]. This can be seen

by plotting the antenna port radiation pattern AP (φ, θ, θtilt), which is computed as,

AP (φ, θ, θtilt) = AE(φ, θ) + 20 log10 |AF (θ, θtilt)|, (12)

where AE(φ, θ) is given by (1) and AF (θ, θtilt) is the array factor for the port given by,

AF (θ, θtilt) =

NE∑
k=1

wk(θtilt) exp

(
i2π(k − 1)

dz
λ

cos θ

)
. (13)

We plot AP (φ, θ, θtilt) at φ = 0o in Fig. 3 for NE = 10, dz/λ = 0.5, GE,max = 8dBi and

φ3dB = θ3dB = 65o. The weights are calculated using (9) for φscan = 0o, and θtilt = 90o and

110o. It can be seen that changing the weights shifts the main lobe of the radiation pattern to

the desired value of downtilt angle. Fig. 4 studies the effect of NE and dz on the overall antenna

port pattern. The first subplot confirms that increasing NE results in a narrower main lobe of

the radiation pattern, i.e. a smaller 3dB beamwidth. This enables more directed transmissions to

the users. The second subplot shows that increasing dz also achieves a smaller 3dB beamwidth.

III. WAVEFIELD DECOMPOSITION AND SPATIAL CORRELATION FUNCTION

The compact structure of the AAS and the small values of elevation angular spreads in realistic

propagation environments cause the correlation between the antenna elements to dramatically

increase, which makes it imperative to characterize and account for it when determining the

performance gains realizable through FD-MIMO techniques. In this section, we derive a gen-

eralized analytical expression for the spatial correlation between antenna elements, considering

realistic antenna patterns and arbitrary distributions of AoDs and AoAs. Some useful results on

spherical harmonics are recalled first, which will be exploited later in the derivation.

A. Spherical Harmonic Expansion

In a 3D propagation environment, the array response of an antenna element can be expanded

using the spherical decomposition of plane waves. Using the Jacobi-Anger expansion, a plane

electromagnetic wave can be expanded as [28],

eikv̂.x =
∞∑
n=0

in(2n+ 1)jn(k||x||)Pn (v̂.x̂) , x ∈ R
3, (14)
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where jn is the nth order spherical Bessel function, Pn is the nth order Legendre polynomial

function, k = 2π
λ

is the wave number, v̂ is the unit vector in the direction of wave propagation

and x is the location vector of the antenna element. Let (φ1, θ1) and (φ2, θ2) be the spherical

coordinates of v̂ and x̂ respectively, then by the Legendre addition theorem,

Pn(v̂.x̂) = Pn(cos θ1)Pn(cos θ2) + 2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (cos θ1)P

m
n (cos θ2) cos[m(φ1 − φ2)], (15)

where Pm
n are the associated Legendre polynomials.

B. Spatial Correlation Function for Antenna Elements

Using the antenna element radiation pattern and the array response expression of an individual

element given in (8), and for αn ∼ i.i.d CN (0, 1
N
), the SCF for the channels constituted by (k, s)

and (k′, s′) antenna elements in the AAS can be expressed as,

ρE(s− s′, k − k′) = E[hk,sh
∗
k′,s′ ] = E[gE(φ, θ)v

k
s (φ, θ)v

k′∗
s′ (φ, θ)],

= E

[
gE(φ, θ) exp

(
i2π

[
dy
λ
(s− s′) sinφ sin θ +

dz
λ
(k − k′) cos θ

])]
, (16)

where k, k′ = 1, . . . , NE and s, s′ = 1, . . . , NBS . Let Zy = (s− s′)dy
λ

and Zz = (k − k′)dz
λ

, and

define Z =
√
Z2

y + Z2
z and,

β =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if s− s′ = 0 & k − k′ = 0,

arctan
(

Zy

Zz

)
, if s− s′ > 0 & k − k′ ≥ 0,

π + arctan
(

Zy

Zz

)
, if s− s′ ≥ 0 & k − k′ < 0.

(17)

With these definitions and reformulations, (16) can be expressed as,

ρE(s− s′, k − k′) = E

[
gE(φ, θ) exp

(
i2πZ

[
cos θ cos β + sin θ sin β cos

(
φ− π

2

)])]
, (18)

for (s−s′ = 0 & k−k′ = 0), (s−s′ > 0 & k−k′ ≥ 0) and (s−s′ ≥ 0 & k−k′ < 0). Note that

the other cases can be computed using ρE(s− s′, k − k′) = ρE(s
′ − s, k′ − k)∗ for (s− s′ < 0

& k − k′ ≤ 0), and ρE(s− s′, k − k′) = ρE(s
′ − s, k′ − k)∗ for (s− s′ ≤ 0 & k − k′ > 0).

Observe that cos θ cos β + sin θ sin β cos
(
φ− π

2

)
is the dot product of v̂(φ, θ) with x̂(π/2, β),

where x is the location vector between (k, s)th and (k′, s′)th elements. This representation allows

us to expand (18) using (14) and (15) to yield,

ρE(s− s′, k − k′) = E

[
gE(φ, θ)

∞∑
n=0

in(2n+ 1)jn (2πZ)

(
Pn(cos θ)Pn(cos β) + 2

n∑
m=1

(n−m)!

(n+m)!

× Pm
n (cos θ)Pm

n (cos β) cos
(
m
(
φ− π

2

)))]
. (19)



11

Next we systematically expand ρE(s− s′, k − k′) by defining P̄m
n (x)=

√
(n+ 1

2
) (n−m)!
(n+m)!

