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Model reduction for linear delay systems using a delay-independent

balanced truncation approach

B. Besselink, A. Chaillet, N. van de Wouw

Abstract— A model reduction approach for asymptotically

stable linear delay-differential equations is presented in this

paper. Specifically, a balancing approach is developed on the

basis of energy functionals that provide (bounds on) a measure

of energy related to observability and controllability, respec-

tively. The reduced-order model derived in this way is again a

delay-differential equation, such that the method is structure

preserving. In addition, asymptotic stability is preserved and

an a priori bound on the reduction error is derived, providing a

measure of accuracy of the reduction. The results are illustrated

by means of application on an example.

I. INTRODUCTION

Models of engineering systems or physical phenomena
can often be represented in terms of dynamical systems
with time delays. Examples include models of machine
tool vibrations, control over communication networks, or
population dynamics, see the books [11], [15], [5] for an
overview. In addition, accurate models of such systems are
typically of high order, motivating the need for developing
model reduction techniques for delay differential equations.
This paper addresses this problem by developing a model
reduction technique for linear delay systems.

Methods for model reduction of finite-dimensional linear
systems are well developed (see [1], [2] for overviews) and
popular approaches are given by balanced truncation [16], [7]
and moment matching techniques via Krylov subspaces [6].

For systems with time delays (or, more generally,
infinite-dimensional systems), finite-dimensional approxima-
tions have been considered on the basis of Fourier series
[10], Padé approximations [9], or using the Hankel operator
[8]. An overview of such methods is given in [17].

Next, methods for model reduction of delay differential
equations have been developed by extending methods for
finite-dimensional systems. A moment matching approach
using Krylov methods was presented in [14]. Here, as before,
a finite-dimensional reduced-order model is obtained; as a
consequence, the delay structure is not preserved in the
reduction. Another perspective on moment matching for
systems with time delays is given in [19], where both
finite-dimensional and infinite-dimensional approximations
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are considered. As a class of reduced-order models is char-
acterized in [19], this has the potential to select a reduced-
order model that preserves asymptotic stability properties of
the original high-order delay differential equation.

An extension of balanced truncation towards systems with
delays is presented in [13], based on characterizing measures
of controllability and observability similar to those used
in balanced truncation for finite-dimensional systems. This
method preserves the delay-structure in the reduced-order
model, but asymptotic stability is not necessarily preserved.
The method in [20] does provide such guarantee and in
addition directly exploits reduction techniques for finite-
dimensional linear systems by decomposing the delay system
in a finite-dimensional part and an infinite-dimensional de-
lay operator. This method also guarantees a bound on the
reduction error. Finally, an alternative perspective is given in
[21], where the model reduction problem is formulated as a
rank-constrained optimization problem.

In this paper, a balancing approach for model reduction
of asymptotically stable delay systems is presented. This ap-
proach is based on computing bounds on energy functionals
that provide a measure of observability and controllability
and the use of these bounds in a balancing procedure. These
bounds take the form of Lyapunov-Krasovskii functionals
and hold regardless of the size of the delay, leading to
a delay-independent reduction procedure. In particular, this
reduction procedure features the following properties, which
form the main contributions of this paper. First, the reduction
is structure-preserving, i.e., the reduced-order model is again
in the form of a delay-differential equation, albeit with a
reduced set of equations. This allows for accurately capturing
the infinite-dimensional nature of the original high-order
delay system. Second, the reduced-order model is guaranteed
to be asymptotically stability and, third, an a priori error
bound is available that provides a measure of the accuracy
of the reduction.

The remainder of this paper is outlined as follows. The
problem setting is detailed in Section II, before the energy
functionals and their bounds are presented in Section III.
Section IV discusses the model reduction procedure and the
properties of the reduced-order delay system. An illustrative
example is given in Section V and conclusions are stated in
Section VI.

