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Model reduction for linear delay systems using a delay-independent balanced truncation approach

A model reduction approach for asymptotically stable linear delay-differential equations is presented in this paper. Specifically, a balancing approach is developed on the basis of energy functionals that provide (bounds on) a measure of energy related to observability and controllability, respectively. The reduced-order model derived in this way is again a delay-differential equation, such that the method is structure preserving. In addition, asymptotic stability is preserved and an a priori bound on the reduction error is derived, providing a measure of accuracy of the reduction. The results are illustrated by means of application on an example.

I. INTRODUCTION

Models of engineering systems or physical phenomena can often be represented in terms of dynamical systems with time delays. Examples include models of machine tool vibrations, control over communication networks, or population dynamics, see the books [START_REF] Gu | Stability of time-delay systems[END_REF], [START_REF] Michiels | Stability and stabilization of timedelay systems: An eigenvalue-based approach[END_REF], [START_REF] Erneux | Applied delay differential equations[END_REF] for an overview. In addition, accurate models of such systems are typically of high order, motivating the need for developing model reduction techniques for delay differential equations. This paper addresses this problem by developing a model reduction technique for linear delay systems.

Methods for model reduction of finite-dimensional linear systems are well developed (see [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF], [START_REF] Besselink | A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control[END_REF] for overviews) and popular approaches are given by balanced truncation [START_REF] Moore | Principal component analysis in linear systemscontrollability, observability, and model reduction[END_REF], [START_REF] Glover | All optimal Hankel-norm approximations of linear multivariable systems and their L 1 -error bounds[END_REF] and moment matching techniques via Krylov subspaces [START_REF] Freund | Model reduction methods based on Krylov subspaces[END_REF].

For systems with time delays (or, more generally, infinite-dimensional systems), finite-dimensional approximations have been considered on the basis of Fourier series [START_REF] Gu | Approximation of infinitedimensional systems[END_REF], Padé approximations [START_REF] Glover | Rational approximation of a class of infinite-dimensional systems II: Optimal convergence rates of L1 approximants[END_REF], or using the Hankel operator [START_REF] Glover | Realisation and approximation of linear infinite-dimensional systems with error bounds[END_REF]. An overview of such methods is given in [START_REF] Partington | Some frequency-domain approaches to the model reduction of delay systems[END_REF].

Next, methods for model reduction of delay differential equations have been developed by extending methods for finite-dimensional systems. A moment matching approach using Krylov methods was presented in [START_REF] Michiels | Krylov-based model order reduction of time-delay systems[END_REF]. Here, as before, a finite-dimensional reduced-order model is obtained; as a consequence, the delay structure is not preserved in the reduction. Another perspective on moment matching for systems with time delays is given in [START_REF] Scarciotti | Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays[END_REF], where both finite-dimensional and infinite-dimensional approximations B. Besselink is with the Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, the Netherlands (email: b.besselink@rug.nl). A. Chaillet is with L2S -CentraleSupélec -Univ. Paris Saday and IUF, France (email: antoine.chaillet@centralesupelec.fr). N. van de Wouw is with the Department of Mechanical Engineering, Eindhoven University of Technology, the Netherlands, with the Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, USA, and also with the Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands (email: n.v.d.wouw@tue.nl). are considered. As a class of reduced-order models is characterized in [START_REF] Scarciotti | Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays[END_REF], this has the potential to select a reducedorder model that preserves asymptotic stability properties of the original high-order delay differential equation.

An extension of balanced truncation towards systems with delays is presented in [START_REF] Jarlebring | Model reduction of timedelay systems using position balancing and delay Lyapunov equations[END_REF], based on characterizing measures of controllability and observability similar to those used in balanced truncation for finite-dimensional systems. This method preserves the delay-structure in the reduced-order model, but asymptotic stability is not necessarily preserved. The method in [START_REF] Van De Wouw | Model reduction for delay differential equations with guaranteed stability and error bound[END_REF] does provide such guarantee and in addition directly exploits reduction techniques for finitedimensional linear systems by decomposing the delay system in a finite-dimensional part and an infinite-dimensional delay operator. This method also guarantees a bound on the reduction error. Finally, an alternative perspective is given in [START_REF] Xu | H1 model reduction for linear time-delay systems: Continuous-time case[END_REF], where the model reduction problem is formulated as a rank-constrained optimization problem.