Pm
n (x)

and using the decomposition gE(φ, θ) ≈ gE,H(φ)gE,V (θ) as,

ρE(s− s′, k − k′) = E[gE(φ, θ)]j0 (2πZ) +
∞∑
n=1

(−1)n(4n+ 1)j2n (2πZ)P2n(cos β)E[P2n(cos θ)gE,V (θ)]

× E[gE,H(φ)]−
∞∑
n=1

i(−1)n(4n− 1)j2n−1 (2πZ)P2n−1(cos β)E[P2n−1(cos θ)gE,V (θ)]E[gE,H(φ)]

+
∞∑
n=1

4(−1)nj2n (2πZ)

(( n∑
m=1

(−1)mP̄ 2m
2n (cos β)E[P̄ 2m

2n (cos θ)gE,V (θ)]E[cos(2mφ)gE,H(φ)]

)

−
(

n∑
m=1

(−1)mP̄ 2m−1
2n (cos β)E[P̄ 2m−1

2n (cos θ)gE,V (θ)]E[sin((2m− 1)φ)gE,H(φ)]

))
+

∞∑
n=1

4i(−1)n

× j2n−1 (2πZ)

(( n∑
m=1

(−1)mP̄ 2m−1
2n−1 (cos β)E[P̄ 2m−1

2n−1 (cos θ)gE,V (θ)]E[sin((2m− 1)φ)gE,H(φ)]

)

−
(

n∑
m=1

(−1)mP̄ 2m
2n−1(cos β)E[P̄

2m
2n−1(cos θ)gE,V (θ)]E[cos(2mφ)gE,H(φ)]

))
. (20)

The random variables, AoDs, appear as arguments of Legendre polynomials in (20) and it is

important to have a general representation for these polynomials to facilitate the development of

the expectation terms in a closed-form. For this purpose, we use the trigonometric expansion of

Legendre polynomials from [29]. The following Lemma expresses the Legendre and associated

Legendre polynomials with even and odd orders as a linear combination of sines and cosines.

Lemma 1. For non-negative integers n and m,

P2n(cosx) = p2n + 2
n∑

k=1

pn−kpn+k cos(2kx),

P2n−1(cosx) = 2
n∑

k=1

pn−kpn+k−1 cos((2k − 1)x),

P̄ 2m
2n (cosx) =

n∑
k=0

c2m2n,2k cos(2kx),

P̄ 2m−1
2n (cosx) =

n∑
k=1

d2m−1
2n,2k sin(2kx), (21)

P̄ 2m
2n−1(cosx) =

n∑
k=1

c2m2n−1,2k−1 cos((2k − 1)x),

P̄ 2m−1
2n−1 (cosx) =

n∑
k=1

d2m−1
2n−1,2k−1 sin((2k − 1)x),
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where pn, c
2m
2n,2k, c

2m
2n−1,2k−1, d

2m−1
2n,2k and d2m−1

2n−1,2k−1 are given by the recursion relations in [29].

Using a similar development as done in [30], these trigonometric expansions will be shown

to express ρE(s− s′, k− k′) in terms of the FS coefficients of the PAS and PES defined as [31],

PASE(φ) = gE,H(φ)pφ(φ), (22)

PESE(θ) = gE,V (θ)pθ(θ), (23)

where the angular power density functions, pφ(φ)=fφ(φ) and pθ(θ)=
fθ(θ)
sin(θ)

, with fφ(φ) and fθ(θ)

being the probability density functions of the azimuth and elevation angles respectively.

The FS coefficients, aφ(m), bφ(m), aθ(k) and bθ(k), for the PAS and PES are defined as,

aφ(m) =
1

π

∫ π

−π

PASE(φ) cos(mφ)dφ, (24)

bφ(m) =
1

π

∫ π

−π

PASE(φ) sin(mφ)dφ, (25)

aθ(k) =
1

π

∫ π

0

PESE(θ) cos(kθ)dθ, (26)

bθ(k) =
1

π

∫ π

0

PESE(θ) sin(kθ)dθ. (27)

Exploiting Lemma 1, the expectation terms in (20) are expressed analytically as a linear

combination of the FS coefficients of PAS and PES, resulting in Theorem 1.

Theorem 1. For an AAS with a 2D uniform planar array of antenna elements with arbitrary

antenna patterns and for arbitrary angular distributions, such that φ ∈ [−π, π] and θ ∈ [0, π], the

3D SCF for the channels constituted by (k, s) and (k′, s′) antenna elements is given by,

ρE(s− s′, k − k′) = π2aφ(0)bθ(1)j0 (2πZ) +
∞∑
n=1

(−1)n(4n+ 1)j2n (2πZ)P2n(cos β)π
2 (28)

× aφ(0)
n∑

k=−n

pn−kpn+k
1

2
[bθ(2k + 1)− bθ(2k − 1)]−

∞∑
n=1

i(−1)n(4n− 1)j2n−1 (2πZ)P2n−1(cos β)aφ(0)π
2

× 2
n∑

k=1

pn−kpn+k−1
1

2
[bθ(2k)− bθ(2k − 2)] +

∞∑
n=1

4(−1)nj2n (2πZ)

[( n∑
m=1

(−1)mP̄ 2m
2n (cos β)aφ(2m)

π2

2

×
n∑

k=0

c2m2n,2k[bθ(2k + 1)− bθ(2k − 1)]

)
−
( n∑

m=1

(−1)mP̄ 2m−1
2n (cos β)bφ(2m− 1)

π2

2

n∑
k=1

d2m−1
2n,2k [aθ(2k − 1)

− aθ(2k + 1)]

)]
+

∞∑
n=1

4i(−1)nj2n−1 (2πZ)

[( n∑
m=1

(−1)mP̄ 2m−1
2n−1 (cos β)bφ(2m− 1)

π2

2

n∑
k=1

d2m−1
2n−1,2k−1

× [aθ(2k − 2)− aθ(2k)]

)
−
( n∑

m=1

(−1)mP̄ 2m
2n−1(cos β)aφ(2m)

π2

2

n∑
k=1

c2m2n−1,2k−1[bθ(2k)− bθ(2k − 2)]

)]
,
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for (s− s′ = 0 & k−k′ = 0), (s− s′ > 0 & k−k′ ≥ 0) and (s− s′ ≥ 0 & k−k′ < 0). For other

cases, ρE(s− s′, k − k′) is computed as ρE(s− s′, k − k′) = ρE(s
′ − s, k′ − k)∗ for (s− s′ < 0

& k − k′ ≤ 0), and ρE(s− s′, k − k′) = ρE(s
′ − s, k′ − k)∗ for (s− s′ ≤ 0 & k − k′ > 0).