Notation: The field of real (complex) numbers is de-
noted by R (C). For a vector x 2 Rn, |x| denotes its
Euclidean norm. Given a symmetric matrix X 2 Rn⇥n,
X � 0 (X < 0) indicates that it is positive (semi-)definite.
The Banach space of continuous functions from an interval



T ⇢ R into Rn is represented as C(T ,Rn). Similarly,
L2(T ,Rn) denotes the class of square integrable functions
from T into Rn.

II. PROBLEM SETTING

Consider the linear delay-differential equation

ẋ(t) = Ax(t) +Adx(t� ⌧) +Bu(t),
y(t) = Cx(t),

(1)

with x(t) 2 Rn, input u(t) 2 Rm, and output y(t) 2 Rp

for all t � t0. The initial condition for (1) is given by the
function segment ' 2 C([�⌧, 0],Rn), such that

x(t) = '(t), 8t 2 [t0 � ⌧, t0]. (2)

Next, the function segment x

t

2 C([�⌧, 0],Rn) defined as
x

t

(s) = x(t + s), s 2 [�⌧, 0] characterizes the state of (1)
at time t � 0, such that the initial condition (2) can also be
written as x

t0 = '.
In this paper, model reduction of systems of the form (1) is

pursued under the assumption that (1) is asymptotically sta-
ble. Specifically, a model of the same form is sought that ap-
proximates the input-output behavior of (1), but whose state
⇠

t

is in C([�⌧, 0],Rk) with k < n. Note that, even though
this “reduced-order” state remains infinite-dimensional, this
is regarded as model reduction as the number of equations
in the first equation in (1) is reduced. In this setting, the
problem of finding a reduced-order delay-differential equa-
tion is considered that, first, preserves asymptotic stability
of the original high-order system and, second, satisfies an a
priori error bound in order to characterize the accuracy of
the reduction.

III. OBSERVABILITY AND CONTROLLABILITY
FUNCTIONALS

The model reduction approach developed in this paper
will be based on energy functions that respectively provide
a measure for observability and controllability of the delay
system. First, the observability functional is defined as a
measure of energy associated with observing the output
of (1).

Definition 1: The observability functional of (1) is the
functional Lo : C([�⌧, 0],Rn) ! R defined as

Lo(') =

Z 1

0
|y(t)|2 dt, (3)

where y(t) = Cx(t) = Cx

t

(0) is the output of (1) for initial
condition x0 = ' and zero input (u = 0).
It is clear that the observability functional exists (i.e., the
integral (3) is bounded) if the system (1) is asymptotically
stable. Next, a measure for the energy associated with
controlling (1) is given by the controllability functional.

Definition 2: The controllability functional of (1) is the
functional Lc : Dc ! R defined as

Lc(') = inf

⇢Z 0

�1
|u(t)|2 dt

���� u 2 L2((�1, 0],Rm),

lim
T!1

x�T

= 0, x0 = '

�
, (4)

where x

t

is the solution of (1) for input u and Dc ⇢
C([�⌧, 0],Rn) the domain of Lc, i.e., the collection of
function segments ' for which Lc(') is well-defined.

Remark 1: The definition of the energy functionals in
Definitions 1 and 2 is motivated by the energy functions that
form the basis of balanced truncation for finite-dimensional
linear systems, see, e.g., [16], [7], [1]. In this case, these
energy functions are characterized by the observability and
controllability Gramian, respectively. C
A characterization of the observability functional in Defini-
tion 1 is provided as follows.

Lemma 1: Consider the asymptotically stable delay-
differential equation (1). If there exist matrices Q � 0 and
Qd < 0 such that


A

T
Q+QA+Qd + C

T
C QAd

A

T
d Q �Qd

�
4 0, (5)

then the functional Eo : C([�⌧, 0],Rn) ! R defined as

Eo(') = '

T(0)Q'(0) +

Z 0

�⌧

'

T(s)Qd'(s) ds, (6)

satisfies

Eo(') � Lo(') (7)

for all ' 2 C([�⌧, 0],Rn) and Lo as in Definition 1.
Proof: In order to prove the lemma, let x

t

be the
solution of (1) for initial condition x0 = ' and zero input
and consider Eo(xt

