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Oxidation of 316L(N) Stainless Steel in Liquid Sodium at 650 °C
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The corrosion of an austenitic steel in liquid sodium containing 189 µg.g -1 of oxygen was investigated at 650°C as a function of time (122, 250 and 500 h). The steel samples were characterized by means of complementary techniques, namely scanning electron microscopy, Xray diffraction, glow discharge optical emission spectroscopy and transmission electron microscopy. The characterizations showed that a NaCrO 2 oxide scale forms at the steel surface.

Under this oxide scale, iron and molybdenum rich M 6 C carbide particles together with NaCrO 2 in the grain boundaries and cavities filled with sodium were observed. The stainless steel substrate and / or the chromite scale were dissolved in parallel with the formation of chromite and carbides.

Thermodynamic calculations showed that NaCrO 2 and M 6 C are equilibrium phases in such a system. NaCrO 2 is formed by the reaction of chromium diffusing from the steel bulk with sodium and dissolved oxygen (external selective oxidation). Mo segregates to the steel surface where it reacts with Fe from the steel and C dissolved in liquid sodium. The dissolution of stainless steel occurred since the liquid sodium bath is not saturated in the dissolving species (pure metals and oxides such as NaCrO 2 , Na 4 FeO 3 ). As for the cavities, vacancies are created at the steel / NaCrO 2 interface by Cr oxidation, carburization and dissolution of the other elements present in the stainless steel. The vacancies become supersaturated and this leads to the nucleation of the cavities observed. Part of the vacancies created by Cr oxidation or steel dissolution is annihilated at sinks like dislocations leading to the translation of the oxide / metal interface towards the metal bulk.

Introduction

France made plans to construct the fourth generation of nuclear reactor and chose the Sodium-Cooled Fast Reactor (SFR) as the technology to develop. The expected economically reasonable service life-time of a reactor is 60 years. In these reactors, liquid sodium Na is used as a coolant at high temperatures (400 to 550°C for the liquid metal bulk and up to 650°C at the hot spots of the fuel claddings) [START_REF] Dautray | Les fluides caloporteurs pour neutrons rapides[END_REF]. As the chemical conditions can change with time (normal, transient and incidental), any interactions between the liquid metal and the structural materials (made mainly of austenitic steels) must be well known, well understood and predicted to guarantee service lifetime as well as resistance to incidental conditions.

In sodium-cooled fast reactors, the liquid metal oxygen content is maintained at a maximum of 10 µg.g -1 by means of purification systems, in order to prevent solid oxide from precipitating in the circulation loops and minimize corrosion of the structural materials. However, certain events such as air or water leaks could occur during the service life-time of the nuclear reactor, leading to a temporary increase in the dissolved oxygen content (15 µg.g -1 to 200 µg.g -1 for unexpected transient) [START_REF] Courouau | Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device[END_REF].

For austenitic steels immersed in liquid sodium containing low oxygen levels (less than 10 µg.g - 1 ) for a few hundred or thousand hours, the corrosion is mainly due to the preferential dissolution of nickel and, to a lesser extent, chromium and manganese. This preferential dissolution leads to the ferritization of the steel surface. The thickness of the ferrite layer formed is of the order of a few µm [START_REF] Baqué | Some aspects of corrosion of austenitic steels in flowing sodium[END_REF][START_REF] Weeks | Corrosion and deposition of steels and nickel-base alloys in liquid sodium[END_REF][START_REF] Suzuki | Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel[END_REF][START_REF] Gnanasekaran | Liquid metal corrosion in nuclear reactor and accelerator driven systems[END_REF][START_REF] Yoshida | Corrosion issues in sodium-cooled fast reactor (SRF) systems[END_REF][START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF]. At longer immersion times, austenitic steels are dissolved homogeneously with a kinetic attributed to iron dissolution [START_REF] Baqué | Some aspects of corrosion of austenitic steels in flowing sodium[END_REF][START_REF] Weeks | Corrosion and deposition of steels and nickel-base alloys in liquid sodium[END_REF]. An increase in the oxygen content or in the temperature is reported to increase the dissolution rate [START_REF] Weeks | Corrosion and deposition of steels and nickel-base alloys in liquid sodium[END_REF][START_REF] Gnanasekaran | Liquid metal corrosion in nuclear reactor and accelerator driven systems[END_REF][START_REF] Yoshida | Corrosion issues in sodium-cooled fast reactor (SRF) systems[END_REF][START_REF] Thorley | Structural changes in materials exposed to liquid sodium[END_REF]. This is explained by an increase
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4 of the iron solubility in sodium in presence of oxygen [START_REF] Singer | Measurements of the solubility of iron and chromium in sodium, in: Corrosion by Liquid Metals[END_REF][START_REF] Stanaway | Solubility of metals, iron and manganese in sodium[END_REF]. Kolster et al. [START_REF] Kolster | Sodium corrosion in a total molybdenum loop system: construction, experience and results[END_REF] show that oxygen might also increase the preferential dissolution rate of chromium, due to the formation of a Na-Cr-O dissolved complex.

At higher oxygen contents in liquid sodium, i.e. more than 15 µg.g -1 [START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF][START_REF] Cavell | Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium[END_REF], oxide scales rich in Na and Cr are formed on the surface of austenitic or ferritic / martensitic steels. This oxide is Na 2 O.Cr 2 O 3 , also called sodium chromite NaCrO 2 [START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF][START_REF] Thorley | Structural changes in materials exposed to liquid sodium[END_REF][START_REF] Crouch | Ferritic steels for fast reactor steam generators[END_REF][START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF][START_REF] Shin | Mechanism of corrosion of 9Cr and 12Cr ferritic/martensitic steels under oxygen-saturated sodium[END_REF]]. An increase in the oxygen content or in the temperature is reported to increase the oxidation rate [START_REF] Cavell | Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium[END_REF][START_REF] Crouch | Ferritic steels for fast reactor steam generators[END_REF][START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF]. The NaCrO 2 formation causes Cr depletion in the steel under the oxide scale, for both ferritic / martensitic [START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF][START_REF] Rademakers | Corrosion of various ferritic steels in an isothermal sodium loop system[END_REF] and austenitic steels [START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF]. In this case, the steel grain boundaries can be enriched in Na and O [START_REF] Crouch | Ferritic steels for fast reactor steam generators[END_REF].

A discontinuous phase rich in Mo can also be formed at the surface or subsurface of steels containing Mo immersed in liquid sodium [START_REF] Baqué | Some aspects of corrosion of austenitic steels in flowing sodium[END_REF]. This phase could be Fe 7 Mo 6 or M 6 C type carbides at temperatures higher than 650°C, M being Cr, Mn, Fe, Ni or Mo (liquid sodium contains traces of C) [START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF]. For instance, Fe 4 Mo 2 C was detected as shown in ref. [START_REF] Thorley | Structural changes in materials exposed to liquid sodium[END_REF].