Using the analysis in [30], the summations over n can be truncated to N0 = 10 terms, such

that the truncation error in the correlation between adjacent elements (.5λ spacing) in the AAS

is bounded by ∼ 0.5%. This is the first explicit derivation of the SCF for antenna elements

constituting the 2D AAS. In contrast to the previous works on spatial correlation [23]–[25], the

proposed generalized method does not assume any particular form for the underlying patterns

and angular distributions. The researchers and industrials interested in using this model just need

to provide the FS coefficients of the PAS and PES for any propagation environment under study.

C. Spatial Correlation Function for Antenna Ports

In FD-MIMO techniques, the radio resource is organized on the basis of antenna ports, where

each port is used to transmit a data symbol at a particular value of the downtilt angle, θtilt. It is

therefore important to characterize the correlation between the overall antenna ports.

From (10) it is evident that the SCF for the channels constituted by any two antenna ports,

s and s′, will be a function of the correlations between all the elements constituting these ports

and the weight functions applied to these elements as,

ρ(s, s′) = E[[h]s[h]Hs′ ] =
NE∑
k=1

NE∑
k′=1

wk
s (θtilts)w

k′∗
s′ (θtilts′ )E[gE(φ, θ)v

k
s (φ, θ)v

k′∗
s′ (φ, θ)],

=

NE∑
k=1

NE∑
k′=1

wk
s (θtilts)w

k′∗
s′ (θtilts′ )ρE(s− s′, k − k′), for s, s′ = 1, . . . , NBS, (29)

where ρE(s − s′, k − k′) is given by (28). The NBS × NBS correlation matrix for the antenna

ports constituting the AAS can therefore be written as,

RBS = W̃
H

REW̃, (30)

where W̃ is a NBSNE × NBS block diagonal matrix of the weight vectors applied to the NBS

antenna ports given by,

W̃
H
=

⎡⎢⎢⎢⎢⎢⎣
w1

H 01×NE 01×NE(NBS−2)

01×NE w2
H 01×NE(NBS−2)

. . .

01×NE 01×NE(NBS−2) wNBS
H

⎤⎥⎥⎥⎥⎥⎦ , (31)
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1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Port number, s

ρ(
s,

1)

Theoretical Correlation, dz=0.2 λ

Monte Carlo Simulated Correlation, dz=0.2 λ

Theoretical Correlation, dz=0.5 λ

Monte Carlo  Simulated Correlation, dz=0.5 λ

Theoretical Correlation, dz=0.8 λ

Monte Carlo  Simulated Correlation, dz=0.8 λ

Fig. 6. Effect of dz on correlation.

where ws as defined in (11) is the NE × 1 weight vector for the sth antenna port given by the

sth column of the weight matrix W in (9), i.e. ws = W(:, s) and RE is the NBSNE ×NBSNE

correlation matrix for all the elements constituting the AAS defined as,

[RE](s′−1)NE+k′,(s−1)NE+k = ρE(s− s′, k − k′), k, k′ = 1, . . . , NE, s, s′ = 1, . . . , NBS, (32)

where ρE(s− s′, k − k′) is given by (28). With this formulation, [RBS]s′,s = ρ(s, s′).

In order to validate the proposed SCF, all antenna ports are assumed to transmit at a downtilt

angle of θtilts = 90o, s = 1, . . . , NBS . The elevation angles are generated according to Laplacian

density spectrum, with mean AoD θ0 and spread σt. The azimuth angles are generated using VM

distribution, with mean μ and a measure of spread, κt. The parameter values are set as N0 = 30,

σt = 15o, θ0 = 100o, κt = 10 and μ = π/3. The validation of the theoretical result in (29),

where ρE(s− s′, k − k′) is computed using (28), is done by comparison with the Monte-Carlo

simulated correlation. The Monte Carlo simulations are performed over 100000 realizations of

(16) to obtain the simulated ρE(s− s′, k− k′). The correlation values are computed for antenna

port s, s = 1, . . . , NBS , with reference to port 1. The results are shown in Fig. 5 for NE = 10,

NBS = 8 and dy = dz = 0.5λ [6]. The derived theoretical result provides a perfect fit to the

Monte Carlo simulated correlation for only 30 summations over n, with the correlation values

decreasing as the distance between the port pair increases. In Fig. 6, the effect of increasing dz

is shown to decrease the correlation between the antenna ports. The reason is attributed to the

fact that for higher dz, the main lobe of the radiation pattern as shown in Fig. 4 is narrower and

as a consequence, the energy of many propagation paths, particularly at high angular spreads,

is not captured by the antenna pattern, resulting in a decrease in Tx power and correlation.
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IV. PERFORMANCE OPTIMIZATION OF FD-MIMO SYSTEMS

The previous section expressed the spatial correlation between the antenna ports as a function

of the correlation between the elements constituting the ports and the downtilt weights applied

to these elements. In this section, we optimize these weight vectors to maximize the downlink

SNR and SIR in the single user and multi-user MISO settings respectively. Existing works on 3D

beamforming use the ITU approach to model the vertical dimension of the antenna port radiation

pattern in an approximate fashion, ignoring the dependency of the pattern on the construction of

the port, i.e. the values of NE , dz, and the downtilt weights [14], [21], [22]. This work aims to

make one of the preliminary contributions in this area by formulating and proposing solutions

for the downtilt weight optimization problem, utilizing a correlation based channel model.

It is important for channel models to take the spatial correlation between antenna elements into

account to allow for a more accurate performance analysis of elevation beamforming techniques.