In this paper, a balancing approach for model reduction of asymptotically stable delay systems is presented. This approach is based on computing bounds on energy functionals that provide a measure of observability and controllability and the use of these bounds in a balancing procedure. These bounds take the form of Lyapunov-Krasovskii functionals and hold regardless of the size of the delay, leading to a delay-independent reduction procedure. In particular, this reduction procedure features the following properties, which form the main contributions of this paper. First, the reduction is structure-preserving, i.e., the reduced-order model is again in the form of a delay-differential equation, albeit with a reduced set of equations. This allows for accurately capturing the infinite-dimensional nature of the original high-order delay system. Second, the reduced-order model is guaranteed to be asymptotically stability and, third, an a priori error bound is available that provides a measure of the accuracy of the reduction.

The remainder of this paper is outlined as follows. The problem setting is detailed in Section II, before the energy functionals and their bounds are presented in Section III. Section IV discusses the model reduction procedure and the properties of the reduced-order delay system. An illustrative example is given in Section V and conclusions are stated in Section VI.

Notation: The field of real (complex) numbers is denoted by R (C). For a vector x 2 R n , |x| denotes its Euclidean norm. Given a symmetric matrix X 2 R n⇥n , X 0 (X < 0) indicates that it is positive (semi-)definite. The Banach space of continuous functions from an interval

T ⇢ R into R n is represented as C(T , R n ). Similarly, L 2 (T , R n ) denotes the class of square integrable functions from T into R n .
II. PROBLEM SETTING Consider the linear delay-differential equation

ẋ(t) = Ax(t) + A d x(t ⌧ ) + Bu(t), y(t) = Cx(t), (1) 
with x(t) 2 R n , input u(t) 2 R m , and output y(t) 2 R p for all t t 0 . The initial condition for (1) is given by the function segment

' 2 C([ ⌧, 0], R n ), such that x(t) = '(t), 8t 2 [t 0 ⌧, t 0 ]. (2) 
Next, the function segment

x t 2 C([ ⌧, 0], R n ) defined as x t (s) = x(t + s), s 2 [ ⌧, 0]
characterizes the state of (1) at time t 0, such that the initial condition (2) can also be written as x t0 = '. In this paper, model reduction of systems of the form (1) is pursued under the assumption that (1) is asymptotically stable. Specifically, a model of the same form is sought that approximates the input-output behavior of (1), but whose state

⇠ t is in C([ ⌧, 0], R k ) with k < n.
Note that, even though this "reduced-order" state remains infinite-dimensional, this is regarded as model reduction as the number of equations in the first equation in (1) is reduced. In this setting, the problem of finding a reduced-order delay-differential equation is considered that, first, preserves asymptotic stability of the original high-order system and, second, satisfies an a priori error bound in order to characterize the accuracy of the reduction.

III. OBSERVABILITY AND CONTROLLABILITY

FUNCTIONALS

The model reduction approach developed in this paper will be based on energy functions that respectively provide a measure for observability and controllability of the delay system. First, the observability functional is defined as a measure of energy associated with observing the output of (1).

Definition 1: The observability functional of (1) is the functional

L o : C([ ⌧, 0], R n ) ! R defined as L o (') = Z 1 0 |y(t)| 2 dt, (3) 
where

y(t) = Cx(t) = Cx t (0)
is the output of (1) for initial condition x 0 = ' and zero input (u = 0). It is clear that the observability functional exists (i.e., the integral (3) is bounded) if the system (1) is asymptotically stable. Next, a measure for the energy associated with controlling (1) is given by the controllability functional.

Definition 2: The controllability functional of (1) is the functional

L c : D c ! R defined as L c (') = inf ⇢ Z 0 1 |u(t)| 2 dt u 2 L 2 (( 1, 0], R m ), lim T !1 x T = 0, x 0 = ' , (4) 
where x t is the solution of (1) for input u and D c ⇢ C([ ⌧, 0], R n ) the domain of L c , i.e., the collection of function segments ' for which L c (') is well-defined.

