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Characterization of ultimate bounds for systems
with state-dependent disturbances

Sorin Olaru1 and Hiroshi Ito2

Abstract—This paper pursues a framework of set characteri-
zation of dynamical systems with state-dependent disturbances.
It aims to propose a new approach to analysis and design of
nonlinear systems involving non-differentiability and asymme-
tric components which hamper application and effectiveness of
local linearization methods. Several characterizations of ultimate
bounds are developed.The utility of shifting the fix point is
formulated as a parametrization of the ultimate bounds.

Index Terms—Uncertain systems.

I. INTRODUCTION

The disturbance invariant sets for linear systems with static
bounds on the additive disturbances have been characterized
in the ’90s [1], [2]. The particular set known as ”minimal
robust positive invariant set” received an important attention
[3]–[5] with applications in several analysis and control de-
sign problems involving set-theoretic approaches [6], fault
detection [7] or robust predictive control [8], [9] to mention
only a few. The closely related concept of ultimate bounds [10]
has been used for the characterization of dynamical systems
in the presence of non-vanishing perturbation. It proved to
be instrumental in the study of linear systems with bounded
disturbances for at least two decades [11]. There are effective
computational methods for the characterization of ultimate
bounds for linear dynamics with (state-dependent) bounds for
the disturbances [12], [13]. An interpretation of the ultimate
bounds is given by the input-to-state stability (ISS) [14], [15].

The present paper deals with discrete-time nonlinear sy-
stems affected by disturbance inputs with state-dependent
bounds. These disturbances are allowed to be arbitrary as long
as they are contained in sets which are bounded point-wise.
This includes asymmetrically non-Lipschitz state-dependent

This work was initiated during the visit of the first author at the Kyushu
Institute of Technology. The support of the Matsumae International Founda-
tion is gratefully acknowledged. The first author acknowledges the support
via the CNCS - UEFISCDI grant, number PN-III-P1-1.1-TE-2016-0862,
MOSCBIOS, within PNCDI III.

1Laboratoire des Signaux et Systèmes, CentraleSupélec, Université
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disturbance whose systematic treatment is non-trivial with the
existing techniques.

Small-gain techniques are popular for verifying stability
of equilibria of systems in the presence of state-dependent
disturbances [16], [17]. However, their standard formulations
by themselves do not readily provide sharp estimates of
ultimate bounds. The main objective of the present paper is
to put a light on the usefulness of numerical computations of
ultimate bounds for linear systems with point-wise bounded
sets of disturbances in the study of nonlinear dynamics. As
expected, the linear part offers only local information on the
ultimate boundedness. This paper presents a parametrization
of these local bounds in terms of the linear dynamics, topology
of the disturbance set and fixed-points, which will play an
important role in the global analysis and design of nonlinear
control systems.

II. PRELIMINARY NOTIONS

The Minkowski sum of two given sets S, P ⊂ Rn is
described by S ⊕ P = {x + y|x ∈ S, y ∈ P}. The norm
of a finite dimensional vector x ∈ Rn is denoted |x| and the
epsilon ball centered at the origin is represented by Bε =

{x ∈ Rn : |x| ≤ ε} . The notation P(Rn) := {S|S ⊂ Rn}
represents the power set of Rn in general, and Pcl(Rn) is
the set of all closed subsets of Rn, including the empty set:

Pcl(Rn) :=
{
S ∈ P(Rn)|S = S̄ or S = ∅

}
.

Definition 1 A set S ⊂ Rn is star-shaped at x̄ ∈
S if for any point x ∈ S and 0 ≤ β ≤ 1

it holds that βx + (1 − β)x̄ ∈ S. The kernel of
S ⊂ Rn denoted by kern(S) is defined as: kern(S) =

{x̄ ∈ S : βx+ (1− β)x̄ ∈ S, ∀x ∈ S, β ∈ [0, 1]} .