The parametric channel model discussed in Section II-B is one way to generate correlated FD-

MIMO channels. However, optimizing the downtilt weights dynamically using this model would

require the acquisition of high-dimension instantaneous channel state information (CSI). The

explicit dependence of the channel on the number of paths and associated small-scale parameters

(AoDs, AoAs, powers) makes the analysis intractable. We propose to use the developed SCF in

Theorem 1 to form the non-parametric Kronecker channel model instead, which is defined as,

H = R
1
2
MSXR

1
2
BS, (33)

where X is a NMSxNBS matrix with CN (0,1) entries, and RMS and RBS are the correlation

matrices at the MS and the BS respectively. This model will not only allow us to exploit tools

from random matrix theory (RMT) to propose solutions for the optimal downtilt weight vectors,

but will also release the high dependence on the instantaneous CSI by allowing us to utilize

the quasi-static channel correlation matrices of the users to learn the optimal weights. The

computation of these matrices using the derived SCF in the last section requires knowledge of

the large-scale parameters only (mean AoDs/AoAs and angular spreads at the BS and the MS).

In this section, the focus is on FD-MISO settings, with the non-parametric channel model for

a single antenna user served by a BS equipped with a NE ×NBS AAS given as follows.

Assumption A-1. The channel vector, h ∈ C
NBS×1, for a user equipped with a single

omnidirectional Rx antenna element is modeled as [32],

h = R
1
2
BSz, (34)
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where z has i.i.d zero mean, unit variance complex Gaussian entries and RBS is the user’s

channel covariance matrix given by RBS = W̃
H

REW̃, where W̃ and RE are defined in (31) and

(32) respectively. The channel covariance matrix satisfies the condition,

lim sup
NBS

||RBS|| < +∞. (35)

Before formulating the optimization problems for the downtilt weight vectors, we shall recall

an important trace lemma that plays a key role in the problem formulations and analysis.

Lemma 2 ([33] Lemma 14.2). Let A ∈ C
N×N and x = [x1, . . . , xN ]

T ∈ C
N×1 be a random

vector of i.i.d. entries independent of A, such that E[xi] = 0, E[|xi|2] = 1, E[|xi|8] < ∞, and

lim supN ||A|| < ∞. Then,

1

N
xHAx − 1

N
tr A a.s.−−−→

N→∞
0. (36)

A. Elevation Beamforming in a Single-User MISO System

The downlink of a single-cell MISO system is considered first, where a NE×NBS AAS at the

BS serves a single user equipped with a single antenna element. The received complex baseband

signal y at the user is given by,

y =
√
�hHx + n, (37)

where x ∈ C
NBS×1 is the Tx signal from the AAS, hH ∈ C

1×NBS is the channel vector from the

BS to the user given by (34) and n ∼ CN (0, σ2
n) is the additive white Gaussian noise (AWGN)

with variance σ2
n at the user. Also � is given by,

� = PTx × PL × SF × 10
GE,max

10 , (38)

where PL is the path loss experienced by the user, SF is the shadow fading and PTx is the

transmitted power. The downlink SNR for the user is then given by,

γ =
�

σ2
n

tr(hhH). (39)

We are interested in finding the SNR maximizing NE × 1 weight vectors ws, s = 1, . . . , NBS ,

that form the W̃ matrix defined in (31). The optimization problem is formulated as follows:

Problem (P1):

maximize
w1,w2,...,wNBS

γ (40)

subject to ||ws||2 = 1, for s = 1, . . . , NBS. (41)
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The constraint in (41) ensures that the total power of every antenna port is bounded and does

not grow indefinitely with the number of elements stacked in a port. This problem has a simple

solution in the large (NBS, NE) regime given in the following theorem.

Theorem 2. Consider a single user system consisting of a BS equipped with a NE × NBS

AAS serving a single-antenna user, having the channel covariance matrix RBS . Then in the large

(NBS, NE) regime, the optimal 3D beamforming weight vectors w∗
s can be computed as,

w∗
s = vλmax(RE

ss)
, s = 1, . . . , NBS, (42)

where vλmax(RE
ss)

is the eigenvector corresponding to the maximum eigenvalue λmax of RE
ss, where

RE
ss is a NE ×NE matrix given by RE([(s− 1)NE + 1 : sNE], [(s− 1)NE + 1 : sNE]), for RE

defined in (32), such that,

RE
ss

1
2 w∗

s =

√
λmax(RE

ss)w
∗
s. (43)

Physically, RE
ss is the correlation matrix formed by the elements of port s and is therefore

given by the sth NE ×NE diagonal matrix of RE . The proof is postponed to Appendix A.

B. 3D Beamforming in a Multi-User MISO System

The downlink of a multi-user MISO system is considered next, where a NE×NBS AAS serves

K non-cooperating single-element users. The BS uses linear precoding in the digital domain to

mitigate inter-user interference. The precoding vector and the data symbol for the kth user are

denoted by gk ∈ C
NBS×1 and sk ∼ CN (0, 1) respectively. The BS transmits the NBS × 1 signal:

x =
K∑
k=1

gksk = Gs, (44)

where G is the NBS × K precoding matrix and s is the K × 1 vector of data symbols. The

received complex baseband signal at the user k, yk, is given by,

yk =
K∑
l=1

√
�khH

k glsl + nk, (45)

where hH
k ∈ C

1×NBS is the channel vector from the BS to the user k defined in (34) as hk =

RBS

1
2
k zk, where the condition described in Assumption A-1 on the channel convariance matrices

holds. Every per user channel covariance matrix RBSk is given by RBSk = W̃
H

RE
k W̃ as defined

in (30), where W̃ and RE
k are defined in (31) and (32) respectively. Also nk ∼ CN (0, σ2

n) is the

AWGN with variance σ2
n at the user k and �k is computed using (38) for each user.
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Linear precoding schemes are generally asymptotically optimal in the large (NBS, K) regime

[2] and robust to CSI imperfections [3]. However, the complexity of computing these state-

of-the-art linear precoding schemes is prohibitively high in the large (NBS, K) regime. A

notable exception is the matched filter (MF), also known as maximum ratio transmission (MRT)

[34], which is a popular scheme for large scale MIMO systems due to its low computational

complexity, robustness, and high asymptotic performance [2]. Therefore, we focus on the MF

precoding given by the conjugate of the channel vector hH
k as,

gk = βhk, (46)

where β is chosen to satisfy the Tx power constraint tr(GGH) = 1 and turns out to be,

β =
1√

tr(HHH)
, (47)

where H = [h1h2 . . . hK ].

