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Characterization of ultimate bounds for systems
with state-dependent disturbances

Sorin Olard and Hiroshi Ité

Abstract—This paper pursues a framework of set characteri- disturbance whose systematic treatment is non-trivial with the
zation of dynamical systems with state-dependent disturbances. existing techniques.

It aims 1o propose anew approa(?h o ”‘_”a'_YS'S and design of Small-gain techniques are popular for verifying stability
nonlinear systems involving non-differentiability and asymme-

tric components which hamper application and effectiveness of OT equilibria of systems in the prest-ance of State-deper?dent
local linearization methods. Several characterizations of ultimate disturbances [16], [17]. However, their standard formulations

bounds are developed.The utility of shifting the x point is by themselves do not readily provide sharp estimates of

formulated as a parametrization of the ultimate bounds. ultimate bounds. The main objective of the present paper is
Index Terms—Uncertain systems. to put a light on the usefulness of numerical computations of
ultimate bounds for linear systems with point-wise bounded

l. INTRODUCTION sets of disturbances in the study of nonlinear dynamics. As

. . . . . xpected, the linear part offers orllycal information on the
The disturbance invariant sets for linear systems with stathl:t_p te bounded P Thi byc . izat
. . ultimate boundedness. This paper presents a parametrization
bounds on the additive disturbances have been characterized Paperp P

. . .. ofthese local bounds in terms of the linear dynamics, topolo

in the '90s [1], [2]. The particular set known as "minimal S , unas| S _I y I_S pology
o . " . . . of the disturbance set and xed-points, which will play an

robust positive invariant set” received an important attention ) ) i .
. L . . important role in the global analysis and design of nonlinear
[3]-[5] with applications in several analysis and control de- ntrol tom
sign problems involving set-theoretic approaches [6], fau(f'P Ol systems.
detection [7] or robust predictive control [8], [9] to mention

only a few. The closely related concept of ultimate bounds [10]
has been used for the characterization of dynamical systemd he Minkowski sum of two given setS;P R" is
in the presence of non-vanishing perturbation. It proved figscribed byS P = fx + yjx 2 Sjy 2 Pg. The norm
be instrumental in the study of linear systems with bound&j @ nite dimensional vectox 2 R" is denotedx] and the
disturbances for at least two decades [11]. There are effectRiesiion ball centered at the origin is represented By =

computational methods for the characterization of ultimafe&t 2 R" :jxj ~ g: The notationP(R") := fSjS R"g
bounds for linear dynamics with (state-dependent) bounds f&Presents th@ower setof R" in general, andP¢ (R") is

the disturbances [12], [13]. An interpretation of the ultimatie set of all closed subsets Bf, including the empty set:

Il. PRELIMINARY NOTIONS

bounds is given by the input-to-state stability (ISS) [14], [15]. Pa(R"):= S2P(R")jS=SorS=:

The present paper deals with discrete-time nonlinear sy-
stems affected by disturbance inputs with state-dependeyd nition 1 A set S R" is star-shapedat x 2
bounds. These disturbances are allowed to be arbitrary as lengif for any point x 2 S and 0 1
as they are contained in sets which are bounded point-wige.holds that x + (1 )X 2 S. The kernel of

This includes asymmetrically non-Lipschitz state-dependegt  R" denoted bykern(S) is de ned as: kern(S) =
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. Assumption 2 With the notationw(x) = supfijwj : w 2
Fo(x) W (x)g, it is considered thatv(x) < 1 for eachx 2 R".
For completeness, the following convention is used:

supfjwj:w2 W = ;g =0:

The point-wise boundedness excludes the case whgje
explodes in nite time. The following de nition of bounded-
ness will be used:

e s s . 2 v . 4 s s m De nition 3 The solutionx of (4) is ultimately boundet! if
there exists a bounded s8t R", possibly dependent o,

Fig. 1. Example of the set valued mappikd:) in (3) and the increasing and a nonnegative integdf(xo; S) < 1 , such thax(k) 2 S
from O counterpart=o(:) constructed upon (2) forall k T(xp;S) and for all xo 2 R".