Whenever the center x̄ of a star-shaped set S is relevant, the
notation Sx̄ is used. Sx̄(Rn) denotes the set of closed star-
shaped sets Sx̄, containing x̄ in their kernel. The Minkowski
function associated to a set S ∈ S0(Rn) is defined as HS(x) :

Rn → R+ with:

HS(x) = inf {α ∈ R+ : x ∈ αS} (1)
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Fig. 1. Example of the set valued mapping F (.) in (3) and the increasing
from 0 counterpart F̄0(.) constructed upon (2)

Definition 2 A set-valued map F : Rn → P(Rm) is called
increasing from x̄ ∈ Rn if for all x ∈ Rn it holds that F (x̄+

λ1(x− x̄)) ⊆ F (x̄+ λ2(x− x̄)) for 0 ≤ λ1 ≤ λ2.

Proposition 1 For any set-valued map F : Rn → P(Rm),
there exists a companion set-valued map increasing from x̄ ∈
Rn defined as F̄x̄ : Rn → P(Rm) with

F̄x̄(x) =
⋃

0≤λ≤1

F (x̄+ λ(x− x̄)) (2)

Example 1 Consider F : R→ P(R) defined by:

F (x) =
[
−
√
|x|+ sin

(πx
2

)
,
√
|x|+ sin

(πx
2

)]
(3)

The graph of F (.) as depicted in blue in Figure 1 illustrates
that this is not increasing from 0. The union of the black
and the blue envelopes presents the companion increasing set-
valued map F̄0(.) derived from F (.) based on (2).

Consider a discrete-time system:

x(k + 1) = f(x(k)) + w(k), (4)

where x(k) ∈ Rn is the state vector and w(k) ∈ Rn is a
disturbance input at the time k ∈ Z+. The function f : Rn →
Rn admits the origin as equilibrium in the disturbance-free
case f(0) = 0.

Assumption 1 The system (4) is internally stable, in the sense
that the only equilibrium is globally asymptotically stable in
the disturbance-free case, i.e., whenever w(k) ≡ 0,∀k ∈ Z+.

For the system (4), the signal w(k) ∈ Rn representing the
additive disturbance is supposed to belong, at each sampling
time, to a set described by a set-valued map: w(k) ∈W (x(k))

with W (.) defined as W : Rn → Pcl(Rn) and satisfying the
following point-wise boundedness:

Assumption 2 With the notation w̄(x) = sup{|w| : w ∈
W (x)}, it is considered that w̄(x) < ∞ for each x ∈ Rn.
For completeness, the following convention is used:

sup{|w| : w ∈W = ∅} = 0.

The point-wise boundedness excludes the case where x(t)

explodes in finite time. The following definition of bounded-
ness will be used:

Definition 3 The solution x of (4) is ultimately bounded1 if
there exists a bounded set S ⊂ Rn, possibly dependent on x0,
and a nonnegative integer T (x0, S) <∞, such that x(k) ∈ S
for all k ≥ T (x0, S) and for all x0 ∈ Rn.

The paper proposes a method to compute ultimate bounds
for the dynamics (4) and clarifies their properties in a set
theoretic framework. In this context, it is important that the
disturbance w(k) is described by the state-dependent set, i.e.,
a set-valued map W (x(k)). This allows w(k) to describe an
endogenous signal in (4).

III. NONLINEARITIES REPRESENTATION

The theory of ultimate bounds for linear time-invariant
(LTI) dynamical systems affected by point-wise bounded
disturbances is relatively mature. The analysis of LTI systems
prove to be used for the study of the general system (4) by
starting from the simple observation that:

x(k + 1) = f(x(k)) + w(k) (5)

= Ax(x) + (f(x(k))−Ax(k) + w(k)))︸ ︷︷ ︸
w̃(k)

, (6)

with w̃(k) ∈ W̃ (k) which contains, on top of the additive
uncertainty, the mismatch between the linear and the nonlinear
model. This can be achieved via the transformation of the
state-dependent disturbance:

W̃ (x(k)) = W (x(k))⊕ {f(x(k))−Ax(k)} . (7)

Is worth to be mentioned that both f(.) and W (.) can be
asymmetric and non-Lypschitz and consequently this will be
the case for the resulting mapping W̃ (.).