). Note that, by (6), Eo(xt

) can be written
as

Eo(xt

) = x

T(t)Qx(t) +

Z
t

t�⌧

x

T(s)Qdx(s) ds, (8)

with x(t+s) = x

t

(s), s 2 [�⌧, 0]. Then, time-differentiation
of Eo along trajectories of (1) yields

d
dt

�
Eo(xt

)
 
=


x(t)

x(t� ⌧)

�T
Mo


x(t)

x(t� ⌧)

�
, (9)

with

Mo =


A

T
Q+QA+Qd QAd

A

T
d Q �Qd

�
, (10)

and where the dynamics (1) is used to obtain (9) (recall that
u = 0). Employing the condition (5) in (9)–(10) leads to

d
dt

�
Eo(xt

)
 
 �x

T(t)CT
Cx(t) = �|y(t)|2, (11)

where y(t) = Cx

t

(0) is the output corresponding to the
trajectory x

t

. Integration of the result (11) over the interval
[0, T ] gives

Eo(xT

)� Eo(x0)  �
Z

T

0
|y(t)|2 dt, (12)

where it is recalled that x0 = '. Moreover, due to asymptotic
stability, it holds that

lim
T!1

Eo(xT

) = Eo(0) = 0, (13)



such that (12) leads, for T ! 1, to

Eo(') �
Z 1

0
|y(t)|2 dt. (14)

This proves the desired result (7) by recalling the definition
of Lo in (3).

The controllability functional admits a similar characteri-
zation, as shown in the following lemma.

Lemma 2: Consider the delay-differential equation (1). If
there exist matrices P � 0 and Pd < 0 such that


AP + PA

T + Pd +BB

T
AdP

PA

T
d �Pd

�
4 0, (15)

then the functional Ec : C([�⌧, 0],Rn) ! R defined as

Ec(') = '

T(0)R'(0) +

Z 0

�⌧

'

T(s)Rd'(s) ds, (16)

with R = P

�1 and Rd = RPdR, satisfies

Ec(')  Lc(') (17)

for all ' 2 Dc ⇢ C([�⌧, 0],Rn) and Lc as in Definition 2.
Proof: In order to prove the lemma, the matrix R =

P

�1 is defined, such that a congruence transformation of
(15) with a block-diagonal matrix blkdiag{R,R} leads to
the equivalent condition


A

T
R+RA+Rd +RBB

T
R RAd

A

T
d R �Rd

�
4 0, (18)

with Rd = RPdR. Next, application of the Schur comple-
ment shows that (18) (and, hence, (15)) is equivalent to

2

4
A

T
R+RA+Rd RAd RB

A

T
d R �Rd 0

B

T
R 0 �I

3

5 4 0, (19)

which will form the basis for the remainder of the proof.
Consider a solution x

t

to (1) corresponding to an input
u 2 L2((�1, 0],Rn) and satisfying the conditions in (4),
i.e., lim

T!1 x�T

= 0 and x0 = '. Since Ec(xt

) can be
written as

Ec(xt

) = x

T(t)Rx(t) +

Z
t

t�⌧

x

T(s)Rdx(s) ds, (20)

with x(t + s) = x

t

(s), s 2 [�⌧, 0], it follows that time-
differentiation of Ec along the trajectories of (1) leads to

d
dt

�
Ec(xt

)
 
=

2

4
x(t)

x(t� ⌧)
u(t)

3

5
T

Mc

2

4
x(t)

x(t� ⌧)
u(t)

3

5
. (21)

with

Mc =

2

4
A

T
R+RA+Rd RAd RB

A

T
d R �Rd 0

B

T
R 0 0

3

5
. (22)

The use of (19) in (21)–(22) leads to

d
dt

�
Ec(xt

)
 
 |u(t)|2, (23)

after which integration over the interval [�T, 0] yields

Ec(x0)� Ec(x�T

) 
Z 0

�T

|u(t)|2 dt. (24)

Letting T ! 1 and noting that lim
T!1 Ec(x�T

) = 0, it
follows that

Ec(') 
Z 0

�1
|u(t)| dt, (25)

where the condition x0 = ' is used. Since the input function
u is chosen arbitrarily, the inequality (25) also holds for the
input u that achieves the minimization in (4). Consequently,
(25) implies the desired result (17), finalizing the proof.