Remark 1: The definition of the energy functionals in Definitions 1 and 2 is motivated by the energy functions that form the basis of balanced truncation for finite-dimensional linear systems, see, e.g., [START_REF] Moore | Principal component analysis in linear systemscontrollability, observability, and model reduction[END_REF], [START_REF] Glover | All optimal Hankel-norm approximations of linear multivariable systems and their L 1 -error bounds[END_REF], [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF]. In this case, these energy functions are characterized by the observability and controllability Gramian, respectively. C

A characterization of the observability functional in Definition 1 is provided as follows.

Lemma 1: Consider the asymptotically stable delaydifferential equation [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF]. If there exist matrices Q 0 and

Q d < 0 such that  A T Q + QA + Q d + C T C QA d A T d Q Q d 4 0, (5) 
then the functional

E o : C([ ⌧, 0], R n ) ! R defined as E o (') = ' T (0)Q'(0) + Z 0 ⌧ ' T (s)Q d '(s) ds, (6) 
satisfies

E o (') L o (') (7) 
for all ' 2 C([ ⌧, 0], R n ) and L o as in Definition 1.

Proof: In order to prove the lemma, let x t be the solution of (1) for initial condition x 0 = ' and zero input and consider E o (x t ). Note that, by ( 6), E o (x t ) can be written as

E o (x t ) = x T (t)Qx(t) + Z t t ⌧ x T (s)Q d x(s) ds, (8) 
with x(t+s) = x t (s), s 2 [ ⌧, 0]. Then, time-differentiation of E o along trajectories of (1) yields

d dt E o (x t ) =  x(t) x(t ⌧ ) T M o  x(t) x(t ⌧ ) , (9) 
with

M o =  A T Q + QA + Q d QA d A T d Q Q d , (10) 
and where the dynamics ( 1) is used to obtain (9) (recall that u = 0). Employing the condition ( 5) in ( 9)-( 10) leads to

d dt E o (x t )  x T (t)C T Cx(t) = |y(t)| 2 , ( 11 
)
where y(t) = Cx t (0) is the output corresponding to the trajectory x t . Integration of the result (11) over the interval [0, T ] gives

E o (x T ) E o (x 0 )  Z T 0 |y(t)| 2 dt, ( 12 
)
where it is recalled that x 0 = '. Moreover, due to asymptotic stability, it holds that lim

T !1 E o (x T ) = E o (0) = 0, (13) 
such that (12) leads, for T ! 1, to

E o (') Z 1 0 |y(t)| 2 dt. (14) 
This proves the desired result ( 7) by recalling the definition of L o in (3). The controllability functional admits a similar characterization, as shown in the following lemma.

Lemma 2: Consider the delay-differential equation [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF]. If there exist matrices P 0 and P d < 0 such that

 AP + P A T + P d + BB T A d P P A T d P d 4 0, (15) 
then the functional

E c : C([ ⌧, 0], R n ) ! R defined as E c (') = ' T (0)R'(0) + Z 0 ⌧ ' T (s)R d '(s) ds, (16) 
with

R = P 1 and R d = RP d R, satisfies E c (')  L c (') (17) 
for all ' 2 D c ⇢ C([ ⌧, 0], R n ) and L c as in Definition 2.

Proof: In order to prove the lemma, the matrix R = P 1 is defined, such that a congruence transformation of ( 15) with a block-diagonal matrix blkdiag{R, R} leads to the equivalent condition

 A T R + RA + R d + RBB T R RA d A T d R R d 4 0, (18) 
with R d = RP d R. Next, application of the Schur complement shows that (18) (and, hence, [START_REF] Michiels | Stability and stabilization of timedelay systems: An eigenvalue-based approach[END_REF]) is equivalent to 2 4

A T R + RA + R d RA d RB A T d R R d 0 B T R 0 I 3 5 4 0, (19) 
which will form the basis for the remainder of the proof. Consider a solution x t to (1) corresponding to an input u 2 L 2 (( 1, 0], R n ) and satisfying the conditions in (4), i.e., lim T !1 x T = 0 and x 0 = '. Since E c (x t ) can be written as

