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†Department of Teleinformatics Engineering, Federal University of Fortaleza, Brazil
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ABSTRACT
The canonical polyadic decomposition (CPD) is one of the
most popular tensor-based analysis tools due to its usefulness
in numerous fields of application. The Q-order CPD is
parametrized by Q matrices also called factors which have
to be recovered. The factors estimation is usually carried out
by means of the alternating least squares (ALS) algorithm.
In the context of multi-modal big data analysis, i.e., large
order (Q) and dimensions, the ALS algorithm has two main
drawbacks. Firstly, its convergence is generally slow and
may fail, in particular for large values of Q, and secondly
it is highly time consuming. In this paper, it is proved that
a Q-order CPD of rank-R is equivalent to a train of Q 3-
order CPD(s) of rank-R. In other words, each tensor train
(TT)-core admits a 3-order CPD of rank-R. Based on the
structure of the TT-cores, a new dimensionality reduction
and factor retrieval scheme is derived. The proposed method
has a better robustness to noise with a smaller computational
cost than the ALS algorithm.

Index Terms— Tensor decompositions, CP decomposi-
tion, Tensor train, Big data, Multidimensionnal signal pro-
cessing, Parameter estimation, Fast algorithms.

I. INTRODUCTION

In this paper, we focus on high-order CPD models [5].
Such models have a great interest in signal processing for
blind equalization [7], [4], blind source separation [16], radar
[10], wireless communications [12], [3], among many other
fields of application. Most methods of factor estimation are
ALS-based techniques [2]. Unfortunately these techniques
may require several iterations to converge [11], [6], and
convergence is increasingly difficult when the order of the
tensor increases [1] and it is not even guaranteed [8]. Hence,
algorithms that are stable and scalable [15] with the tensor
order and dimensions are needed. In this work, we establish
an equivalence between a Q-order CPD of canonical rank
R and a tensor train (TT) [9] model. Note that the idea of
rewriting a CPD into the TT format was briefly mentioned
in [9]. In this paper, we exploit this idea to propose a
new CPD factor retrieval algorithm. Indeed, we will see

that a Q-order CPD of canonical rank R is equivalent to
a train of Q 3-order CPD(s) with TT-ranks equal to R.
That leads to a new tensor decomposition that we call a
CPD-train model, and which can be viewed as a special
case of the TT model whose the TT-cores follow a CPD.
The advantages of using the TT model in this case is that
its storage cost, just like the CPD, scales linearly with Q
[9]. The estimation of the TT-ranks amounts to estimating
the canonical rank of the associated CPD. And finally, the
use of the TT-SVD algorithm [9] allows to overcome the
drawbacks of iterative algorithms for very high-order tensors.
As a consequence of this equivalence, one could apply one
trilinear ALS estimator and Q − 3 bilinear ALS estimators
to the (much smaller) TT-cores to recover the original CPD
factor matrices, instead of applying the ALS algorithm to
the very high-order CPD. Hence, a solution with much less
computational cost and better convergence is possible thanks
to this TT-CPD equivalence.
The rest of this paper is organized as follows. Section II
recalls the CPD and TT formulations, and gives the main
result in terms of the equivalence between the two models.
Section III-B shows how to exploit the known structure of
the CPD TT-cores, by applying the ALS algorithm on 3-
order tensors instead of the original Q-order CPD. In section
IV, we compare the computational complexities of the TT-
SVD and ALS algorithms for estimating the parameters of
a Q-order CPD. Section V presents simulation results that
will reinforce the arguments given in the previous sections.
Finally, the conclusions are drawn in Section VI.
Notations: Scalars, vectors, matrices and tensors are rep-
resented by x, x, X and X , respectively. The symbols
(·)T , rank(·), and κ(·) denote, respectively, the transpose,
the rank and the dominant complexity cost in flops. The
Frobenius norm is defined by || · ||F . Ik,R denotes the k-
order identity tensor of size R × · · · × R, and I2 = IR.
The matrix unfoldkX of size Nk×N1 · · ·Nk−1Nk+1 · · ·NQ

refers to the k-mode unfolding of X of size N1×· · ·×NQ.
The n-mode product is denoted by ×n. The contraction
×p

q between two tensors A and B of size N1 × · · · × NQ

and M1 × · · · ×MP , with Nq = Mp is a tensor of order



(Q+ P − 2) such that

[A×p
q B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

=

Nq∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

.

II. CPD-TRAIN MODEL: EQUIVALENCE
BETWEEN THE CPD AND THE TENSOR-TRAIN

MODEL
II-A. Canonical Polyadic Decomposition (CPD)

A Q-order tensor of size N1× . . .×NQ follows a rank-R
CPD if

X = IQ,R ×1 P1 ×2 P2 . . .×Q PQ (1)

where the k-mode factor matrix Pk is of size Nk ×R, 1 ≤
k ≤ Q.