Finally, it can be concluded from this literature review that the mechanisms involved in the corrosion of austenitic steels in liquid sodium are very complex and not yet fully understood [START_REF] Courouau | Corrosion by oxidation and carburization in liquid sodium at 550°C of austenitic steels for sodium fast reactors[END_REF].

In recent years, as the experiments using liquid Na are not easy to perform, there are few studies on the corrosion in liquid Na. The influence of immersion time and dissolved oxygen content is not studied precisely enough to be confident in the results that could be obtained at long immersion times. The primary goal of our study, therefore, is to gain a better understanding of the corrosion mechanisms involved in liquid sodium in controlled temperature and oxygen content conditions and to investigate further a key step in the corrosion process: Cr diffusion from the steel bulk to the steel surface. The work is divided into the following stages:
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1) Immersion of the chosen austenitic steel in liquid Na containing 189 µg.g -1 of oxygen at 650°C for different immersion times up to 500 h;

2) Characterization of the samples obtained to determine the nature and composition of the corrosion products and estimate the oxidation depth;

3) Measurement of chromium concentration profiles in the vicinity of grain boundaries; 4) Discussion on the key mechanisms explaining the corrosion of austenic steels in liquid sodium.

Materials and corrosion conditions

Stainless steel and sodium

The substrate tested is an austenitic stainless steel 316L(N) (provided by Industeel France). The dimensions of the steel specimens were 30 mm long, 20 mm wide and 1.5 mm thick. A 1 mm diameter hole along thickness took place at 3 mm from edge in the middle of the width. Its composition is given in Table 1. The analysis was performed using induced coupled plasma atomic spectroscopy and glow discharge optical emission spectroscopy for carbon. The grain size is close to 41 ± 2 µm (Fig. 1). Before the corrosion experiments, the specimens were polished in several stages. In order to study the influence of the steel surface roughness on corrosion in liquid sodium, it was decided to stop the mechanical polishing at different stages (1200 and 4000 grit SiC paper and 1 µm diamond suspension). The surface roughness obtained with this procedure was found to have a negligible influence on corrosion in liquid sodium during our trials (average roughness Ra < 0.1 µm). Therefore, the sample surface roughness is not given for the results described below. The quantitative analysis of carbon was not possible in our conditions due to contamination during analysis procedure. However, the experimental conditions of the test were already observed as carburizing for this low carbon steel [START_REF] Courouau | Corrosion by oxidation and carburization in liquid sodium at 550°C of austenitic steels for sodium fast reactors[END_REF]. The as-received solid sodium is covered with a sodium oxide layer, which is manually removed inside an argon-atmosphere glovebox.

Experimental conditions

The corrosion tests were run in a static sodium device called CorroNa [START_REF] Courouau | Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device[END_REF]. The sodium (2.3 kg) is contained in a molybdenum crucible (MLR grade containing 0.7 wt.% of La 2 O 3 , Plansee), placed in a resistance heated furnace. Molybdenum dissolution in sodium was reported to be negligible in molybdenum-made circuit [START_REF] Kolster | Sodium corrosion in a total molybdenum loop system: construction, experience and results[END_REF]. The device is set in a purified argon atmosphere (provided by Messer with a purity index 6.0, i.e. less than 3 vpm of H 2 O and 2 vpm of oxygen and purified by zeolite adsorption), inside a glove box to simplify all operations involving preparing the test and handling the liquid metal. During the corrosion tests, the system containing the liquid sodium in contact with pure argon is perfectly sealed off from the argon atmosphere in the glove box.

After sodium melting, solid sodium oxides float to the free surface of the liquid metal, probably due to surface tension effects, allowing a first skimming operation to be performed to remove these sodium oxides. The liquid metal is then held at low temperature (105-110°C) for 3 days.

The new floating oxide is then carefully skimmed off from the free surface. An additional purification step is then performed at a high temperature (650°C for 72 h), using a zirconium getter immersed in the liquid bath to eliminate any residual oxide and dissolved oxygen. The
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7 estimated dissolved oxygen content obtained after this purification step is 1 µg.g -1 at the most.

The dissolved zirconium concentration is known to be very low. For instance, at 722°C, the zirconium solubility in sodium is 0.09 µg.g -1 [START_REF] Borgsted | Applied chemistry of the alkali metals[END_REF].

After purification, the liquid sodium bath is cooled to 120°C and the zirconium getter is removed.

Sodium oxide powder (Na 2 O + 14.1 wt.% Na 2 O 2 , provided by Alfa Aesar) is added to the liquid sodium in order to obtain an oxygen concentration of 189 ± 8 µg.g -1 (assuming that the initial oxygen concentration in the liquid sodium is equal to zero and that Na 2 O and Na 2 O 2 are completely dissolved in the liquid Na).

After this step, in order to keep the oxygen content of the sodium constant, the specimens are immersed in the molten sodium bath at 120°C and the system is tightly closed. The sodium is then heated to 650°C at a rate of 0.5°C/min. The temperature is kept constant for 122 h, 250 h and 500 h before being decreased at a rate of 0.5°C/min. The specimens are removed from the liquid sodium at 120°C. The sodium residues present on the specimens are removed with 99.9 wt.% pure ethanol (provided by Carlo Erba) at ambient temperature. This soft cleaning procedure was chosen to remove the sodium residues from the surface and to keep as much as possible liquid sodium that might have penetrated into the corrosion surface layer during the corrosion processes.

Characterization techniques

Specimens are weighted before and after the corrosion test, using an AT20 weighing scale constructed by MettlerToledo. X-Ray Diffraction (XRD, Bruker D8 discover) was carried out to characterize the phases formed during corrosion. XRD was performed in the θ-2θ configuration
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with a copper cathode emitting X-rays of wavelength λ = 1.5406 Å. Characterizations were performed by means of Scanning Electron Microscopy (SEM, Zeiss LEO 1460VP) associated with Energy Dispersive X-ray spectroscopy (EDX, SAMX DXP-X10P), to observe and analyse the surfaces and polished cross-sections of the specimens. Elementary depth profiles were obtained from the sample surface using Glow Discharge Optical Emission Spectroscopy (GDOES). The instrument used was a GD-Profiler 2 from the Horiba Scientific company. The glow discharge was powered by a 13.56 MHz radio-frequency generator. A 4 mm-diameter copper anode and 99.9999 vol.% purity argon gas were used to sputter the sample (800 Pa and 30 W). The emission responses from the excited sputtered elements (O, Fe, Cr, Ni, Mo, C, Si, Mn, etc.) were detected using a polychromator with a focal length of 500 mm. A monochromator was used to determine the sodium concentration. The calibration curves used to quantify the metal elements were obtained by using bulk reference materials. The resulting depth in the reference materials was measured with a perthometer (PerthoConcept, Mahr Mesure). The crater depth cartography in the stainless steel was measured using an optical interferometer (Bruker ContourGT). A sample is also observed by Transmission Electron Microscopy (TEM), coupled with an EDX detector. The instruments used are a Tecnai Osiris TEM and a ChemiSTEM EDX 

Experimental results highlighting corrosion processes

Figure 2 gives the difference between the sample masses after and before immersion in liquid sodium (positive in case of mass gain and negative in case of mass loss) versus time. The formation of a solid product with impurities and/or sodium leads to a mass gain of the sample while a dissolution phenomena leads to a mass loss. In the test presented here, the sample mass increases after immersion in liquid sodium containing 189 µg.g -1 of oxygen during 122 h. At longer immersion time, the sample loses mass when the immersion time increases.