E c (x t ) = x T (t)Rx(t) + Z t t ⌧ x T (s)R d x(s) ds, (20) 
with

x(t + s) = x t (s), s 2 [ ⌧, 0]
, it follows that timedifferentiation of E c along the trajectories of (1) leads to

d dt E c (x t ) = 2 4 x(t) x(t ⌧ ) u(t) 3 5 T M c 2 4 x(t) x(t ⌧ ) u(t) 3 5 . ( 21 
)
with

M c = 2 4 A T R + RA + R d RA d RB A T d R R d 0 B T R 0 0 3 5 . ( 22 
)
The use of ( 19) in ( 21)-( 22) leads to

d dt E c (x t )  |u(t)| 2 , ( 23 
)
after which integration over the interval [ T, 0] yields

E c (x 0 ) E c (x T )  Z 0 T |u(t)| 2 dt. (24) 
Letting T ! 1 and noting that lim

T !1 E c (x T ) = 0, it follows that E c (')  Z 0 1 |u(t)| dt, (25) 
where the condition x 0 = ' is used. Since the input function u is chosen arbitrarily, the inequality (25) also holds for the input u that achieves the minimization in (4). Consequently, (25) implies the desired result [START_REF] Partington | Some frequency-domain approaches to the model reduction of delay systems[END_REF], finalizing the proof.

The functional E o in ( 6) provides an upper bound on the observability functional L o in Definition 1, whereas E c in ( 16) is a lower bound to the controllability functional L c in Definition 2. These bounds, rather than the observability and controllability functionals themselves, will be used as a basis for model reduction. Namely, it will be shown that the structure of the bounds ( 6) and ( 16) is beneficial for the development of a model reduction procedure that preserves asymptotic stability and provides an a priori error bound.

Remark 2: Even though the controllability functional can in general only be defined on a restricted domain D c (see Definition 2), its bound E c in ( 16) can be defined for all function segments in C([ ⌧, 0], R n ) (provided that (15) holds). As the latter will be used as a basis for model reduction, the reduced-order model will be well-defined. C

Remark 3:

The functionals E o in ( 6) and E c in ( 16) are similar to Lyapunov-Krasovskii functionals as often exploited in stability analysis of time-delay systems, see [START_REF] Gu | Stability of time-delay systems[END_REF]. In fact, if the matrices in [START_REF] Erneux | Applied delay differential equations[END_REF] or [START_REF] Michiels | Stability and stabilization of timedelay systems: An eigenvalue-based approach[END_REF] are negative definite instead of merely negative semi-definite, they imply delayindependent asymptotic stability of [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF]. C

IV. MODEL REDUCTION BY TRUNCATION

Before discussing the use of (bounds on) the observability and controllability functionals in Definitions 1 and 2 in the scope of model reduction, the general reduction procedure of truncation is presented. To this end, a partitioned form of the dynamics (1) is considered in which x(t) and the function segments x t are partitioned as

x(t) =  x 1 (t) x 2 (t) , x t =  x 1,t x 2,t , (26) 
with x 1 (t) 2 R k , x 1,t 2 C([ ⌧, 0], R k ) and k < n.
The corresponding partitioning of the system matrices yields

A =  A 11 A 12 A 21 A 22 , A d =  A d,11 A d,12 A d,21 A d,22 , B =  B 1 B 2 , (27) 
and

C = [ C 1 C 2 ].
Using the partitioning (26), ( 27), a reduced-order approximation of (1) can be obtained by truncation as

⇠(t) = A 11 ⇠(t) + A d,11 ⇠(t ⌧ ) + B 1 u(t), ŷ(t) = C 1 ⇠(t), (28) 
with ⇠(t) 2 R k for each t and function segments ⇠ t 2 C([ ⌧, 0], R k ). Here, ⇠(t) provides an approximation of x 1 (t) in the partitioned coordinates (26).

The following property holds for the observability functional of the reduced-order system (28).

Lemma 3: Let the condition (5) be satisfied for symmetric matrices Q 0 and Q d < 0 of the form

Q =  Q 1 0 0 Q 2 , Q d =  Q d,11 Q d,12 Q d,21 Q d,22 . (29) 
Then, the observability functional Lo of the reduced-order system (28) exists and the functional Êo :

C([ ⌧, 0], R k ) ! R given as Êo ( ') = 'T (0)Q 1 '(0) + Z 0 ⌧ 'T (s)Q d,11 '(s) ds, (30) 
satisfies Êo ( ') Lo ( ') for all ' 2 C([ ⌧, 0], R k ).