1) Problem Formulation: The focus of this section is on interference limited systems, so the

performance metric employed is the SIR defined for user k as,

SIRk =
hH
k gkgH

k hk∑K
l �=k hH

k glgH
l hk

. (48)

The SIR for the MF precoding can be re-written as,

SIRk =
|hH

k hk|2∑K
l �=k hH

k hlhH
l hk

, (49)

An asymptotic analysis of this quantity would yield a deterministic approximation for the SIR

in the large (NBS, NE) regime as stated in the following proposition.

Proposition 1. Consider a multi-user MISO system consisting of a BS equipped with a

NE ×NBS active antenna array system serving K non co-operating single antenna users, having

channel covariance matrices RBSk, k = 1, . . . , K that satisfy the condition in Assumption A-1.

Then in the large (NBS, NE) regime,

SIRk −
1

N2
BS

( trRBSk)
2

1
N2

BS

∑K
l �=k tr(RBSkRBSl)

a.s.−−→ 0, k = 1, . . . , K. (50)

The proof of Proposition 1 is provided in Appendix B. Now given that RBS,k = W̃
H

RE
k W̃

as defined in (30), (31), and (32), the SIR converges in the large (NBS, NE) to the following,

SIRk −
( 1
NBS

∑NBS

s=1 wH
s RE

k,ssws)
2

1
N2

BS

∑K
l �=k

∑NBS

s,s′=1 wH
s RE

k,ss′ws′wH
s′ R

E
l,s′sws

a.s.−−→ 0, (51)
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where ws and ws′ are the NE×1 weight vectors for the antenna ports s and s′ forming the block

diagonal matrix W̃ in (31). RE
k,ss is a NE ×NE matrix given by RE

k ([(s−1)NE +1 : sNE], [(s−
1)NE + 1 : sNE]), where RE

k is defined in (32) and is computed for user k, k = 1, . . . , K.

Similarly RE
k,ss′ is a NE×NE matrix given by RE

k ([(s−1)NE+1 : sNE], [(s
′−1)NE+1 : s′NE]).

RE
k,ss refers to the correlation matrix formed by the elements of port s, given by the sth

NE ×NE block diagonal matrix of RE
k and RE

k,ss′ refers to the cross-correlation matrix between

the elements of port s and port s′, given by the (sth, s′th) NE ×NE block matrix of RE
k .

The performance metric in this section is the max min SIR, which provides a good balance

between system throughput, user fairness, and computational complexity. Using the deterministic

equivalent just worked out, the optimization problem is formulated as,

Problem (P2):

maximize
w1,w2,...wNBS

minimize
k∈{1,...,K}

(
∑NBS

s=1 wH
s RE

k,ssws)
2∑K

l �=k

∑NBS

s,s′=1 wH
s RE

k,ss′ws′wH
s′ R

E
l,s′sws

(52)

subject to ||ws||2 = 1, s ∈ {1, . . . , NBS}. (53)

The problem of optimizing the beamforming weights through joint max-min problem formu-

lations has been considered in [35], where the problem of multi-cast beamforming with different

receiver groups was shown to be NP-hard (see Claim 2 in [35]) and was solved quasi-optimally

using semi-definite relaxation (SDR). The problem at hand is much harder because it considers

the joint optimization of different weight vectors for different antenna ports. Even after applying

SDR and substituting the positive semi-definite rank-one matrix wswH
s ∈ C

NE×NE for a positive

semi-definite matrix Ws ∈ C
NE×NE of arbitrary rank, the relaxed problem is not tractable because

of the product of Ws and Ws′ in the denominator of the objective function. In order to enable

a tractable relaxation, all the antenna ports are assumed to transmit using the same optimal

downtilt weight vector. Dropping the subscripts s and s′, the resulting problem is given as,

Problem (P3):

maximize
w

minimize
k∈{1,...,K}

(
∑NBS

s=1 tr(wwHRE
k,ss))

2∑K
l �=k

∑NBS

s,s′=1 tr(wwHRE
k,ss′wwHRE

l,s′s)
(54)

subject to tr(wwH) = 1. (55)

This is a basic elevation beamforming scenario referred to as single downtilt beamforming.

However, the problem of optimization of the weight vectors for the exact 3GPP TR36.873 3D

channel model has not been addressed in a previous work so it is useful to lay the groundwork
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and see the extent of performance gains realizable. In the next section, we will deal with the

more complicated case of different weight vectors for different antenna ports. Now substituting

the positive semi-definite rank-one matrix wwH ∈ C
NE×NE in Problem (P3) for a positive semi-

definite matrix W ∈ C
NE×NE of arbitrary rank, the semi-definite relaxed problem is given as,

Problem (P4):

maximize
W

minimize
k∈{1,...,K}

(
∑NBS

s=1 tr(WRE
k,ss))

2∑K
l �=k

∑NBS

s,s′=1 tr(WRE
k,ss′WRE

l,s′s)
(56)

subject to W � 0, tr(W) = 1. (57)

Problem (P4) is efficiently solved using fractional programmings tools as discussed now.

2) Optimization Technique and Solution: Fractional programming provides efficient tools to

maximize the minimum of ratios in which the numerator is a concave function, the denominator

is a convex function, and the constraint set is convex, whereas no low-complexity optimization

method is available if any of these properties is not met [36], [37] . An efficient method to do

so is the generalized Dinkelbach’s algorithm, discussed in Appendix A of [37]. In order to meet

the conditions for application of Dinkelbach’s method, Problem (P4) is reformulated as,

Problem (P5):

maximize
W

minimize
k∈{1,...,K}

∑NBS

s=1 tr(WRE
k,ss)√∑K

l �=k

∑NBS

s,s′=1 tr(WRE
k,ss′WRE

l,s′s)
(58)

subject to W � 0, tr(W) = 1. (59)

The objective function in (58) considers a set of ratios of two functions, where we denote

the numerator by fk(W) and the denominator by gk(W), k = 1, . . . , K. In order to study these

functions, the following properties of the vec function are exploited.