Morphology and composition of the corrosion products

The surface of a sample immersed during 250 h is shown in Fig. 3a. The surface features are typical of the characterizations obtained in all conditions. Two morphologies are shown on the sample surface, a dark one and a grey light one.

The sample surface is mainly covered with triangle-shaped crystals, rich in chromium, sodium and oxygen (Fig. 3b, EDX analysis of the white cross in Fig. 3a). Iron, nickel and molybdenum are also detected in this area, probably from the steel substrate. Considering the triangle shape [START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF] combined with the elements detected by EDX and thermodynamic data [START_REF] Shaiu | Thermodynamic properties of the double oxide of Na 2 O with the oxides of Cr, Ni and Fe[END_REF], this phase might be sodium chromite NaCrO 2 .
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The clearer phase is rich in molybdenum and iron (Fig. 3c, EDX analysis of the black cross in Fig. 3a). Chromium and nickel are also detected in this phase, probably from the steel substrate.

Nature of the phases formed during corrosion

The different phases described in Section 3.1 were characterized using XRD to determine their chemical nature. The experimental XRD diagram, obtained for the steel sample immersed in liquid sodium at 650°C for 500 h, was compared with the theoretical diagram of austenite, NaCrO 2 and several M 6 C carbides containing Cr, Mn, Fe, Ni and Mo (Fig. 4). The XRD characterizations confirmed the formation of both sodium chromite (NaCrO 2 ) and M 6 C carbides for all the corrosion times. The closer carbide seems to be Fe 3 Mo 3 C. These characterizations confirm the formation of sodium chromite previously characterized by SEM [START_REF] Cavell | Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium[END_REF] and clarify the nature of the molybdenum rich phase as M 6 C, a molybdenum and iron rich carbide.

In-depth corrosion

Cross-section observations

The cross-section of a sample immersed in liquid sodium for 250 h at 650°C is shown in Fig. 5. This SEM image is obtained in backscattered electron (BSE) mode, in which materials with elements composed of higher atomic number (Z) appear clearer than the one with lower Z elements.

At the top of the image, the mounting resin appears in black. At the bottom, the stainless steel appears to be grey. A dark grey layer, corresponding to the sodium chromite layer, is observed
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11 below the mounting resin. This sodium chromite layer seems to be discontinuous in some locations. In between this oxide scale and the steel substrate, cavities (dark areas) are formed. In addition, a lighter grey phase is seen between the Cr-Na-O-rich zone and the top of the cavity zone. This phase might be molybdenum and iron rich carbide M 6 C.

A grain boundary is visible in the middle of the cross-section. This grain boundary emerges at the steel surface and was probably in contact with liquid sodium at the beginning of the corrosion process. Its upper part is filled with oxide. A cavity is present immediately beneath oxide.

In-depth concentration profiles

The composition depth profiles of carbon, oxygen, chromium, iron, nickel, molybdenum and sodium obtained through GDOES are plotted together in Figure 6. The element compositions in log-scale are given as a function of depth for the sample corroded for 250 h at 650°C in liquid sodium with an oxygen content of 189 µg.g -1 . The origin of the x-axis corresponds to the specimen surface. The maximum depth of 12 µm corresponds to the mean depth of the crater left by the analysis. The scales of the two analyses (GDOES, fig. 6 and SEM, fig. 5) are not an exact match: 5 µm in the SEM image corresponds to 4 µm in the composition depth profile. This slight difference can be explained by the fact that the composition profiles measured through GDOES are averaged over the 4 mm-diameter area analysed, whereas SEM provides a much more local observation and by the fact that the erosion rate might be slightly different from one phase to the other. In any case, as is shown below, the agreement between the two characterizations is excellent. The different depths cited below are deduced from the GDOES profiles.
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12 At the steel surface, the composition profiles indicate enrichment in oxygen, sodium and chromium in a 1 µm-thick surface layer, corresponding to the sodium chromite scale (Figs. 4 and5). It should be noted that the oxygen composition decreases whereas the sodium and chromium compositions slightly increases in this oxide scale from the surface to the depth of 1 µm. The iron, nickel and molybdenum compositions increase in the oxide scale from nearly 0.1 at.% at the specimen surface to 8, 2 and 2 at.% respectively.

The composition profiles under the oxide scale differ from those of the bulk of the steel substrate.

The thus affected area corresponds to the presence of corrosion products (Fig. 4 and Fig. 5) and can be divided into two zones. The first zone is located at depths between 1 µm and 1.55 µm beneath the specimen surface. The compositions of molybdenum and carbon rise to a peak of 3.1 at.% and 0.38 at.% respectively at approximately 1.3 µm. These composition peaks correspond to the Mo and Fe-rich carbides (light grey phase, Fig. 5). The Cr composition profile presents a slightly depleted zone at around 1.55 µm. The evolution as a function of immersion time (less than 500 h) of the location of the chromium minimum concentration could not be measured because included in the measurement uncertainty (± 0.2 µm). The second zone is located at depths ranging between 1.55 and 5.25 µm, with a slight increase in the Fe, Cr and Ni compositions to their bulk values and a sharp decrease in the C, O and Na contents. The slope changes in the sodium composition profile (inflexion points indicated by arrows in Fig. 6) are consistent with the characteristic depth of internal oxides and cavities formed underneath at the grain boundaries.

Under the affected area, no corrosion products are found in the steel substrate (Fig. 5). However, the Na and O contents are not equal to zero and they decrease slightly to their detection limits.
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This last segment of the composition profiles, plotted in Log-scale, must be considered with care and could be an artefact of the GDOES measurements because the shape of the sputter crater shows a steadily increasing deviation from its ideal shape upon increasing sputtering time.

Additionally, crater edge effects provide a more significant contribution to the overall signal upon increasing crater depth.

In the end, it should be reminded that the experimental results described above were obtained for different surface roughnesses, obtained by mechanical polishing stopped at different stages (1200 and 4000-grit SiC paper and 1 µm diamond suspension). Our tests demonstrated that the corresponding surface roughnesses have no influence on the corrosion mechanisms studied.