II-B. Tensor-Train Model (TTM) and TT-ranks
Let {R1, . . . , RQ−1} be the Q−1 TT-ranks with bounding

conditions R0 = RQ = 1. A Q-order tensor of size N1 ×
. . .×NQ admits a decomposition into a train of tensors if

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

Q−1 GQ−1 ×1
Q GQ (2)

in which the TT-cores are defined according to

G1 : N1 ×R1, GT
Q : NQ ×RQ−1,

Gk : Rk−1 ×Nk ×Rk, for 2 ≤ k ≤ Q− 1

with the TT-ranks given by rank(G1) = R1, rank(GQ) =
RQ−1, and for 2 ≤ k ≤ Q− 1, rank(unfold1Gk) = Rk−1,
and rank(unfold3Gk) = Rk.

II-C. Rewriting of a high order CPD in a TT format
In this section, we present an equivalence between a Q-

order CPD and a train of Q CPD(s) according to Fig. 1,
where the structure of the TT-cores are given in the following
Theorem.

Theorem 1. Assume that a tensor X follows a Q-order
CPD of rank-R given by eq. (1), where the factor matrices
Pk are full column rank. This tensor admits an equivalent
TTM with TT-cores given by:

G1 = P1, GQ = PT
Q, (3)

Gk = I3,R ×2 Pk, 2 ≤ k ≤ Q− 1

Moreover, the TT-ranks are all identical and equal to the
canonical rank R.

Proof. The TTM of the Q-order identity tensor IQ,R is
given by

IQ,R = IR ×1
2 I3,R ×1

3 · · · ×1
Q−1 I3,R ×1

Q IR.

Substituting the above TTM into the CPD of eq. (1), we get

X = (IR ×1
2 I3,R ×1

3 · · · ×1
Q IR)×1 P1 . . .×Q PQ

by expressing the entries of X and reorganizing them, we
can equivalently write

X = (P1IR)×1
2 (I3,R ×2 P2)×1

3 · · · ×1
Q (IRPT

Q). (4)

By identifying the TT-cores in (4) with those in eq. (2), we
can deduce the relations (3). Then, it is straightforward to
conclude that the TT-ranks are all identical and equal to the
canonical rank R.

As a Q-order CPD of rank-R is equivalent to a train of
Q 3-order CPD(s) of rank-R, we refer to Eq. (4) as a CPD-
train.

Fig. 1. Factor graph of a Q-order CPD and its TTM. The
TT-cores are given in Theorem 1.

III. DIMENSIONALITY REDUCTION AND CPD
FACTORS ESTIMATION BASED ON A CPD-TRAIN

III-A. Dimensionality reduction: TT-cores recovery
The TT-SVD algorithm presented in [9] computes the

TT-cores by extracting in a sequential way the dominant
subspaces (thanks to truncated SVDs) of matrix reshapings
of one SVD factor calculated at each step of the algorithm.
The TT-cores recovery is done up to nonsingular change-
of-basis matrices. In Fig. 2, we illustrate the TT-SVD
algorithm applied to a 4-order tensor X . At each step,
the original tensor is reshaped into a matrix having one
mode in one dimension and a combination of remaining
modes in the other dimension, so that each SVD calculation
delivers a TT-core. In our example of Fig. 2, the original
N1 × N2 × N3 × N4 tensor X is first reshaped into an
N1 × (N2N3N4) matrix X(1) whose the SVD provides the
factors U(1) that contains the left singular vectors, and V(1)

that is the product of the diagonal singular values matrix
with the matrix containing the right singular vectors. Then,
the R1 × (N2N3N4) matrix V(1) is reshaped into a matrix



V
(1)
(2) of size (R1N2) × (N3N4), whose the SVD provides

the factors (U(2),V(2)), V(2) being reshaped into V
(2)
(2), and

so on. The TT-cores Gk are sequentially generated from the
matrices U(k).

Fig. 2. TT-SVD algorithm applied to a 4-order tensor

Theorem 2. Let us consider the CPD-train defined in (4).
Applying the TT-SVD algorithm to recover the TT-cores, we
obtain the following equations:

G1 = P1M
−1
1 ,

Gk = I3,R ×1 Mk−1 ×2 Pk ×3 M−T
k , 2 ≤ k ≤ Q− 1

GQ = MQ−1P
T
Q

where Mk ∈ CR×R is a nonsingular change-of-basis matrix.

Proof. The proof of this theorem is constructive, i.e., it is
based on the algebraic structure of the TT-SVD algorithm
applied to a Q-order CPD tensor of a known canonical rank
R. The proof is omitted due to a lack of space.