The functional Eo in (6) provides an upper bound on the
observability functional L

o

in Definition 1, whereas Ec in
(16) is a lower bound to the controllability functional Lc
in Definition 2. These bounds, rather than the observability
and controllability functionals themselves, will be used as
a basis for model reduction. Namely, it will be shown that
the structure of the bounds (6) and (16) is beneficial for the
development of a model reduction procedure that preserves
asymptotic stability and provides an a priori error bound.

Remark 2: Even though the controllability functional can
in general only be defined on a restricted domain Dc (see
Definition 2), its bound Ec in (16) can be defined for
all function segments in C([�⌧, 0],Rn) (provided that (15)
holds). As the latter will be used as a basis for model
reduction, the reduced-order model will be well-defined. C

Remark 3: The functionals Eo in (6) and Ec in (16)
are similar to Lyapunov-Krasovskii functionals as often
exploited in stability analysis of time-delay systems, see [11].
In fact, if the matrices in (5) or (15) are negative definite
instead of merely negative semi-definite, they imply delay-
independent asymptotic stability of (1). C

IV. MODEL REDUCTION BY TRUNCATION

Before discussing the use of (bounds on) the observability
and controllability functionals in Definitions 1 and 2 in the
scope of model reduction, the general reduction procedure of
truncation is presented. To this end, a partitioned form of the
dynamics (1) is considered in which x(t) and the function
segments x

t

are partitioned as

x(t) =


x1(t)
x2(t)

�
, x

t

=


x1,t

x2,t

�
, (26)

with x1(t) 2 Rk, x1,t 2 C([�⌧, 0],Rk) and k < n. The
corresponding partitioning of the system matrices yields

A =


A11 A12

A21 A22

�
, Ad =


Ad,11 Ad,12
Ad,21 Ad,22

�
, B =


B1

B2

�
, (27)

and C = [C1 C2 ]. Using the partitioning (26), (27), a
reduced-order approximation of (1) can be obtained by
truncation as

⇠̇(t) = A11⇠(t) +Ad,11⇠(t� ⌧) +B1u(t),
ŷ(t) = C1⇠(t),

(28)



with ⇠(t) 2 Rk for each t and function segments ⇠

t

2
C([�⌧, 0],Rk). Here, ⇠(t) provides an approximation of
x1(t) in the partitioned coordinates (26).

The following property holds for the observability func-
tional of the reduced-order system (28).

Lemma 3: Let the condition (5) be satisfied for symmetric
matrices Q � 0 and Qd < 0 of the form

Q =


Q1 0
0 Q2

�
, Qd =


Qd,11 Qd,12
Qd,21 Qd,22

�
. (29)

Then, the observability functional L̂o of the reduced-order
system (28) exists and the functional Êo : C([�⌧, 0],Rk) !
R given as

Êo('̂) = '̂

T(0)Q1'̂(0) +

Z 0

�⌧

'̂

T(s)Qd,11'̂(s) ds, (30)

satisfies Êo('̂) � L̂o('̂) for all '̂ 2 C([�⌧, 0],Rk).
Proof: Since the matrices Q and Qd in (29) are such

that (5) holds, it follows that

T 0
0 T

�T
A

T
Q+QA+Qd + C

T
C QAd

A

T
d Q �Qd

�
T 0
0 T

�
4 0

(31)

for any matrix T . After choosing T = [ I
k

0 ]T, it can be
checked by using the partitioning (27) that the left-hand side
of (31) provides an inequality of the form (5) for the reduced-
order system (28). Then, it follows from (12) in the proof of
Lemma 1 that, for all T � 0,

Êo('̂) �
Z T

0

��
ŷ(t)

��2 dt+ Êo(⇠T ), (32)

where ⇠

t

is the solution of (28) for ⇠0 = '̂ and for u = 0. As
Êo('̂) is well-defined (i.e., bounded), it follows after taking
the limit for T ! 1 that L̂o exists and that the bound
Êo('̂) � L̂o('̂) for all '̂ 2 C([�⌧, 0],Rk).