Chromium concentration evolution nearby the surface

In the literature, it is demonstrated that oxygen strongly affects the behaviour of chromium by the formation of NaCrO 2 [START_REF] Cavell | Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium[END_REF][START_REF] Crouch | Ferritic steels for fast reactor steam generators[END_REF][START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF][START_REF] Shin | Mechanism of corrosion of 9Cr and 12Cr ferritic/martensitic steels under oxygen-saturated sodium[END_REF][START_REF] Rademakers | Corrosion of various ferritic steels in an isothermal sodium loop system[END_REF]. That is why the evolution of chromium concentration was analysed close to metallurgical defects such as grain boundaries (section 4.1). The mean chromium concentration was also characterized as a function of immersion time (section 4.2).

Evolution of chromium concentration along an emerging grain boundary

Thin foils obtained by FIB are useful to measure the local elementary composition by EDX with TEM. This experimental technique is used to characterize chromium composition around a grain boundary.
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The HAADF (High-Angle Annular Dark-Field) image of a sample immersed during 250 h in liquid sodium containing 189 µg.g -1 of oxygen at 650°C is presented in Fig. 7. The white layer at the top of the image corresponds to a tungsten protecting layer deposited during FIB processing.

The dark grey layer below corresponds to the sodium chromite layer. The steel grain boundary is highlighted by a dotted line. Some white spots, corresponding to M 6 C carbides, are visible between the metal and the sodium chromite layer. Cavities are not present on this part of the sample.

The red arrows numbered "1" and "2" in Fig. 7 correspond to the location of the chromium EDX analysis shown in Fig. 8. The chromium concentration is plotted as a function of distance from the grain boundary (located at abscissa 0). The measurement length was 100 nm in the left steel grain and 350 nm in the right steel grain. The chromium composition decreases from the center of the grains to the grain boundary where it reaches a minimum. The concentration profile 1 exhibits two Cr concentration peaks which might correspond to small phases rich in chromium such as carbides or oxides.

Moreover, the chromium concentration of profile 1 is lower than the concentration of profile 2, because the location of profile 1 is closer to the surface.

To summarize, the alloy is chromium-depleted around emerging grain boundary, and closer the location is to the steel surface and the grain boundary, higher the chromium depletion is.

Evolution of chromium depletion as a function of immersion time

The mean chromium concentration profile measured by GDOES is given as a function of depth in Fig. 9 for three immersion times in liquid sodium (122, 250 and 500 h). For all trials, the origin of
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x-axis is placed at the minimum chromium concentration, assumed to be the interface between steel and corrosion products as discussed before (section 3.3.2). At 10 µm depth at the most, the Cr concentration of all samples reaches the initial concentration of the studied steel for the three immersion times. In the following, this steel zone that is not affected by corrosion is called the steel bulk.

At the interface between steel and corrosion products, the chromium concentration does not depend on immersion time. From this interface to the bulk, the chromium concentration increases in all cases. The lower chromium concentration is obtained for the samples immersed longer in liquid sodium. The samples immersed during 500 h are more chromium depleted than the samples immersed during 250 h which are also more depleted than the samples immersed during 122 h.

Discussion

In the following sections, a discussion is held concerning the final structure of the corrosion products (Section 5.1) and the mechanisms explaining their formation (Section 5.2).

Final structure of the corrosion products

As shown in Section 3, during immersion in liquid sodium containing 189 µg.g -1 of oxygen at 650°C, the stainless steel studied became covered with a sodium chromite (NaCrO 2 ) layer.

Molybdenum and iron rich carbides (M 6 C) are also formed underneath. These observations confirm previous results described in the literature, i.e. formation of sodium chromite [START_REF] Kolster | Mechanism of Fe and Cr transport by liquid sodium un non-isothermal loop system[END_REF][START_REF] Kolster | Sodium corrosion in a total molybdenum loop system: construction, experience and results[END_REF][START_REF] Cavell | Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium[END_REF][START_REF] Crouch | Ferritic steels for fast reactor steam generators[END_REF][START_REF] Crouch | The growth and stability of sodium chromite and its influence on corrosion[END_REF][START_REF] Shin | Mechanism of corrosion of 9Cr and 12Cr ferritic/martensitic steels under oxygen-saturated sodium[END_REF] and carbides [START_REF] Thorley | Structural changes in materials exposed to liquid sodium[END_REF] in oxidizing and carburizing conditions.
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The system studied here is composed of liquid sodium containing traces of dissolved oxygen and carbon in contact with a stainless steel containing Cr, Fe and Mo. Thermodynamic calculations described below will show that NaCrO 2 and M 6 C are equilibrium phases in such a system.

Oxides' stability

Three main solid oxides can be formed at the steel surface or in liquid sodium: sodium chromite (NaCrO 2 ), sodium ferrate (Na 4 FeO 3 ) [START_REF] Bhat | Corrosion behaviour of structural materials in sodium influenced by formation of ternary oxides[END_REF] and sodium oxide (Na 2 O).

At the steel surface, the chemical reaction corresponding to solid Na MO formation can be written as follows:

O + ⋅ Na + . M → Na MO (Eq. 1)
where M = Fe or Cr in solid solution in steel, and are the stoichiometric coefficients of Na MO and O corresponds to oxygen dissolved in liquid sodium.

The reference state is chosen to be pure liquid sodium, pure body-centered cubic solid M and pure O 2 at standard pressure of 1.013 bar. At thermodynamic equilibrium, the law of mass action is given by:

= ⋅ Δ , ! " # $ + %& ⋅ ln )* ! +, # + . )* ! - (Eq. 2)
where is the chemical potential of oxygen in liquid sodium, Δ , ! " # $ is the standard Gibbs free energy of formation of Na MO , % is the gas constant (% = 8.314 J.mol -1 .K -1 ), & is the temperature, . ! " # , . " and . are the activities of Na MO , M and Na respectively.
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As a first approximation, liquid sodium and the oxides formed can be considered to be pure, i.e., . = 1 and . ! " # = 1. The activities of Fe and Cr in austenite are calculated as a function of temperature by means of the CALPHAD method implemented in ThermoCalc ® , with the TCFE8 (Steels/Fe-Alloys v8.0) database. For instance, at 650°C, . 0 = 0.67 and . 12 = 0.28, in using the reference as pure stable metal (body-centered cubic for chromium and iron). The steel composition used for the calculation is limited to the main elements (Cr, Ni, Mo, Mn, C, Si and Fe). The contents of Cr, Ni, Mo, Mn, C and Si are the ones given in Table 1 and the balanced Fe content is slightly higher than in the real stainless steel. This choice was made because the calculation including the minor elements did not converge. With this choice, the activities of the chosen elements are supposed to be weakly dependent on minor elements. This seems quite reasonable for Cr and Fe which are the only ones considered for the oxides' formation (NaCrO 2 and Na 4 FeO 3 ). The Cr and Fe contents are indeed much higher than those of the other elements.