Example 2 Consider the dynamics (4) with

f(x) =

{
x3−0.2x(x−2)2

x3−0.2(x−8)(x−2)2 for x ∈ [−3, 3]

x/2 + 3 for x /∈ [−3, 3]
(8)

1The attribute robustly is to be added to these notions if the properties hold
for any w ∈W (x)
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Fig. 2. Disturbance-free mapping vs. the mapping with uncertainty
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and

w(k) ∈
[
−
√
|x(k)|+ sin(

πx(k)

2
),
√
|x(k)|+ sin(

πx(k)

2
)

]
︸ ︷︷ ︸

W(x(k))

,

corresponding to (3). Figure 2 shows that the nonlinear map
f(·) + w(·) in the neighbourhood of the origin substantially
differs from the local linear approximation, i.e., the Jacobian
of f at zero. Figure 3 illustrates the uncertainty around
the nonlinear model (4) as measured by the state-dependent
bound and the increasing-from-0 counterpart. Figure 4 shows
the poor global quality when Jacobian linearization is used for
A in (6). Interestingly, Figure 5 shows that choosing A = 0.5,
reduces the impact on the increasing-from-0 disturbance set.
Despite the mismatch around the equilibrium, the uncertainty
envelope associated with A = 0.5 is sharp as shown in Figure
6.

This example illustrates that the matrix A should not be
conceived only as a local approximation (via the Jacobi
linearization for example) of the (stable) nonlinear mapping
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f(.). The choice of the linear part represents an important
degree of freedom which can be exploited as long as the
model mismatch ε(x) = f(x) − Ax is incorporated in the
disturbance set for all x ∈ Rn. The state-dependent bounding
W̃ (.) defined in (7) represents the envelope of the mismatch.
The freedom of A can be used to reduce globally the impact
on the uncertainty.

A. Linear systems with bounded additive disturbances

Consider the linear system with additive disturbances

x(k + 1) = Ax(k) + w(k), (9)

with w(k) ∈ S with S ∈ S0(Rn), a star-shaped set at the
origin and Assumption 1 holds true for f(x(k)) = Ax(k).

For the dynamics (9) there exists an invariant set2:

ΩA(S) :=

∞⊕
i=0

AiS (10)

containing a collection of initial states for which the future
trajectories remain within the same set and which satisfy:
AΩA(S) ⊕ S = S. Independent of the star-shaped properties
of the argument, the relationship (10) defines a mapping

ΩA(.) : Pcl(Rn)→ Pcl(Rn). (11)

Theorem 1 For any set S ∈ S0(Rn) there exists a star-
shaped set ΩA(S) ⊕ Bε ∈ S0(Rn) which represents a robust
ultimate bounded set for the system (9). This robust ultimate
bounded is not dependent on the initial state.

Proof: The start-shaped property follows from the fact that the
Minkowski sum is a closed operation over the class of star-
shaped sets (see [18]). On one hand, the ball Bε is convex,
contains the origin and thus is star-shaped at the origin. On
the other hand ΩA(S) is an infinite Minkowski sum of star
shaped sets. The set ΩA(S) is positive invariant with respect to
(9) and by consequence the trajectories initiated from ΩA(S)

will remain in ΩA(S) at all future instances according to (10).
This proves the ultimate boundedness for the initial points
x0 ∈ ΩA(S). For the initial states x0 /∈ ΩA(S) it is sufficient
to observe that the trajectories are representing a superposition
of two trajectories

x1(k + 1) = Ax1(k) (12)

x2(k + 1) = Ax2(k) + w(k) (13)

initiated at x1(0) and x2(0) respectively and satisfying x0 =

x1(0) + x2(0). While x2(k) ∈ ΩA(S),∀k ≥ 0 in virtue of

2Denoted minimal robust positive invariant set, see [2] for further definiti-
ons and related characterizations.

the positive invariance properties, there exists a nonnegative
integer T < ∞ such that x1(k) ∈ Bε,∀k ≥ T and for any
fixed ε > 0 according to Assumption 1. The proof of ultimate
boundedness is complete.