Lemma 3: For any matrix A ∈ C
M×N , the vec operator is defined as [38],

vec(A) = (a11, . . . , aM1, a12, . . . , aM2, . . . , a1N , . . . , aMN)
T . (60)

Some properties of the vec operator are:

tr(AB) = vec(AT )Tvec(B), ∀A,B ∈ C
M×M , (61)

tr(ATBCDT ) = vec(A)T (D ⊗ B)vec(C), ∀A,B,C,D ∈ C
M×M (62)

Exploiting these properties, fk(W) and gk(W) can be expressed as,

fk(W) =

NBS∑
s=1

vec(WT )Tvec(RE
k,ss). (63)
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Algorithm 1 Optimization of Elevation Beamforming Vector

1: procedure GENERALIZED DINKELBACH(W)

2: Set ε > 0;

3: Initialize λ = 0;

4: repeat

5: W∗ = max
W∈CNE×NE

{ min
1≤k≤K

[fk(W) − λgk(W)]}, where fk(W) and gk(W) are given by

(63) and (65) respectively, subject to W � 0 and tr(W) = 1;

6: F = min1≤k≤K{fk(W∗)− λgk(W∗)};

7: λ = min1≤k≤Kfk(W∗)/gk(W∗);

8: until F < ε.

9: procedure GAUSSIAN RANDOMIZATION(w)

10: for l = 1 to L

11: Generate ζl ∼ CN (0,W∗);

12: Construct a feasible solution wl = sgn(ζl)/
√
NE;

13: end for

14: Determine l∗ = max
l=1,...,L

min
1≤k≤K

SIRk(wl), where SIRk is given by (54);

15: w∗ = wl∗ .

gk(W) =

√√√√ K∑
l �=k

NBS∑
s,s′=1

vec(WT )T (RE
l,s′s

T ⊗ RE
k,ss′)vec(W) (64)

= ||
(

K∑
l �=k

NBS∑
s,s′=1

(RE
l,s′s

T ⊗ RE
k,ss′)

) 1
2

vec(W)||2. (65)

It can be seen from (63) that fk(W) is a linear function of W. Also gk(W) is a convex

function, expressed as an L2 norm in (65). Problem (P5) therefore considers a set of ratios

{fk(W)
gk(W)

}Kk=1, where each ratio has an affine numerator fk(W), convex denominator gk(W) and

convex constraints and can therefore be solved using the generalized Dinkelbach’s algorithm pre-

sented in Algorithm 6 of [37]. The Dinkelbach’s procedure to solve Problem (P5) is formulated

in Algorithm 1. Once the optimal W∗ is obtained, the corresponding weight vector w that solves

the Problem (P3) needs to be extracted. Generally the resulting matrix W∗, although globally

optimal for Problem (P5) has a rank greater than one and therefore yields a quasi-optimal solution

for Problem (P3). It is important to post-process the relaxed solution W∗ to extract a close to
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optimal w∗. Besides the eigenvector approximation method, where w∗ is approximated as the

principal eigenvector of W∗, randomization is another way to extract an approximate solution

from the SDR solution W∗. The idea is to generate a random vector ζ ∈ C
NE×1 ∼ CN (0,W∗)

and use it to construct an approximate solution to Problem (P3). The procedure and theoretical

accuracy results have been discussed in [35], [39]. The specific design of the randomization

procedure is problem-dependent and has been summarized at the end of Algorithm 1.

The proposed algorithm exploits the generalized Dinkelbach’s algorithm to solve a sequence

of convex problems with a linear convergence rate and obtain a SDR solution W∗, from which a

quasi-optimal weight vector w∗ is obtained using the Gaussian randomization technique. Later,

numerical results will confirm the excellent performance gains that can be obtained through this

single optimal downtilt beamforming technique in the large (NBS, NE) regime. The proposed

algorithm does not require the acquisition of high dimension CSI, since the weight vector is

adapted using the quasi-static channel covariance matrices of the users.

V. USER GROUP SPECIFIC ELEVATION BEAMFORMING

In the last section, we discussed the single downtilt elevation beamforming scenario, where all

the users are served by vertical beams transmitted using the same optimal downtilt antenna port

weight vector, which maximizes the minimum SIR of the multi-user MISO system. However,

the additional control over the elevation dimension in FD-MIMO systems enables a variety of

strategies such as sector-specific and user-specific elevation beamforming [12].

In this section, we consider the user-group specific elevation beamforming scenario, where

the user population is partitioned into groups based on their channel covariance matrices and

each group is served by a set of antenna ports fed with the weight vector optimized for that

particular user group. Different user groups are therefore served by different elevation domain

beams. In order to effectively exploit this approach, the system must partition the user population

into groups according to the following two qualitative principles from [40]; 1) users in the same

group have channel covariance eigenspaces that approximately span a given common subspace,

which characterizes the group; 2) the subspaces of groups served in the same time-frequency slot

are approximately mutually orthogonal. There are several algorithms that achieve this grouping

like the K-means clustering and fixed quantization algorithms. This section focuses on the latter.

In the fixed quantization grouping scheme, we consider G user groups, where the group

subspaces denoted by Vg ∈ C
M×rg ; g = 1, . . . G, M = NBS ×NE , are fixed and known apriori
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Algorithm 2 User Group Specific Elevation Beamforming

1: procedure USER GROUPING(Sg)

2: for g = 1 to G

3: Initialize the user group set Sg = ∅;

4: Choose θ0,g and elevation spread � such that the intervals [θ0,g−�, θ0,g+�] are disjoint;

5: Compute RE
g (θ0,g,�) using (32) for the chosen θ0,g and �;

6: Obtain the group subspace Vg = Ug, where Ug is the M × rg tall matrix of eigenvectors

corresponding to rg dominant eigenvalues of RE
g , with rg chosen such that

∑G
g=1 rg = M ;

7: end for

8: for k = 1 to K

9: Compute RE
k using (32) for the propagation scenario under study;

10: Obtain the eigenspace UM×rk
k , corresponding to the rk dominant eigenvalues of RE

k ;

11: Compute dC(Uk,Vg) = ||UkUH
k − VgVH

g ||2F ;

12: Find g = min
1≤g′≤G

dc(Uk,Vg′);

13: Add user k to group g, i.e. Sg := Sg ∪ {k};

14: end for

15: procedure WEIGHT VECTOR OPTIMIZATION(wg)

16: Divide NBS antenna ports into G equal groups, with NBS,g ports serving each user group.