The standard Gibbs free energy of formation (in kJ.mol -1 ) of NaCrO 2 (-874.6 + 0.20921.T) and Na 4 FeO 3 (-1214.17 + 0.34269.T) are given in Ref. [START_REF] Shaiu | Thermodynamic properties of the double oxide of Na 2 O with the oxides of Cr, Ni and Fe[END_REF] as a function of temperature T in K. The relative stability of both oxides can be shown in the Ellingham diagram presented in Fig. 10a.

The chemical potential of oxygen in liquid sodium given by Eq. 2 is plotted as a function of temperature for Na 4 FeO 3 (purple line) and NaCrO 2 (blue line). The oxide is spontaneously formed in the region above the corresponding straight line.

In liquid sodium, the chemical reaction corresponding to solid Na 3 O formation can be written as follows:

O + 2 ⋅ Na → Na 3 O (Eq. 3)
At thermodynamic equilibrium, the law of mass action leads to: in µg.g -1 ). It can therefore be convenient to define the activity of oxygen in liquid sodium .′ with the reference state of liquid sodium saturated in oxygen (i.e., .′ = 1 for oxygen-saturated liquid sodium).

Oxygen is present in small quantities in liquid sodium, in the form of a dilute solution (at 650°C, Henry's law can be used to express the activity of oxygen in liquid sodium:

.′ = B °.

(Eq. 6)
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19 where B ° is the Henry's law constant and the mole fraction of oxygen in liquid sodium.

Assuming that Henry's law is validated for oxygen content lower than or equal to its solubility in liquid sodium:

B °= D )*,E*F (Eq. 7)
and

.′ = , D )*,E*F (Eq. 8)
As the oxygen content is low in liquid sodium, the activity of oxygen is also given by:

.′ = G , G D
)*,E*F (Eq. 9)

Finally, = %. &. ln . = %. &. ln .′ + ∆ I (Eq. 10)

where ∆ I is the Gibbs free energy change for the chemical reaction

3 O 3 (K ) → O MN OPQ (Eq. 11)
with O MN OPQ the oxygen dissolved in liquid sodium at saturation.

To our knowledge, there is no measurement of ∆ I in the literature. . This tangent line cuts the = 1 axis at the ordinate %. &. ln . , , where

. , is the activity of oxygen in liquid sodium in equilibrium with Na 2 O. This intersect also corresponds to the origin of the .′ 7 scale (i.e., %. &. ln .′ 7 = 0, Eq.8). The corresponding ∆ I is then given by Eq. 10 written in this particular case:

= %. &. ln . , = ∆ I (Eq. 12)

If the oxygen content in liquid Na is less than 7 , , the red tangent line ( . Let us first consider the curve corresponding to an oxygen content of 1000 µg.g -1 . The calculation predicts that solid Na 2 O is in equilibrium with liquid sodium containing 1000 µg.g -1 for temperatures less than 751 K. This is in good agreement with measurements found in the literature [START_REF] Noden | A general equation for the solubility of oxygen in liquid sodium[END_REF]. This means that the unknown value ∆ I can be approximated by Δ , 5 $ (as was done before [START_REF] Bhat | Corrosion behaviour of structural materials in sodium influenced by formation of ternary oxides[END_REF]). For an oxygen concentration of 189 µg.g -1 in liquid sodium (red curve, Fig. 10a), at temperatures higher than 350°C, the chemical potential of oxygen is lower than the one required to form Na 2 O or Na 4 FeO 3 and higher than the one required to form NaCrO 2 . It implies that in our experimental conditions, i.e., 650 °C and 189 µg.g -1 of oxygen, the sodium chromite formation is thermodynamically possible while the formation of sodium oxide and sodium ferrate is not possible.
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Carbides' stability

The carbides' stability is also investigated by means of ThermoCalc ® based on CALPHAD method, with the TCFE8 (Steels/Fe-Alloys v8.0) database. As for the calculations of the oxides' stability, the steel composition is limited to the main elements in austenite (Cr, Ni, Mo, Mn, C, Si with the contents given in Table 1 and Fe with a content slightly higher than in the real stainless stability is less than 650 °C (Fig. 11a). This temperature could be slightly underestimated by the calculations.

Mechanisms and driving forces of corrosion phenomena

Corrosion tests in liquid sodium containing 189 µg.g -1 of oxygen at 650°C pointed out the formation of corrosion products composed of sodium chromite NaCrO 2 and M 6 C carbides containing Mo and Fe (Fig. 4). The observation of cross sections showed that cavities are formed between these corrosion products and the stainless steel (Fig. 5). Finally, a dissolution of the stainless steel is highlighted by the mass loss measured for immersion durations of 250 and 500 h (Fig. 2).

The oxidation and carburation mechanisms are described in Section 5.2.1, the dissolution driving forces in Section 5.2.2 and the cavities formation mechanisms in Section 5.2.3..

Oxidation and carburation mechanisms

Selective oxidation

The stainless steel surface under study became covered with a NaCrO 2 scale during immersion in liquid sodium. This is a selective oxidation phenomenon, chiefly external, i.e. it occurs on the stainless steel surface (Fig. 5). From a depth of 10 µm and moving towards the steel surface, the general shape of the chromium profiles exhibit an initial, constant concentration zone that corresponds to the concentration in the stainless steel bulk then a concentration decrease down to minimum concentration (depletion zone) and, finally, an increase in concentration towards the
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surface (Fig. 9). The concentration profiles obtained are the result of Cr selective oxidation with Cr diffusion from the steel bulk to the NaCrO 2 / steel interface (depth = 0, Fig. 9) and NaCrO 2 formation on the steel surface (depth < 1 µm, Fig. 9). The mimimum Cr concentration remains more or less constant at approximately 12 ± 1 at.% from 122 to 500 h (average and uncertainty on all specimen). This concentration could correspond to Cr concentration in the stainless steel at equilibrium with NaCrO 2 . However, caution should be exercised with the conclusion about this particular issue, as a rough thermodynamic assessment would rather give a Cr concentration in equilibrium with NaCrO 2 close to the null value [START_REF] Rivollier | Corrosion des aciers austénitiques par le sodium liquide en présence d'oxygène[END_REF] and precise experimental data are still lacking. Indeed, it should be mentioned that the measurement of the Cr concentration by GDOES probably lacks of accuracy. This is a mean Cr concentration measured by sputtering the elements in a 4 mm diameter crater with the contribution of the different corrosion products. For instance, tiny carbides (Fig. 8) contribute as well to the Cr concentration.