Based on the ultimate bounds obtained for disturbances
within the star-shaped set S ⊂ S0(Rn), the homogeneity
properties of the dynamics (9) can be exploited to define:

ΩA(αS)× (αS) = (αΩA(S))× (αS) = α (ΩA(S)× S)

where the ultimate-bound set (1st block) and the disturbance
set (2nd block) are scaled by alpha. This leads to a parame-
terized family of ultimate bounds:

FA(α, S) : R+ × S0(Rn)→ S0(Rn)× P0(Rn)

FA(α, S) = α (ΩA(S)× S) (14)

This parametrization simply says that given a Schur matrix
A, for any star shaped disturbance one has a unique ultimate
bounded set with respect to the LTI dynamics. The scaling of
the disturbance leads to a scaling of the ultimate bound.

B. Nonlinear systems with state-dependent disturbances

The link between the parameterized family of ultimate
bounds for LTI systems and the ultimate bounds for the
nonlinear dynamics (4) can be drawn via the transformation
(7) by defining the function:

GA(α, S) : R+ × S0(Rn)→ S0(Rn)× Pcl(Rn)

GA(α, S) = (αΩA(S))× W̃ (αΩA(S)) (15)

and its comparison with the counterpart in (14).

Theorem 2 Consider a star-shaped-set S ∈ S0(Rn). The set
ΩA(S)⊕ Bε ∈ S0(Rn) is an ultimate bound for (4) if

FA(α, S) ⊇ GA(α, S),∀α ≥ 1. (16)

Proof: The set S being fixed, it characterizes uniquely the
set Ω(S) and consequently the ultimate bounds for a LTI
system in terms of Ω(S)⊕Bε. In the same time, by multiplying
with the scalar α ∈ R+, one obtains the set αΩ(S) which
preserves the invariance and leads to ultimate-boundedness
properties for an LTI systems with additive disturbances
within αS. With respect to the nonlinear system (4), the set
αΩ(S)⊕Bε represent a candidate ultimate bound. By writing
the nonlinear dynamics in the equivalent form (6), the link
to the LTI case is established and the validity of the ultimate
bounds is related to the covering of the admissible disturbance
set W̃ (x) by αS with an appropriate (state-dependent) scaling
α. Two cases need to be treated in order to prove the ultimate
boundedness.



Fig. 7. A star-shaped set (left), a ultimate bound (right, red) and trajectories
with random disturbances (right, colored lines)

Case 1: The invariance of ΩA(S) is guaranteed if W̃ (x) ⊆
S,∀x ∈ ΩA(S). This last inclusion holds if W̃ (ΩA(S)) ⊆ S

and is equivalent with FA(1, S) ⊇ GA(1, S), i.e., the limit
case (α = 1) in (16). It follows that for the initial states x0 ∈
ΩA(S) the set ΩA(S) itself represent an ultimate bound.

Case 2: For any initial states x0 /∈ ΩA(S), using the
fact that the origin is a point in the interior of S, there
exists α(x0) > 1 such that x0 ∈ α(x0)ΩA(S). The level of
admissible additive disturbances in this particular point of the
state space is represented by a set which is increasing from
the origin (or more precisely from ΩA(S)). As long as the
level of disturbances satisfies W̃ (x) ⊆ α(x)S, the convergence
towards the ultimate bound is guaranteed based on the LTI
model contractiveness. The condition FA(α, S) ⊇ GA(α, S)

resumes this requirement for all α > 1.