Proof: Since the matrices Q and Q d in (29) are such that (5) holds, it follows that

 T 0 0 T T  A T Q + QA + Q d + C T C QA d A T d Q Q d  T 0 0 T 4 0 (31) 
for any matrix T . After choosing T = [ I k 0 ] T , it can be checked by using the partitioning (27) that the left-hand side of (31) provides an inequality of the form (5) for the reducedorder system (28). Then, it follows from [START_REF] Horn | Matrix analysis[END_REF] in the proof of Lemma 1 that, for all T 0, Êo ( ')

Z T 0 ŷ(t) 2 dt + Êo (⇠ T ), (32) 
where ⇠ t is the solution of (28) for ⇠ 0 = ' and for u = 0. As Êo ( ') is well-defined (i.e., bounded), it follows after taking the limit for T ! 1 that Lo exists and that the bound

Êo ( ') Lo ( ') for all ' 2 C([ ⌧, 0], R k ).
The counterpart of Lemma 3 for the controllability functional is given as follows.

Lemma 4: Let the condition (15) be satisfied for symmetric matrices P 0 and P d < 0 of the form .

P =  P 1 0 0 P 2 , P d =  P d
Then, the functional Êc :

C([ ⌧, 0], R k ) ! R given as Êc ( ') = 'T (0)R 1 '(0) + Z 0 ⌧ 'T (s)R d,11 '(s) ds, ( 34 
)
with

R 1 = P 1 1 and R d,11 = R 1 P d,11 R 1 satisfies Êc ( ')  Lc ( ') for all ' 2 Dc ⇢ C([ ⌧, 0], R k ).
Here, Lc is the controllability functional for the reduced-order system (28) and Dc the domain on which it is well-defined.

Proof: The proof is similar to the first part of the proof of Lemma 3 and is omitted for the sake of brevity.

The results of Lemmas 3 and 4 thus state that the observability and controllability functionals of a reduced-order system obtained by truncation can be bounded by relevant parts of the energy functionals of the original system [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF] when the matrices Q and P have a suitable block-diagonal form, see ( 29) and (33). Even though these results hold for any matrices Q and P satisfying this block-diagonal form, a more specific diagonal form for these matrices is assumed in the remainder of this section. This leads to the following definition.

Definition 3: A realization ( 1) is said to be balanced if there exist matrices Q 0, Q d < 0 satisfying (5) and matrices P 0, P d < 0 satisfying [START_REF] Michiels | Stability and stabilization of timedelay systems: An eigenvalue-based approach[END_REF] such that

Q = P = ⌃ := 2 6 6 6 6 4 1 I m1 0 • • • 0 0 2 I m2 . . . . . . . . . . . . . . . 0 0 • • • 0 q I mq 3 7 7 7 7 5 (35) 
with i > i+1 > 0, i 2 {1, . . . , q 1} and P q i=1 m i = n. The following standard result guarantees the existence of such balanced realization.

Lemma 5: Let there exist matrices Q 0 and Q d < 0 such that (5) holds and matrices P 0 and P d < 0 such that (15) holds. Then, there exists a change of coordinates x(t) = T z(t) such that the realization given by the new coordinates is balanced, i.e., the nonsingular matrix T can be chosen such that T T QT = T 1 P T T = ⌃, with ⌃ as in (35).

Proof: The existence of such matrix T follows from standard results in linear algebra on simultaneous diagonalization (e.g., [START_REF] Horn | Matrix analysis[END_REF]). This result also forms the foundation of balancing for finite-dimensional linear systems, see [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF].

When truncation is applied for asymptotically stable delay systems in a balanced realization as in Definition 3, this stability property is preserved. This result is stated next.

Theorem 6: Let the asymptotically stable system (1) be in a balanced realization and consider the reduced-order delaydifferential equation (28) obtained by truncation for k such that k = P r i=1 m i for some r > 0. Then, the reduced-order system is asymptotically stable.