In Fig. 9, the shape of Cr concentration profiles is characteristic of diffusion in polycrystalline materials [START_REF] Le | The analysis of grain boundary diffusion measurements[END_REF][START_REF] Kaur | Fundamentals of grain and interphase boundary diffusion[END_REF][START_REF] Mehrer | Diffusion in solids[END_REF][START_REF] Rivollier | Corrosion des aciers austénitiques par le sodium liquide en présence d'oxygène[END_REF], with the influence of the presence of grain boundaries (e.g., from 1.6 to 4.6 µm at 500°C). This is confirmed by the Cr concentration profiles measured in the vicinity of grain boundaries (Fig. 8). Cr depletion is larger in the grain boundary than in the adjacent grains. This result indicates that the Cr diffusion coefficient is higher in the grain boundary than in the grain (grain boundaries are known to be diffusion short-circuits [START_REF] Young | High Temperature Oxidation and Corrosion of Metals[END_REF]). In Fig. 8, the local Cr concentration decreases from the steel bulk (profile 2) to the surface (profile 1). This is in good agreement with the mean Cr concentration profiles measured by GDOES as described just before.

Finally, NaCrO 2 is formed by the reaction of chromium diffusing from the steel bulk with two components of liquid metal, namely sodium and dissolved oxygen. The oxidation front can be
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reported to occur in liquid sodium, mainly at low oxygen levels (section 1) [START_REF] Weeks | Corrosion and deposition of steels and nickel-base alloys in liquid sodium[END_REF][START_REF] Suzuki | Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel[END_REF][START_REF] Gnanasekaran | Liquid metal corrosion in nuclear reactor and accelerator driven systems[END_REF][START_REF] Yoshida | Corrosion issues in sodium-cooled fast reactor (SRF) systems[END_REF]. The Fe and Ni depletion observed at the metal / oxide interface (Fig. 6) is due to their dissolution in liquid sodium.

Considering the principal elements in the stainless steel chosen (table 1), the driving force of dissolution is a function of the Fe, Cr, Ni, Mn and Mo concentrations in liquid sodium at equilibrium with steel:

M ↔ M MN (Eq. 16)
where M means M in solid solution in steel and M MN is M dissolved in liquid sodium, M being Fe, Cr, Ni, Mn or Mo. These equilibrium concentrations can be estimated using the solubility of the elements in liquid sodium and their activities in the steel if one assumes that the solubility of one dissolved element does not change in presence of the others (we made this strong assumption because of a lack of more precise data). The solubility of M in sodium 6 ] ,

(in µg.g -1 ) can be found in the literature (Fe [START_REF] Stanaway | Solubility of metals, iron and manganese in sodium[END_REF], Cr [START_REF] Singer | Measurements of the solubility of iron and chromium in sodium, in: Corrosion by Liquid Metals[END_REF], Ni [START_REF] Awasthi | An assessment of solubility of some transition metals (Fe, Ni, Mn and Cr) in liquid sodium[END_REF], Mn [START_REF] Stanaway | The solubility of transition metals, Mn and Co in liquid sodium[END_REF] and Mo [START_REF] Borgsted | Applied chemistry of the alkali metals[END_REF]). The solubility of M is defined as the M concentration in liquid sodium at equilibrium with pure stable solid M (body-centered cubic Fe, Cr, Mn and Mo, face-centered cubic Ni at 650°C). 
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M is present in small quantity in liquid sodium. As currently done in liquid iron [START_REF] Rist | Équilibres thermodynamiques en sidérurgie[END_REF], Henry's law can be used to express the activity of M in liquid sodium:

. ] MN = B ] . ] (Eq. 17)

where B ] is the Henry's law constant for M and ] is the mole fraction of M in liquid sodium.

Assuming that Henry's law is valid for M content lower than or equal to its solubility in liquid sodium, the following equation can be written based on the definition of solubility reminded before (equilibrium between liquid sodium containing the M mole fraction ] ,

and pure M): As the M content in liquid sodium is low, the activity of M in liquid sodium is also given by:

B ] . ] , = 1 
. ] MN = G e )* G e
)*,E*F (Eq. 20)

Finally, the equilibrium between stainless steel and liquid sodium leads to:

. ] = . ] MN = G e )* G e
)*,E*F (Eq. 21)

Based on this result, the maximum theoretical mass dissolved in liquid sodium (section 2.2) in the CorroNa device is:

max Yh I i j I MN Z = ∑ " lm ⋅G e )*,E*F ⋅ + E*noOpE ⋅ q E*noOp " (Eq. 22)
where h MN is the sodium mass contained in the CorroNa crucible (2.3 kg), r st is the number of samples immersed in liquid sodium at the same time [START_REF] Gnanasekaran | Liquid metal corrosion in nuclear reactor and accelerator driven systems[END_REF] This theoretical mass loss is in good agreement with the one obtained after 250 h of immersion. However, it is twice less than the one measured for samples immersed for 500 h. The data used to determine the solubilities of each element (Fe [START_REF] Stanaway | Solubility of metals, iron and manganese in sodium[END_REF], Cr [START_REF] Singer | Measurements of the solubility of iron and chromium in sodium, in: Corrosion by Liquid Metals[END_REF], Ni [START_REF] Awasthi | An assessment of solubility of some transition metals (Fe, Ni, Mn and Cr) in liquid sodium[END_REF], Mn [START_REF] Stanaway | The solubility of transition metals, Mn and Co in liquid sodium[END_REF] and Mo [START_REF] Borgsted | Applied chemistry of the alkali metals[END_REF]) were proposed for pure metals in pure sodium. In our case, oxygen is present in sodium and might have modified these solubilities as suggested for chromium [START_REF] Borgsted | Applied chemistry of the alkali metals[END_REF] and iron [START_REF] Weeks | Corrosion and deposition of steels and nickel-base alloys in liquid sodium[END_REF][START_REF] Singer | Measurements of the solubility of iron and chromium in sodium, in: Corrosion by Liquid Metals[END_REF][START_REF] Stanaway | Solubility of metals, iron and manganese in sodium[END_REF]. The solubilities of chromium and iron are higher in sodium containing oxygen than in pure sodium because some oxides are formed (NaCrO 2 , Na 4 FeO 3 ). Therefore, the stainless steel under investigation might be dissolved in sodium more than the value calculated above. Consequently, the mass loss measured here is higher than expected in pure sodium.

Cavities formation

In our experiments of corrosion in liquid sodium, cavities were observed at the interface between steel and NaCrO 2 scale (Fig. 5).