Example 3 Consider the system (4) with x(k), w(k) ∈ R2

and f(x(k)) = Aθ(x(k))x(k) with

Aθ(x(k)) = 0.75 ∗

[
cos(θ(x(k))) −sin(θ(x(k)))

sin(θ(x(k))) cos(θ(x(k)))

]
,

and θ(x(k)) = π
2 + π

0.01+|x(k)|1 .
The bounds are

W (x) = max{0.1(1+0.1|x1|+0.1|x1x2|0.2+0.5
√
x2); 0.9}P.

where P denotes the star-shaped set in Fig. 7 (left).
Take A = Aθ(0), i.e., A is the Jacobian of f at the

origin. A star-shaped ultimate bound can be obtained readily
as illustrated on the right of Fig. 7. Theorem 2 guarantees this
ultimate bound to represent a ultimate bound for (4) ∀α ≥ 1.

IV. EXTENSIONS

A. Parametrization of ultimate bounds with respect to the
fixed-points

Although the focused equilibrium is the origin, the nonlinear
state-dependent bounds W (k) does not have to be centered
at zero. Indeed, introducing flexibility in choosing the center

of the disturbance set can often reduce conservativeness of
computed ultimate bounds. This section will point to the
structural properties of the parametrization and provide the
formal extension to non-zero centered disturbances.

One of the structural properties of the results presented in
the previous section is that a given star-shaped set S ∈ S0(Rn)

bounding the disturbances for LTI dynamics (9) induces a
function for admissible state-dependent disturbances:

φ(x) : Rn → S0(Rn)× S0(Rn) (17)

φ(x) = F(HΩA(S)(x), S) (18)

which is increasing from zero. This function, defined for
each point in the state space, provides the pair of admissible
disturbances and the related ultimate bound.

Although the origin is a fixed point for both the nonlinear
system (4) and the linear system (9), the function

γ(x) : Rn → S0(Rn)× Pcl(Rn) (19)

γ(x) = G(HΩA(S)(.), W̃ (ΩA(S))) (20)

is not necessarily increasing from the origin. This makes
a major difference between the linear (homogeneous) con-
struction and the original nonlinear form (4) leading to pos-
sible conservative results whenever the Theorem 2 is used.
The mitigation of a part of this conservatism represents the
motivation for introducing a supplementary degree of freedom
for the parametrization of the ultimate bounds inherited from
the linear dynamical models. The idea will be to relax the
hypothesis of a disturbance set centered at the origin and to
admit an arbitrary point in the kernel of the star-shaped set.

Consider the generalized counterpart of the function (14):

FA(α, S) : R+ × Sw̌(Rn)→ S(I−A)−1w̌(Rn)× Sw̌(Rn)

FA(α, S) =
(
(I −A)−1w̌ ⊕ αΩA(S ⊕ {−w̌})

)
× (w̌ ⊕ α(S ⊕ {−w̌})) (21)

and the generalized function with respect to (15):

GA(α, S) : R+ × Sw̌(Rn)→ S(I−A)−1w̌(Rn)× Pcl(Rn)

GA(α, S) =
(
(I −A)−1w̌ ⊕ αΩA(S ⊕ {−w̌})

)
(22)

×W̃
(
(I −A)−1w̌ ⊕ αΩA(Sw̌ ⊕ {−w̌})

)
then the following result resumes the sufficient conditions for
the existence of ultimate bounds with respect to the non-linear
dynamics.

Theorem 3 Consider S, a star-shaped-set in Rn. ΩA(S) ⊕
Bε is an ultimate bound for (4) if there exists a point w̌ ∈
Int(kern(S)) such that FA(α, Sw̌) ⊇ GA(α, Sw̌),∀α ≥ 1.

Proof: Similar to Theorem 2.