The counterpart of Lemma 3 for the controllability func-
tional is given as follows.

Lemma 4: Let the condition (15) be satisfied for symmet-
ric matrices P � 0 and Pd < 0 of the form

P =


P1 0
0 P2

�
, Pd =


Pd,11 Pd,12
Pd,21 Pd,22

�
. (33)

Then, the functional Êc : C([�⌧, 0],Rk) ! R given as

Êc('̂) = '̂

T(0)R1'̂(0) +

Z 0

�⌧

'̂

T(s)Rd,11'̂(s) ds, (34)

with R1 = P

�1
1 and Rd,11 = R1Pd,11R1 satisfies Êc('̂) 

L̂c('̂) for all '̂ 2 D̂c ⇢ C([�⌧, 0],Rk). Here, L̂c is the
controllability functional for the reduced-order system (28)
and D̂c the domain on which it is well-defined.

Proof: The proof is similar to the first part of the proof
of Lemma 3 and is omitted for the sake of brevity.

The results of Lemmas 3 and 4 thus state that the ob-
servability and controllability functionals of a reduced-order
system obtained by truncation can be bounded by relevant
parts of the energy functionals of the original system (1)

when the matrices Q and P have a suitable block-diagonal
form, see (29) and (33). Even though these results hold for
any matrices Q and P satisfying this block-diagonal form,
a more specific diagonal form for these matrices is assumed
in the remainder of this section. This leads to the following
definition.

Definition 3: A realization (1) is said to be balanced if
there exist matrices Q � 0, Qd < 0 satisfying (5) and
matrices P � 0, Pd < 0 satisfying (15) such that

Q = P = ⌃ :=

2

66664

�1Im1 0 · · · 0

0 �2Im2

. . .
...

...
. . . . . . 0

0 · · · 0 �

q

I

mq

3

77775
(35)

with �

i

> �

i+1 > 0, i 2 {1, . . . , q � 1} and
P

q

i=1 mi

= n.
The following standard result guarantees the existence of

such balanced realization.
Lemma 5: Let there exist matrices Q � 0 and Qd < 0

such that (5) holds and matrices P � 0 and Pd < 0 such
that (15) holds. Then, there exists a change of coordinates
x(t) = Tz(t) such that the realization given by the new
coordinates is balanced, i.e., the nonsingular matrix T can
be chosen such that TT

QT = T

�1
PT

�T = ⌃, with ⌃ as
in (35).

Proof: The existence of such matrix T follows from
standard results in linear algebra on simultaneous diagonal-
ization (e.g., [12]). This result also forms the foundation of
balancing for finite-dimensional linear systems, see [1].

When truncation is applied for asymptotically stable delay
systems in a balanced realization as in Definition 3, this
stability property is preserved. This result is stated next.

Theorem 6: Let the asymptotically stable system (1) be in
a balanced realization and consider the reduced-order delay-
differential equation (28) obtained by truncation for k such
that k =

P
r

i=1 mi

for some r > 0. Then, the reduced-order
system is asymptotically stable.

Proof: This result can be proven by exploiting ideas in
the proof of stability preservation for balanced truncation of
finite-dimensional linear systems originally shown in [18],
see also [4]. Details are omitted.

Moreover, for truncation of a balanced realization, the
following error bound holds.