This means that if a Q-order tensor admits a rank-R CPD
with full column rank factors, then its TTM involves a train
of Q 3-order CPD(s) having all identical TT-ranks such
as R1 = . . . = RQ−1 = R. The factors can be derived
straightforwardly from the TT-cores up to two change-of-
basis matrices.

Remark. Note that each TT-core for 2 ≤ k ≤ Q−1, follows
a CPD linked to its previous TT-core (see Fig. 3). Indeed, the
knowledge of the matrix Mk−1 estimated from the TT-core
Gk−1 can be exploited for computing the CPD of Gk.

The recursion property is exploited in the sequel to
propose a new factor retrieval scheme. Note that the involved
structure differs from the one of coupled tensors [13].

Fig. 3. 3-order CPD of the k-th TT-core

III-B. CPD factors retrieval based on a CPD-train

A strategy for CPD factors retrieval based on a CPD-train
is derived in this section. Once the dimensionality reduction
step is done, the CPD factors can be derived using the model
equivalence presented in Theorem 2. More precisely, the
results of Theorem 2 allow us to derive the factors retrieval
scheme presented in Algorithm 1. In this Algorithm, we

Algorithm 1 Dimensionality reduction and CPD factors
Retrieval based on a CPD-train
Input: Q-order rank-R tensor X
Output: Estimated CPD factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction: (TT-cores estimation)

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: CPD factors retrieval:

[M̂1, P̂2, M̂
−T
2 ] = Tri-ALS(G2, R).

3: for k = 3 · · ·Q− 1 do
4: [P̂k, M̂

−T
k ] = Bi-ALS(Gk, M̂k−1, R)

5: end for
6: P̂1 = G1M̂1, and P̂Q = GT

QM̂−T
Q−1

denote by Tri-ALS the ALS algorithm applied to a 3-order
tensor, while Bi-ALS denotes the ALS algorithm applied to
a 3-order tensor using the knowledge of one factor. The use
of the Bi-ALS algorithm is justified relatively to the Remark
III-A.

III-C. Permutation and scaling ambiguities

The factors of the 3-order CPDs are estimated up to trivial
ambiguities, i.e. up to column permutation and scaling [14].



Theorem 3. The proposed factors retrieval scheme estimates
the factors up to

1) a unique column permutation matrix denoted by Π,
2) diagonal scaling matrices satisfying the following re-

lation:

Λ1Λ2Λ3 · · ·ΛQ−1ΛQ = IR (5)

where Λk is the scaling ambiguity for the k-mode
factor Pk.

Proof. Firstly, it is straightforward to check that if a change-
of-basis matrix M−T

k is estimated up to a column permuta-
tion matrix Π and a diagonal scaling matrix Γk then Mk

is known up to the same column permutation matrix and a
diagonal scaling matrix Γ−1

k . So, we can deduce that the
column permutation matrix is unique and common to all the
TT-cores due to the recursion property. This proves the first
item of the theorem. Secondly, we have

G1 = P1ΠΛ1(M1ΠΓ−1
1 )−1

G2 = I3,R ×1 M1ΠΓ−1
1 (6)

×2 P2ΠΛ2 ×3 M−T
2 ΠΓ2

G3 = I3,R ×1 M2ΠΓ−1
2 (7)

×2 P3ΠΛ3 ×3 M−T
3 ΠΓ3

. . .

GQ−1 = I3,R ×1 MQ−2ΠΓ−1
Q−2

×2 PQ−1ΠΛQ−1 ×3 M−T
Q−1ΠΓQ−1

GQ = MQ−1ΠΓ−1
Q−1(PQΠΛQ)

T .

Based on the above expressions and using the property that
the product of scaling matrices is identity [5], we have
Γ−1
1 Λ2Γ2 = IR from eq. (6), and Γ2 = Λ3Γ3 from

eq. (7). Based on the two above properties, we obtain
Γ−1
1 Λ2Λ3Γ3 = IR. Continuing the same reasoning until the

k-th and k + 1-th TT-cores, we obtain Γ−1
1 Λ2 . . .ΛkΓk =

IR, and Γ−1
k Λk+1Γk+1 = IR. As Γ−1

1 = Λ1, and ΓQ−1 =
ΛQ, it is easy to deduce the relation (5).

IV. COMPUTATIONAL COMPLEXITY
In this section, we compare the computational complexity

of the proposed CPD-train algorithm with the one of the
ALS algorithm applied to a very large Q-order tensor. Let
X be a rank-R CPD tensor of very high order Q and
of size N × · · · × N . In this comparison, it is assumed
that the computational costs of the pseudo-inverse and the
SVD are the same. Note that one iteration of the Q-order
ALS algorithm requires the calculation of Q pseudo-inverses
of rank-R matrices of size N × NQ−1. Its complexity is
O(Q · R2 · NQ−1). Meanwhile the application of the TT-
SVD algorithm requires the calculation of (Q−1) truncated
SVDs of rank-R matrices of sizes:

• 1st matrix of size N ×NQ−1, its complexity is O(R2 ·
NQ−1)

• 2nd matrix of size (RN) × NQ−2, its complexity is
O(R2 ·NQ−2)

•
...