Proof: This result can be proven by exploiting ideas in the proof of stability preservation for balanced truncation of finite-dimensional linear systems originally shown in [START_REF] Pernebo | Model reduction via balanced state space representations[END_REF], see also [START_REF] Dullerud | A course in robust control theory -A convex approach[END_REF]. Details are omitted.

Moreover, for truncation of a balanced realization, the following error bound holds.

Theorem 7: Let the asymptotically stable system (1) be in a balanced realization and consider the reduced-order delaydifferential equation (28) obtained by truncation for k such that k = P r i=1 m i for some r > 0. Then, for any common input function u 2 L 2 ([0, 1), R m ) and initial conditions ' = 0 and ' = 0 for (1) and (28), respectively, their output trajectories satisfy the error bound

Z T 0 |y(t) ŷ(t)| 2 dt  " 2 Z T 0 |u(t)| 2 dt (36) 
for all T 0 and where the error bound (gain) " is given as

" = 2 q X i=r+1 i , (37) 
with i as in (35). Proof: The proof can be found in Appendix A. The results in Theorems 6 and 7 thus suggest a model reduction procedure in which, first, solutions to ( 5) and ( 15) are sought. Second, the balancing transformation of Lemma 5 is employed to obtain a balanced realization (see, e.g., [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF] for an explicit procedure to compute T ) and finally, truncation is applied to obtain a reduced-order model of the form (28). This reduced-order model is then of the same form as (1), is asymptotically stable and satisfies the a priori error bound (36) which has a similar structure as the error bound for balanced truncation of finite-dimensional linear systems.

Remark 4: An alternative approach towards balanced truncation of delay systems is given in [START_REF] Jarlebring | Model reduction of timedelay systems using position balancing and delay Lyapunov equations[END_REF], where infinitedimensional generalizations of the observability and controllability Gramian for finite-dimensional systems are exploited. Then, relevant finite-dimensional parts of these Gramians are selected to compute a coordinate transformation x(t) = T z(t) that diagonalizes these parts. However, this approach does not lead to reduced-order delay systems that preserve asymptotic stability and satisfy an a priori bound on the reduction error as in the current paper. C

V. ILLUSTRATIVE EXAMPLE

To illustrate the reduction procedure developed in Section IV, the model of a heated rod discussed in [START_REF] Michiels | Krylov-based model order reduction of time-delay systems[END_REF] is considered. The model is a partial differential equation of the form @v @t (x, t) = @ 2 v @x 2 (x, t) + a 0 (x)v(x, t) + a 1 (x)v(⇡ x, t 1), (38) with v(x, t) the temperature of the rod at location x 2 [0, ⇡] at time t, satisfying the boundary conditions v(0, t) = v(⇡, t) = 0. The functions a 0 and a 1 are given as a 0 (x) = 2 sin(x) and a 1 (x) = 2 sin(x), respectively. Discretization in space leads to an asymptotically stable delay-differential equation of the form (1) with x(t) 2 R n , n = 35 after choosing the input and output matrices as

B = C T = 1 p n 1 n , where 1 
n 2 R n is a vector of all ones. Thus, the input and output can respectively be interpreted as a uniform heating of the road and its average (in space) temperature.

To derive the reduced-order models, solutions to ( 5) and ( 15) are sought that minimize the trace of Q and P , respectively. Using these matrices, the coordinate transformation of Lemma 5 is computed, after which truncation to order k = 1 leads to the reduced-order model ⇠(t) = 2.69 ⇠(t) + 1.65 ⇠(t 1) 0.93 u(t),

ŷ(t) = 0.93 ⇠(t). (39) 
This model can be checked to be asymptotically stable, as guaranteed by Theorem 6. Moreover, according to Theorem 7, the error bound (36) holds with " = 0.012. A comparison of the frequency response functions of the high-order and reduced-order delay-differential equations is depicted in Figure 1, indicating a good approximation. This is confirmed by the magnitude of the error in Figure 2, which also shows that the error bound is not conservative for this example. Finally, it is noted that the scalar reduced-order model (39) accurately captures the repeated resonances in the frequency response function. This behavior cannot be obtained by a finite-dimensional approximation of low-order, indicating the importance of preserving the delay-structure in reduction.