Theorem 7: Let the asymptotically stable system (1) be in
a balanced realization and consider the reduced-order delay-
differential equation (28) obtained by truncation for k such
that k =

P
r

i=1 mi

for some r > 0. Then, for any common
input function u 2 L2([0,1),Rm) and initial conditions
' = 0 and '̂ = 0 for (1) and (28), respectively, their output
trajectories satisfy the error bound

Z
T

0
|y(t)� ŷ(t)|2 dt  "

2

Z
T

0
|u(t)|2 dt (36)

for all T � 0 and where the error bound (gain) " is given as

" = 2
qX

i=r+1

�

i

, (37)



with �

i

as in (35).
Proof: The proof can be found in Appendix A.

The results in Theorems 6 and 7 thus suggest a model
reduction procedure in which, first, solutions to (5) and (15)
are sought. Second, the balancing transformation of Lemma 5
is employed to obtain a balanced realization (see, e.g., [1] for
an explicit procedure to compute T ) and finally, truncation
is applied to obtain a reduced-order model of the form (28).
This reduced-order model is then of the same form as (1),
is asymptotically stable and satisfies the a priori error bound
(36) which has a similar structure as the error bound for
balanced truncation of finite-dimensional linear systems.

Remark 4: An alternative approach towards balanced
truncation of delay systems is given in [13], where infinite-
dimensional generalizations of the observability and control-
lability Gramian for finite-dimensional systems are exploited.
Then, relevant finite-dimensional parts of these Gramians
are selected to compute a coordinate transformation x(t) =
Tz(t) that diagonalizes these parts. However, this approach
does not lead to reduced-order delay systems that preserve
asymptotic stability and satisfy an a priori bound on the
reduction error as in the current paper. C

V. ILLUSTRATIVE EXAMPLE

To illustrate the reduction procedure developed in Sec-
tion IV, the model of a heated rod discussed in [14] is
considered. The model is a partial differential equation of
the form
@v

@t

(x, t) =
@

2
v

@x

2
(x, t)

+ a0(x)v(x, t) + a1(x)v(⇡ � x, t� 1), (38)

with v(x, t) the temperature of the rod at location x 2 [0,⇡]
at time t, satisfying the boundary conditions v(0, t) =
v(⇡, t) = 0. The functions a0 and a1 are given as a0(x) =
�2 sin(x) and a1(x) = 2 sin(x), respectively. Discretization
in space leads to an asymptotically stable delay-differential
equation of the form (1) with x(t) 2 Rn, n = 35 after
choosing the input and output matrices as B = C

T = 1p
n

1
n

,
where 1

n

2 Rn is a vector of all ones. Thus, the input and
output can respectively be interpreted as a uniform heating
of the road and its average (in space) temperature.

To derive the reduced-order models, solutions to (5) and
(15) are sought that minimize the trace of Q and P , respec-
tively. Using these matrices, the coordinate transformation of
Lemma 5 is computed, after which truncation to order k = 1
leads to the reduced-order model

⇠̇(t) = �2.69 ⇠(t) + 1.65 ⇠(t� 1)� 0.93u(t),

ŷ(t) = �0.93 ⇠(t).
(39)

This model can be checked to be asymptotically stable, as
guaranteed by Theorem 6. Moreover, according to Theo-
rem 7, the error bound (36) holds with " = 0.012.

A comparison of the frequency response functions of the
high-order and reduced-order delay-differential equations is
depicted in Figure 1, indicating a good approximation. This
is confirmed by the magnitude of the error in Figure 2, which

10�1 100 101 102 103
10�3

10�2

10�1

100

! [rad/s]

|G
|

G

Ĝ

Fig. 1. Magnitude of the frequency response functions G and Ĝ of the
discretized model of the heated rod (38) and the reduced-order approxima-
tion (39), respectively. Here, G(s) = C(sI�A�Ade

�s⌧ )�1B and Ĝ is
defined similarly.

10�1 100 101 102 103
10�3

10�2

10�1

! [rad/s]

|G
�

Ĝ
|

Fig. 2. Magnitude of the frequency response function of the error G� Ĝ,
with G and Ĝ the transfer functions as in Figure 1. The error bound is
depicted as the dashed gray line.

also shows that the error bound is not conservative for this
example. Finally, it is noted that the scalar reduced-order
model (39) accurately captures the repeated resonances in
the frequency response function. This behavior cannot be
obtained by a finite-dimensional approximation of low-order,
indicating the importance of preserving the delay-structure in
reduction.