Fig. 8. Validation of the sufficient condition in Theorem 2 for FA(α, S)

depicted in blue, based on a set centered at the origin S = [−1, 1] ∈ S0(Rn).
The state dependent bounds are depicted in red.

Example 4 In order to illustrate the reduction of conserva-
tiveness in the ultimate bound estimation let us consider the
system:

x(k + 1) = 0.5x(k) + w(k) (23)

with state-dependent bounds on the disturbance:

−1 ≤ w(x) ≤ 0.5 + 0.5
√
x if x ≤ 0

−0.2 ≤ w(x) ≤ 0.2 + 0.1x if 0 ≤ x ≤ 3

−0.2 ≤ w(x) ≤ 0.1(2 + x+ 5 ∗
√
x− 3) if x ≥ 3

The parametrization of invariant sets is particularly simple:

FA(α, S) = α ((2S)× S) .

By considering S = [−1, 1], the sufficient condition in Theo-
rem 2 leads to the ultimate bound |x| ≤ 2.618 shown in Fig.
8.

By using w̌ = 0.2 in Theorem 3, the symmetry with respect
to the origin is relaxed and the ultimate bounds can be
improved up to

|x| ≤ 2.02

as shown in Fig. 8.

B. Active input design and impact on the ultimate-bounds

Based on the previous discussion, the parametrization can
be utilized for active input design. By considering the system
with both disturbances and inputs:

x(k + 1) = f(x(k)) + w(k) + ū, (24)

the natural idea is to consider the case where the exogenous
signal can be complemented with a feed-forward control
w1(k) = w(k)+ ǔ thus playing an active role in the design of
improved ultimate bounds upon the theoretical foundations of
the Theorem 2. Finally, once the system trajectory enter the

Fig. 9. Validation of the sufficient condition in Theorem 3 for FA(α, S)

depicted in blue, based on a set S = [−0.8, 1.2] ∈ S0.2(Rn). The state
dependent bounds are depicted in red.

Fig. 10. Superposition of 1000 trajectories of (23) generated with different
initial conditions and random disturbance realizations within the bounds. Left:
absence of an active control signal u(k) = 0,∀k. Right: piecewise constant
active input (25).

ultimate bounds, the input signal can be updated in order to
further adjust the shape of the ultimate bounds thus leading to
a feedback scheme

w2(k) = w(k) + u(k).

To illustrate the concept, consider again Example 4. In the
absence of an active input, the system converge towards an
ultimate bound presented in the left part of Fig. 10. The
piecewise constant input signal:

u(k) =


1 for 0 ≤ k ≤ 30

0.5 for 30 ≤ k ≤ 80

0.18 for 80 ≤ k
(25)

leads to the result presented in the right hand side of Fig. 10
with obvious improvements in terms of ultimate bounds.

These design avenues are subject to current developments,
the algorithmic part of the developments being of primer
importance, according to the topology to the set-valued maps
in Assumption 2. For example, to achieve a desired small
ultimate bound, a judicious switching procedure is needed,
according to the assumptions, in order to make sure that



equilibria are not in the exterior of the ultimate set in the
presence of wi.

V. CONCLUSIONS

A novel framework for the analysis of systems affected
by additive state-dependent disturbances has been introduced
based on set-theoretic notions. It aims to relax the assumptions
on the bounds and mappings as for example to deal with
systems which have asymmetric nonlinearities. The basic
principle is to make use of a linear nominal part for which
the ultimate bounds exist. The ultimate bounds of the whole
nonlinear system are parameterized in terms of shapes and
scaling factors of the disturbances representing nonlinearities.
It is worth to be mentioned that star-shaped sets are employed
within the parametrization thus avoiding the usual convexity
assumptions of the linear analysis. Several sufficient conditions
are presented for the characterization of ultimate bounds, with
details on the degrees of freedom within the parametrization.
The approach is considered attractive for the design of open-
loop or closed-loop excitation signals to improve the ultimate
bounds.
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