VI. CONCLUSIONS

A structure-preserving model reduction procedure for delay-differential equations is presented in this paper, based on the definition of energy functionals that characterize the energy associated with the output and input of the model. A balancing procedure on the basis of these energy functionals is shown to lead to a reduced-order delay-differential equation for which asymptotic stability is preserved. In addition, an a priori error bound is available.

Future work will focus on a delay-dependent approach, which could potentially lead to better reduced-order models if the value of the delay is known.

APPENDIX A. PROOF OF THEOREM 7

The proof is inspired by a construction in [START_REF] Besselink | Model reduction for nonlinear systems by incremental balanced truncation[END_REF]. Following this approach, a one-step reduction is considered first. Here, the state components corresponding to q are discarded by truncation, such that k = n m q , with m q the multiplicity of q . In this case, the observability and controllability functionals can be written (using a slight abuse of notation) in partitioned form as

E o (' 1 , ' 2 ) = ' T 1 Q 1 ' 1 + ' T 2 Q 2 ' 2 + Z 0 ⌧  ' 1 (s) ' 2 (s) T Q d  ' 1 (s) ' 2 (s) ds (40) 
and

E c (' 1 , ' 2 ) = ' T 1 R 1 ' 1 + ' T 2 R 2 ' 2 + Z 0 ⌧  ' 1 (s) ' 2 (s) T R d  ' 1 (s) ' 2 (s) ds, (41) 
respectively. Here,

Q 1 = R 1 1 = blkdiag{ 1 I m1 , . . . , q 1 I mq 1 }, (42) 
Q 2 = R 1 2 = q I mq , (43) 
where the relation P = R 1 is used (see Lemma 2) is used. On the basis of the partitioned energy functionals, the functional V is introduced as V (' 1 , ' 2 , ') = E o (' 1 ', ' 2 ) + 2 q E c (' 1 + ', ' 2 ), (44) where ' 1 2 C([ ⌧, 0], R k ), ' 2 2 C([ ⌧, 0], R n k ), and ' 2 C([ ⌧, 0], R k ). In the remainder of this proof, the value of V (x 1,t , x 2,t , ⇠ t ) will be evaluated, i.e., the evolution of V along trajectories (x 1,t , x 2,t ) of the delay-differential equation (1) and ⇠ t of reduced-order delay-differential equation (28). Specifically, by exploiting the characterizations of the observability and controllability functionals in Lemmas 1 and 2 for the partitioned form (27), it can be shown that d dt V (x 1,t , x 2,t , ⇠ t )  y(t) ŷ(t) 2 + (2 q ) 2 |u(t)| 2 , (45) along trajectories of (1) and (28). Here, the fact that a onestep reduction is considered is crucial to obtain this result, in particular the relation (43). Integration of (45) over the interval [0, T ] yields

V (x 1,T , x 2,T , ⇠ T ) V (x 1,0 , x 2,0 , ⇠ 0 )  (2 q ) 2 Z T 0 |u(t)| 2 dt Z T 0 y(t) ŷ(t) 2 dt, ( 46 
)
where it is noted that V (x 1,0 , x 2,0 , ⇠ 0 ) = 0 due to the choice of zero initial conditions and the structure of V in (44). Moreover, V (x 1,t , x 2,t , ⇠ t ) 0 for all (x 1,t , x 2,t , ⇠ t ), which gives the desired result (36) and (37) for k = n m q . To prove the result (36) and (37) for arbitrary order k < n (according to the multiplicities m i of the parameters i in (35)), it is recalled that Lemmas 3 and 4 show that the energy functionals for a reduced-order delay-differential equation of arbitrary order are bounded by the relevant parts of the partitioned energy functionals (40) and (41) of the highorder system. As such, the procedure discussed above can be repeated to obtain a reduced-order model for arbitrary k, where the result (36) and (37) follows from application of the triangle inequality.
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 1 Fig. 1. Magnitude of the frequency response functions G and Ĝ of the discretized model of the heated rod (38) and the reduced-order approximation (39), respectively. Here, G(s) = C(sI A A d e s⌧ ) 1 B and Ĝ is defined similarly.
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 2 Fig. 2. Magnitude of the frequency response function of the error G Ĝ, with G and Ĝ the transfer functions as in Figure 1. The error bound is depicted as the dashed gray line.
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