It is well known that an oxide scale growth at high temperature is sometimes accompanied by a void formation within the metal [START_REF] Evans | Cavity formation and metallurgical changes induced by growth of oxide scales[END_REF][START_REF] Young | High Temperature Oxidation and Corrosion of Metals[END_REF][START_REF] Desgranges | Depletion and voids formation in the substrate during high temperature oxidation of Ni-Cr alloys[END_REF]. In such a system, vacancies are created in the metal and the vacancy supersaturation can lead to void formation by nucleation mainly on singularities such as grain boundaries or interfaces. If vacancies are all annihilated at sinks like dislocations, they do not cause void formation within the metal and the oxide / metal interface will translate to consume the metal. Two sources of vacancies are described in the literature. First, the removal of cations from the metal due to the growth of the oxide scale creates cationic vacancies at the

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

29 oxide / metal interface. Secondly, vacancies can also be created by the so-called Kirkendall effect: when the diffusivities of the different elements in the metal are different from each other, a vacancy flux is obtained in the opposite direction of the flux of the fastest element. This Kirkendall vacancy flux is oriented from the metal / oxide interface to the metal bulk (resp. from the metal bulk to the metal / oxide interface) when the selective oxidized element is the fastest (resp. the slowest) diffusing species in the alloy, leading to pores formation in the bulk of the alloy (resp. under the oxide scale). This is the case of high temperature oxidation of Ni-Cr alloys forming chromia scales in which Cr diffuses much faster than Ni [START_REF] Schmucker | Oxidation of Ni-Cr alloy at intermediate oxygen pressures. II. Towards the lifetime prediction of alloys[END_REF] (resp. Ni-Al with Al < 50mol.%, forming Al 2 O 3 scales in which Al diffuses slower than Ni [START_REF] Brumm | Oxidation behaviour of Ni-Al -II. Cavity formation beneath the oxide scale on NiAl of different stoichiometries[END_REF]).

In the case studied here, vacancies are created at the steel / NaCrO 2 interface by Cr oxidation, carburization (Section 5.2.1) and dissolution of the other elements present in the stainless steel (Section 5.2.2). The vacancies become supersaturated and this leads to the nucleation of the cavities observed (Fig. 5).

In the cross section presented in Fig. 5 (which is representative of the whole sample), the large cavities are 11.5 µm apart from each other. This can be used to estimate the surface density of cavities (f cavities = 7.6.10 -3 µm -2 ). Assuming that cavities are only due to chromium departure, the thickness of NaCrO 2 formed with the chromium creating the cavities is then given by: v MN`a7 5 = w x j y x j z {| z lm}~D 5 " lm}~D 5

" }~ (Eq. 23)

where w x j is the mean volume of a cavity supposed to be spherical (7.2 µm the Kirkendall vacancy flux if it exists is not the main mechanism to explain the cavities formation.

Conclusions

The corrosion of an austenitic steel in liquid sodium was investigated in this study. The austenitic steel samples were immersed for 122, 250 and 500 h in liquid sodium with an oxygen content of 189 µg.g -1 at 650°C. The steel samples were then characterized by means of complementary techniques, namely scanning electron microscopy, X-ray diffraction, glow discharge optical emission spectroscopy and transmission electron microscopy.

The characterizations showed the formation of a NaCrO 2 oxide scale at the steel surface together with underlying M 6 C carbide particles rich in molybdenium and iron. The stainless steel substrate and / or the chromite scale were dissolved in parallel with the formation of chromite and carbides.

Cavities were observed under the oxide scale within the metal.
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The system studied here is composed of liquid sodium containing traces of dissolved oxygen and carbon in contact with a stainless steel. Thermodynamic calculations showed that NaCrO 2 and M 6 C are equilibrium phases in such a system. NaCrO 2 is formed by the reaction of chromium diffusing from the steel bulk with two components of liquid metal, namely sodium and dissolved oxygen. The Cr composition profiles exhibited a depleted zone due to the formation of NaCrO 2 . This is a selective oxidation phenomenon, chiefly external, i.e. it occurs on the stainless steel surface. Mo segregates to the steel surface where it reacts with Fe from the steel and C dissolved in liquid sodium that diffuses into the steel matrix according to a carburisation phenomenon.

Stainless steel and liquid sodium are not in thermodynamic equilibrium. The dissolution of stainless steel occurred since the liquid sodium bath is not saturated in the dissolving species.

Thermodynamic calculations, using only the solubilities of Fe, Cr, Ni, Mn and Mo proposed in the literature for pure metals in liquid sodium, did not explain the large amount of dissolved steel.

This means that the solubilities of these elements are higher in sodium containing oxygen than in pure sodium. One explanation could be that some oxides, such as NaCrO 

6 High

 6 purity sodium (99.95 wt.%) was provided by Métaux Spéciaux SA. The principal impurities are [Ca] < 2 µg.g -1 , [Cl] = 4 µg.g -1 , [Fe] = 1 µg.g -1 , [K] = 4 µg.g -1 . It also contains traces of C.

  detector, contructed both by FEI. The TEM characterizations are performed on a sample prepared by Focused Ion Beam (FIB) on a Strata 400S FIB, constructed by FEI. Three specimens are obtained after 122 h, six after 250 h and three after 500 h in the CorroNa static sodium device. All the specimens are weighed before and after the corrosion test and further characterized by GDOES. All the samples obtained after 250 and 500 h are observed by M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 9 SEM and analysed by EDX and DRX. One sample, immersed during 250 h is prepared by FIB and observed by TEM.

7 ,

 7 421.5+0.1414.T in kJ.mol -1[START_REF] Fredrickson | The enthalpy of sodium oxide Na 2 O to 1300 K by drop calorimetry[END_REF]) is the standard Gibbs free energy of formation of Na 3 O and . = 1. If Na 2 O is supposed to be pure, . 5 = 1. In this case, the chemical potential of oxygen in liquid sodium given by Eq. 4 is represented by the black straight line in the Ellingham diagram (Fig.10a). Na 2 O is spontaneously formed in the region above this straight line.The chemical potential of oxygen in liquid sodium must be calculated in the conditions studied here (i.e., [O] = 189 µg.g -1 and 650°C), in order to determine if the oxides considered above (Na 4 FeO 3 , NaCrO 2 and Na 2 O) are stable. = %. &. ln .(Eq. 5)where . is the activity of oxygen in liquid sodium, the reference state being pure O 2 at standard pressure of 1.013 bar. The solubility of oxygen in sodium 6

  6 mol.%). As currently done for oxygen in liquid iron[START_REF] Rist | Équilibres thermodynamiques en sidérurgie[END_REF],

7 ,

 7 Fig. 10b represents the Gibbs free energy of formation of Na-O binary phases as a function of mole fraction of oxygen 7 at a particular temperature T, the reference state being pure liquid sodium and pure O 2 gas. The general case is schematized in blue. The Gibbs free energy of formation of Na-O liquid phase is represented by the blue curve. The coordinates of the point corresponding to Na 2 O are 2 O belongs to the straight line tangent to the liquid phase curve at the composition