VI. CONCLUSIONS

A structure-preserving model reduction procedure for
delay-differential equations is presented in this paper, based
on the definition of energy functionals that characterize the
energy associated with the output and input of the model. A
balancing procedure on the basis of these energy functionals
is shown to lead to a reduced-order delay-differential equa-
tion for which asymptotic stability is preserved. In addition,
an a priori error bound is available.

Future work will focus on a delay-dependent approach,
which could potentially lead to better reduced-order models
if the value of the delay is known.

APPENDIX A. PROOF OF THEOREM 7

The proof is inspired by a construction in [3]. Following
this approach, a one-step reduction is considered first. Here,
the state components corresponding to �

q

are discarded by
truncation, such that k = n �m

q

, with m

q

the multiplicity



of �

q

. In this case, the observability and controllability
functionals can be written (using a slight abuse of notation)
in partitioned form as

Eo('1,'2) = '

T
1 Q1'1 + '

T
2 Q2'2

+

Z 0

�⌧


'1(s)
'2(s)

�T
Qd


'1(s)
'2(s)

�
ds (40)

and

Ec('1,'2) = '

T
1 R1'1 + '

T
2 R2'2

+

Z 0

�⌧


'1(s)
'2(s)

�T
Rd


'1(s)
'2(s)

�
ds, (41)

respectively. Here,

Q1 = R

�1
1 = blkdiag{�1Im1 , . . . ,�q�1Imq�1}, (42)

Q2 = R

�1
2 = �

q

I

mq , (43)

where the relation P = R

�1 is used (see Lemma 2) is
used. On the basis of the partitioned energy functionals, the
functional V is introduced as

V ('1,'2, '̂) = Eo('1 � '̂,'2) + �

2
q

Ec('1 + '̂,'2), (44)

where '1 2 C([�⌧, 0],Rk), '2 2 C([�⌧, 0],Rn�k), and
'̂ 2 C([�⌧, 0],Rk). In the remainder of this proof, the value
of V (x1,t, x2,t, ⇠t) will be evaluated, i.e., the evolution of V
along trajectories (x1,t, x2,t) of the delay-differential equa-
tion (1) and ⇠

t

of reduced-order delay-differential equation
(28). Specifically, by exploiting the characterizations of the
observability and controllability functionals in Lemmas 1
and 2 for the partitioned form (27), it can be shown that

d
dt

�
V (x1,t, x2,t, ⇠t)

 
 �

��
y(t)�ŷ(t)

��2 + (2�
q

)2|u(t)|2, (45)

along trajectories of (1) and (28). Here, the fact that a one-
step reduction is considered is crucial to obtain this result,
in particular the relation (43). Integration of (45) over the
interval [0, T ] yields

V (x1,T , x2,T , ⇠T )� V (x1,0, x2,0, ⇠0)

 (2�
q

)2
Z

T

0
|u(t)|2 dt�

Z
T

0

��
y(t)� ŷ(t)

��2 dt, (46)

where it is noted that V (x1,0, x2,0, ⇠0) = 0 due to the choice
of zero initial conditions and the structure of V in (44).
Moreover, V (x1,t, x2,t, ⇠t) � 0 for all (x1,t, x2,t, ⇠t), which
gives the desired result (36) and (37) for k = n�m

q

.
To prove the result (36) and (37) for arbitrary order k < n

(according to the multiplicities m

i

of the parameters �

i

in
(35)), it is recalled that Lemmas 3 and 4 show that the energy
functionals for a reduced-order delay-differential equation
of arbitrary order are bounded by the relevant parts of the
partitioned energy functionals (40) and (41) of the high-
order system. As such, the procedure discussed above can
be repeated to obtain a reduced-order model for arbitrary k,
where the result (36) and (37) follows from application of
the triangle inequality.
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