17: for g = 1 to G

18: Use Algorithm 1 to obtain the quasi-optimal weight vector w∗
g for the antenna ports in

group g serving the Sg-user MISO system.

19: end for

based on the geometric arrangement of the users in the cell. The performance of fixed quantization

method depends critically on how these subspaces are chosen. The method employed here relies

on the fact that in the large (NBS , NE) regime, the channel eigenspaces are approximately mutual

orthogonal if the angular supports for the user groups are disjoint. Therefore, we choose G mean

elevation AoDs, θ0,g, and a fixed value for the group elevation angular spread �, such that the

resulting intervals [θ0,g − �, θ0,g + �] are disjoint. The M × M channel correlation matrices

RE
g , g = 1, . . . G, for these G sets of mean elevation AoDs and angular spread are formed using

(32) and the corresponding eigenspaces Vg, g = 1, . . . G, are computed. The K users are then
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assigned to these G groups, based on the chordal distance between the user channel correlation

eigenspaces and the group subspaces. The number of users in each group is denoted by Kg.

This form of grouping is implemented using the slowly-varying channel correlation matrices of

the users, requiring only the knowledge of the mean AoDs/AoAs and the angular spreads.

At the transmitter side, the antenna ports are partitioned into G groups, where the number of

antenna ports in each group is NBS,g = NBS/G, where G is chosen as a factor of NBS . The first

NBS,g adjacent ports in Fig. 2 serve the first user group and so on. The optimal weight vector for

the gth antenna port group, w∗
g, is obtained using Algorithm 1, utilizing the channel correlation

matrices of the users in the gth group. Therefore G different elevation beams are designed. The

user group specific elevation beamforming technique is summarized in Algorithm 2 and will be

shown to yield excellent performance gains in the next section in the large (NBS, NE) regime.

VI. RESULTS AND DISCUSSIONS

The performance gains realizable through careful design of the downtilt weight vectors is

now studied using simulations. The 3D-urban macro cell environment from [6] is adopted with

parameters set as θ3dB, φ3dB = 65o, σt = 15o, κt = 10, μ = 0 and GE,max = 8dBi.

The single-user MISO case is studied first, where Theorem 2 is used to optimize the weight

vectors ws, s = 1, . . . , NBS , for the antenna ports. The BS equipped with a 10×NBS AAS serves

an outdoor user located at the edge of a cell of radius 250m, with θ0 for this user computed to

be 95.37o. The user throughput for the optimal downtilt weight vectors is plotted in red in Fig.

7 along with the cases where the electrical downtilt angles are set to specific pre-defined values

with weights computed using (9) for φscan = 0o. It is evident that choosing the weight vectors

according to Theorem 2 yields higher user throughput. Since θ0 = 95.37o, the cases where θtilt

is set to 90o and 100o achieve approximately the same performance, whereas the performance

for other downtilt angles deteriorates severely. Also, the theoretical throughput obtained using

(69) approximates the Monte-Carlo simulated throughput obtained using (39) quite well.

The multi-user MISO system is studied next where K users are placed randomly in a cell of

radius 250m, at a minimum distance of 50m from the BS. A 10 × 40 AAS is employed. The

optimal weight vector for the antenna ports maximizing the minimum SIRk, k = 1, . . . K is

obtained through Algorithm 1, utilizing the user channel covariance matrices computed using

(30). The Monte-Carlo simulated minimum SIRk in (49) is plotted in Fig. 8 along with the

deterministic equivalent in (51) for the quasi-optimal weight vector w∗, under the assumption
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that all ports transmit using the same downtilt weight vector. The results for the weight vector

computed using (9) for pre-defined downtilt values are also plotted. The deterministic equivalent

in Proposition 1 matches the Monte-Carlo result quite well for moderate number of antennas.

More importantly, the potential of elevation beamforming in enhancing the system performance

is confirmed through this result. Even the single optimal downtilt beamforming scenario achieves

significant performance gains as compared to the cases where the downtilt angle is pre-defined.

Next, we study the performance of user group-specific elevation beamforming, where K users

are divided into G groups based on their channel correlation matrices and group subspaces.

The antenna ports are divided into G groups too, where the ports in each group are applied

with the same downtilt weight vector optimized using the statistics of the users being served

in that group. The simulation is done for NBS = 36, NE = 5 and G = 3. The values for θ0,g,

g = 1, . . . , G and � are set as [93o, 101o, 119o] and 7.8o respectively such that the resulting

intervals [θ0,g −�, θ0,g +�] are disjoint. The user grouping is done as explained in Algorithm

2, where r∗g = 60 and the optimal weight vector for each NBS,g = 12 antenna ports group, w∗
g,

g = 1, . . . , G, is computed using Algorithm 1. The result for the minimum user SIR is plotted

in Fig. 9, which clearly highlights the superior performance of the user-grouping algorithm. The

gap between the curves with and without grouping starts to decrease as K increases, because for

higher K, a larger number of users Kg are served in each group by the same NBS,g antenna ports

per group. In fact, when the values NBS and K are comparable, the arrangement of the users

could be such that the number of users in one of the g groups, Kg > NBS,g, while the overall

number of users K < NBS , resulting in a degradation of the minimum SIR under grouping.
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performance of a multi-user MISO system.