7 , 5 $( 7 , Z and the = 1 15 ) 5 $

 7571155 Fig. 10b) to the liquid phase curve cuts the = 1 axis at the ordinate %. &. ln . . The different terms of Eq. 10, in particular %. &. ln .′ , can be determined as shown in Fig. 10b. The value of ∆ I depends on the shape of the Gibbs free energy of formation of Na-O liquid phase which is unknown. As oxygen is dissolved in liquid Na, ∆ I ≤ 0. Another limiting case is presented in Fig.10b, with the blue dashed line. It corresponds to the mimimum value of the Gibbs free energy of formation of Na-O liquid phase at and therefore the maximum value of ∆ I . Using Thales' theorem, ∆ I > Δ , Eq. 13)Finally, with the real shape of the Gibbs free energy of formation of Na-O liquid phase, is almost pure, the activity of Na in liquid sodium can be expressed by Raoult's law. With this assumption, the solid blue line described above cuts the = 0 axis at the ordinate %. &. lnY1axis at the ordinate given by:For instance, at 650°C, the solid blue line cuts the = 0 (resp. = 1) axis at -45 J mol -1 (resp. -290898 J mol -1 ). Finally, ∆ I can be estimated by Δ , since the relative uncertainty induced by this approximation is less than 0.05% in the temperature range [400; 700°C]. This means that the tangent line to the liquid phase curve at the composition 7 , is close to the blue dashed line. In Fig. 10a, = %. &. ln . (Eq. 10) is plotted for different oxygen contents in liquid sodium and ∆ I = Δ , 5 $

  Fig.11agives the results of the mole fraction of stable phases as a function of temperature. The

At

  3 µg.g -1 . As in section 5.1.1., the activities of Fe, Cr, Ni, Mn and Mo in austenite were calculated by means of the CALPHAD method in ThermoCalc ® with the TCFE8 database. At 650°C, . ^_ = 0.67, . `a = 0.28, . Mb = 0.054, . ]c = 0.0043 and . ]d = 0.067, the reference being pure stable metals.

  and u st the sample M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 28 surface area (0.12 dm 2 for 2 faces). For the experiments performed here, it corresponds to 4.5 mg.dm -2 .

LegendsTable 1 .

 1 2 or Na 4 FeO 3 , are formed in liquid sodium, increasing the driving force of dissolution. As for the cavities, vacancies are created at the steel / NaCrO 2 interface by Cr oxidation, carburization and dissolution of the other elements present in the stainless steel. The vacancies become supersaturated and this leads to the nucleation of the cavities observed. Part of the vacancies created by Cr oxidation or steel dissolution is annihilated at sinks like dislocations leading to the translation of the oxide / metal interface towards the metal bulk. All of this still needs to be elucidated with additional experimental support M A N U S C R I P T A C C E P T E D Composition in wt.% of the 316L(N) stainless steel tested.

Figure 1 .

 1 Figure 1. 316L(N) steel microstructure after electrochemical etching (oxalic acid, 10 vol.%, 0.5 A.cm -2 ).

Figure 2 .Figure 3 .

 23 Figure 2. Mass gain or loss of samples immersed at 650°C in liquid sodium containing an oxygen content of 189 µg.g -1 as a function of time.

Figure 4 .

 4 Figure 4. XRD diagram, specimen immersed for 500 h at 650°C in liquid sodium containing 189 µg.g -1 oxygen. NaCrO 2 and Fe 3 Mo 3 C are identified together with the austenite substrate.

Figure 5 .

 5 Figure 5. SEM cross-section observations (backscattered electrons); sample immersed for 250 h at 650°C in liquid sodium with a 189 µg.g -1 oxygen content.

Figure 6 .

 6 Figure 6. GDOES chemical depth profiles obtained for a sample immersed in liquid sodium for 250 h at 650°C with an oxygen content of 189 µg.g -1 .

Figure 7 .

 7 Figure 7. Cross section of a sample immersed for 250 h at 650°C in liquid sodium with 189 µg.g - 1 of oxygen (HAADF image). The NaCrO 2 scale is visible at the top of the image in black.

Figure 8 .

 8 Figure 8. Chromium composition profile obtained by EDX analysis at the locations shown by

Figure 9 .

 9 Figure 9. Chromium composition profile obtained by GDOES analysis for samples immersed during 122, 250 and 500 h at 650°C in liquid sodium containing 189 µg.g -1 of oxygen.

Figure 10 .Figure 11 .

 1011 Figure 10. Oxides' stability: a) Ellingham diagram of NaCrO 2 , Na 4 FeO 3 and Na 2 O plotted

  

  

  

  ), 6 `a the Cr mass fraction in the stainless steel studied (0.179, Table1). Finally, the oxide thickness estimated from the mean cavities volume is 0.2 µm after 250 h immersion. As shown in Figs.5 and 6, the measured oxide thickness is closed to 1 µm. As a consequence, it can be deduced that the cavities' formation can result from selective oxidation of chromium into sodium chromite. Even if the order of magnitude of the calculated thickness is rough, it can also be said that 1) part of the vacancies created by Cr oxidation or steel dissolution is annihilated at sinks like dislocations leading to the translation of the oxide / metal interface towards the metal bulk and 2)
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Table 1 .

 1 

	1										
	Fe	Cr	Ni	Mo Mn C	Si	P	S	Ti	Al	Cu	Co
	Balanced 17.9 12.1 2.35 1.72 0.012 0.45 0.034 0.025 0.0015 0.0025 0.0025 0.0008
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25 located either at the NaCrO 2 / steel interface or NaCrO 2 / liquid metal interface. The experiments presented here do not show where the oxidation front is located. Some prior results at 550°C are reported in the literature [START_REF] Rivollier | Corrosion des aciers austénitiques par le sodium liquide en présence d'oxygène[END_REF], indicating an inner oxidation front.

Carbides formation

M 6 C carbides rich in Fe and Mo were present in between the NaCrO 2 scale and the stainless steel after immersion in liquid sodium (Fig. 5). Mo segregates to the steel surface where it reacts with Fe from the steel and dissolved C present in liquid sodium. The experimental conditions of the test were already observed as carburizing for this low carbon steel [START_REF] Courouau | Corrosion by oxidation and carburization in liquid sodium at 550°C of austenitic steels for sodium fast reactors[END_REF], probably because of high carbon content due to the fabrication process of the sodium metal. Carbon diffuses into the steel matrix and precipitates into carbides representative of the local composition : Mo rich carbide (peak at 1.5 µm in Fig. 6), or Fe-Cr rich carbides (peak at 2.8 µm in Fig. 6). The Mo concentration profiles obtained present a slight depletion zone (around 2 µm in Fig. 6), due to the formation of Mo rich carbides. Carbides could be formed before, at the same time or after NaCrO 2 . As they were detected under NaCrO 2 for all corrosion times investigated, it is not possible to deduce from the experiments where the carburization front is located

Driving force of dissolution

It was shown that the mass of the stainless steel samples decreased during immersion in liquid sodium for 250 and 500 h (Fig. 2). This means that the stainless steel substrate and / or the chromite scale are dissolved in parallel with the formation of chromite and carbides. The dissolution of the main elements of stainless steel, namely Fe, Ni, Cr and Mn, was already