• (Q− 1)th matrix of size (RN)×N , its complexity is
O(R2 ·N)

For large Q, the complexity of the TT-SVD algorithm is
O(R2 · NQ−1), which implies that one iteration of the Q-
order ALS algorithm is Q-times more complex than the TT-
SVD algorithm; consequently the complexity of the ALS
algorithm is (number of iterations ·Q)-times that of the TT-
SVD algorithm, and we can conclude that:

κ(Q-order ALS)� κ(TT-SVD)

On the other hand, one iteration of the 3-order ALS algo-
rithm applied to an R × N × R CPD has a complexity
O(3 · R3 · N). As the cost of an iteration of a Bi-ALS
algorithm is bounded by the cost of an iteration of a Tri-ALS
algorithm, then the total cost of 3-order ALS algorithm is
linear w.r.t. Q. From this, we have:

κ(Q-order ALS)� κ(TT-SVD)� Q · κ(3-order ALS)

From this, it can be seen that the CPD-Train algorithm is
much less costly than the ALS one

V. SIMULATION RESULTS
In this section, we evaluate the performance of the CPD-

train solution through numerical computer simulations. As-
suming a noiseless case, we first compare the execution time
of the CPD-train algorithm with that of the Q-order ALS
applied to the original tensor. Hypercubic Q-order tensors of
rank R = 3 and dimensions N × · · · ×N following a CPD
were generated with random factor matrices whose elements
were drawn from a Gaussian distribution with zero mean
and unit variance. The rank R is assumed to be perfectly
known. Let f

(
X̂

(t))
= ||X − X̂

(t)
||F , where X̂

(t)
denotes

the estimated tensor at the t-th iteration. The convergence

test was chosen such that

∣∣∣f(X̂ (t)
)
−f
(
X̂ (t+1)

)∣∣∣
f
(
X̂ (t)

) < 2 · 10−16

or when the number of iterations exceeds 1000. The com-
putation time given for the simulations is the average time
of 20 realizations. In Table I, we fix N = 6 and vary the
tensor order. It is clear that the gain increases with the order.
In Table II, we fix Q = 8 and vary the tensor dimensions.

Table I. Comparison of the execution time for R = 3, N =
6.

Tensor order Proposed scheme ALS Gain
Q = 6 0, 63 (s) 7, 48 (s) 11, 87
Q = 7 1, 07 (s) 62, 57 (s) 58, 47
Q = 8 1, 31 (s) 431, 95 (s) 329, 73

The conclusion is the same, i.e., the gain in the computation
time increases when the dimensions are increased. On the



Table II. Comparison of the computation time for R =
3, Q = 8.

Tensor dimension Proposed scheme ALS Gain
N = 4 0, 79 (s) 19, 26 (s) 24, 37
N = 5 0, 91 (s) 114, 16 (s) 125, 45
N = 6 1, 31 (s) 431, 95 (s) 329, 73

other hand, one can see that the convergence of the ALS
is increasingly slow, when the tensor order and dimensions
increase. In Fig. 4, the MSE is depicted for the CPD-train
algorithm, the ALS algorithm, and the ALS applied after a
preprocessing step for noise reduction. The MSEs depicted
were obtained by averaging the results over 300 independent
Monte Carlo runs, truncated from 5% worst and 5% best
MSEs (because the ALS algorithm may not converge in
some cases). Note that, due to the use of SVDs, the CPD-
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Fig. 4. MSE vs SNR in dB with Algo. 1 for Q = 8 with
N = 3, R = 2, 300 runs

train algorithm provides a more robust solution than the
ALS algorithm for moderate SNR values, with a significant
computation time saving.

VI. CONCLUSION
In this paper, we have shown that a tensor following a Q-

order CPD of rank-R can be expressed in a TT format, and
in particular as a train of Q CPD(s) of rank-R. This result
has two main advantages. First, we can exploit the TT model
of a Q-order tensor to perform a dimensionality reduction
in the sense that the Q-order tensor is broken down to Q at
most 3-order tensors. This step allows to replace a difficult
alternating optimization in a Q-dimensional space by Q− 1
alternating optimizations in a 3-dimensional one. In addition,
using the recursion property inherent to the TTM, we can
go further to consider only a unique alternating optimization
into a 3-dimensional space and Q− 2 alternating optimiza-
tions into a 2-dimensional one. Finally, the proposed method
has a better robustness to noise for a smaller computational
cost than the Q-order ALS.
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