In the next figure, we study the effect of increasing the number of user groups. The results are

plotted for G = 2, 3 and 4 in Fig. 10, where θ0,g, g = 1, . . . , G and � are selected, ensuring that

the resulting angular supports are disjoint. A 3×48 AAS is utilized for K = 22 users. Following

the steps in Algorithm 2, the quasi-optimal weight vector w∗
g, for each antenna ports group g

serving the gth user group, g = 1, . . . , G, is computed. The result shows that the higher is the

number of groups, the larger is the performance gain, since every user group is now served with

an optimal downtilt weight vector determined using the spatial statistics of only the users in that

group. A higher number of groups realizes a higher degree of vertical separation of the users

through the design of a higher number of elevation domain beams, where each beam serves a

small number of co-located users. Note that the value of NBS needs to be high enough, such

that NBS,g >> Kg, even after dividing the ports and the users into G groups.

These founding results provide a flavor of the performance gains realizable through the

deployment of an AAS with a 2D planar array structure at the BS, where every antenna port

is fed with a corresponding downtilt weight vector to realize spatially separated transmissions

to a large number of users. More sophisticated 3D beamforming techniques can be devised in

the future that allow every port to transmit at a different optimal downtilt angle. In fact, for

NBS >> K, spatially separated beams to almost all the users can be realized, which is why FD

beamforming can be highly advantageous when amalgamated with massive MIMO techniques.

VII. CONCLUSION

This paper reviewed the recent development of FD-MIMO technology for evolution towards

5G cellular systems and studied the architecture of the 2D active antenna arrays utilized by these
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systems. The 2D AAS not only serves as a practical implementation of massive MIMO systems,

but also offers the potential to boost spectral efficiency by providing the ability of adaptive

electronic beam control in both the elevation and azimuth dimensions. To facilitate the evaluation

of these systems, the recently proposed 3D channel model in the 3GPP TR36.873 was outlined.

The SCF for the channels constituted by individual antenna elements in the AAS was derived and

used to compute the correlation between overall antenna ports for any arbitrary 3D propagation

environment. The performance benefits of FD-MIMO techniques were then studied by devising

elevation beamforming algorithms, that optimize the downtilt antenna port weight vectors in the

single user and multi-user MISO settings, utilizing the quasi-static channel correlation matrices

of the users obtained from the derived SCF. The problem of determining the downtilt weight

vector that maximizes the minimum SIR of the multi-user system was formulated under the

assumption that all ports serve using the same optimal downtilt weight vector, and solved using

SDR and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario

was devised. Simulation results confirmed the potential of FD-MIMO techniques to improve

the system performance. In this paper, we focused on the single-cell scenario for the sake of

clarity and space limitation. As a future work, it is of interest to develop 3D beamforming

algorithms for the multi-cell case. The objective function will now take into consideration the

out-of-cell interference making the joint max-min problem harder. However, the quasi-optimal

weight vectors can be designed by implementing Algorithm 1 in a distributed iterative manner.

APPENDIX A

PROOF OF THEOREM 2

This theorem follows from expressing tr(hhH) as a quadratic term in z using (34) to re-write

the SNR in (39) as follows,

γ =
�

σ2
n

hHh =
�

σ2
n

zHR
1
2

H

BSR
1
2
BSz. (66)

Next exploiting Lemma 2 and the fact that the covariance matrix RBS defined in (30) is

Hermitian, positive semi-definite and satisfies the condition in Assumption A-1 we have,

1

NBS

zHRBSz − 1

NBS

tr(RBS)
a.s.−−→ 0. (67)

where, tr(RBS) =

NBS∑
s=1

ws
HRE

ssws, (68)

and RE
ss is a NE × NE matrix given by RE([(s − 1)NE + 1 : sNE], [(s − 1)NE + 1 : sNE]),
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where RE is defined in (32). Therefore in the large (NBS, NE) regime,

1

NBS

γ − �

NBSσ2
n

NBS∑
s=1

ws
HRE

ssws
a.s.−−→ 0. (69)

Consequently, in the large (NBS, NE) regime, the optimization problem (P1) can be written as,

maximize
w1,w2,...,wNBS

NBS∑
s=1

ws
HRE

ssws (70)

subject to ||ws||2 = 1, for s = 1, . . . , NBS. (71)

Problem (P1) is equivalent to finding the optimal w∗
s= arg

w
max

||w||2=1
||RE

ss

1
2 w||22, s = 1, . . . , NBS ,

which has the simple eigenvector solution stated in Theorem 2.

APPENDIX B

PROOF OF PROPOSITION 1

In order to prove Proposition 1, the following theorem will be required.

Theorem 3. Continuous Mapping Theorem [41]. Let {Xn} be a sequence of N -dimensional

random vectors. Let g : RN → R
L be a continuous function. Then,

Xn
a.s.−−→ X =⇒ g(Xn)

a.s.−−→ g(X), (72)

where
a.s.−−→ denotes almost sure convergence.

To prove Proposition 1, note that the channel vector for user k, hk is given by RBS

1
2
k zk, where

the condition described in Assumption A-1 on the Hermitian, positive semi-definite channel

covariance matrices RBSk hold for all users, k = 1, . . . , K. With this, (49) can be written as,

SIRk =
|zHk RBSkzk|2∑K

l �=k zHk RBS

1
2
k

H

hlhH
l RBS

1
2
k zk

. (73)

Applying Lemma 2 along with the continuous mapping theorem on the numerator and Lemma

2 along with the fact that if A ∈ C
M×N and B ∈ C

N×M , then tr(AB) = tr(BA) would yield

the following convergence result for (73),

1

NBS

SIRk −
( 1
NBS

tr(RBSk))
2∑K

l �=k
1

NBS
tr(RBSkhlhH

l )

a.s.−−→ 0. (74)

Substituting the expression for hl as RBS

1
2
l zl and applying the convergence theorem in Lemma

2 a second time on the denominator would yield,

SIRk −
( 1
NBS

tr(RBSk))
2∑K

l �=k
1

N2
BS

tr(RBS

1
2
l

H

RBSkRBS

1
2
l )

a.s.−−→ 0. (75)

Again using tr(AB) = tr(BA), would complete the proof of Proposition 1.
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