The paper proposes a method to compute ultimate bounds
for the dynamics (4) and clari es their properties in a set
theoretic framework. In this context, it is important that the
disturbancew(k) is described by the state-dependent set, i.e.,
a set-valued mapV (x(k)). This allowsw(k) to describe an
endogenous signal in (4).

De nition 2 A set-valued mag- : R" ' P (R™) is called
increasingfrom x 2 R" if for all x 2 R" it holds thatF (x +
1(x x)) F(x+ o(x x))for0 1 2

Proposition 1 For any set-valued mag : R" ! P (R™),
there exists a companion set-valued niagreasingfrom x 2
R" de ned asF4 : R" ! P (R™) with

[ [1l. N ONLINEARITIES REPRESENTATION
Fx(x) = F(x+ (x X)) 2) . . o
o 1 The theory of ultimate bounds for linear time-invariant
(LTI) dynamical systems affected by point-wise bounded
Example 1 ConsiderF :R!P (R) dened by: disturbances is relatively mature. The analysis of LTI systems
F(x) = h p iXj + sin % ;p X+ sin % ! (3) Prove to be used for the study of the general system (4) by

starting from the simple observation that:
The graph ofF (:) as depicted in blue in Figure 1 illustrates

that this is not increasing fron®. The union of the black  X(k+1) = f(x(k))+ w(k) (5)
and the blue envelopes presents the companion increasing set- = Ax(x)+ (lf (x(k)) A{;(k) + w(k))}; (6)
valued mapFo(:) derived fromF () based on(2). w(k)

Consider a discrete-time system: with w(k) 2 W (k) which contains, on top of the additive

uncertainty, the mismatch between the linear and the nonlinear
model. This can be achieved via the transformation of the
wherex(k) 2 R" is the state vector and/(k) 2 R" is a state-dependent disturbance:

disturbance input at the time2 Z. . The functionf : R" !

R" admits the origin as equilibrium in the disturbance-free
casef (0)=0.

x(k+1) = f(x(k)) + w(k); (4)

W(x(k) = W(x(k) f f(x(k) Ax(kg:  (7)

Is worth to be mentioned that both(:) and W(:) can be

A sion 1 Th . s int llv stable. in th asymmetric and non-Lypschitz and consequently this will be
ssumption e systend) is internally stable, in the Sense, . case for the resulting mappitty ().

that the only equilibrium is globally asymptotically stable in

he di -f i.e., wh 8k 2 Z,. . . .
the disturbance-free case, i.e., whenewgk) 0;8 Example 2 Consider the dynamic) with

For the system (4), the signal(k) 2 R" representing the ( X3 0:2x(x 2)2 )
additive disturbance is supposed to belong, at each sampling f(x)=  *° 02(x 8)(x 2 forx2[ 33 (8)
’ Xx=2+3 forx2[ 3;3]

time, to a set described by a set-valued mafk) 2 W (x(k))

. . . on n s
with W() dened asW : R" I P C|(R ) and SatISfymg the 1The attributerobustlyis to be added to these notions if the properties hold
following point-wise boundedness: for anyw 2 W (x)



Fig. 2. Disturbance-free mapping vs. the mapping with uncertainty
Fig. 4. Mapping using a Jacobi linearization vs. the increasing ffbm
counterpart.
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Fig. 3. Mapping with uncertainty vs. the increasing fréntounterpart

and Fig. 5. Mapping using a linear approximation vs. the increasing ffbm
p - _ . p — ) counterpart.
w(k) 2 ix(K)j + sin( x2(k)); ix(K)j + sin( Xék)) ;
| {z }
W (x(k))

corresponding tq3). Figure 2 shows that the nonlinear map
f()+ w() in the neighbourhood of the origin substantially
differs from the local linear approximation, i.e., the Jacobian
of f at zero. Figure 3 illustrates the uncertainty around
the nonlinear mode(4) as measured by the state-dependent
bound and the increasing-fro@€ounterpart. Figure 4 shows
the poor global quality when Jacobian linearization is used for
A in (6). Interestingly, Figure 5 shows that choosiAg= 0:5,
reduces the impact on the increasing-fré@alisturbance set.
Despite the mismatch around the equilibrium, the uncertainty
envelope associated with = 0:5 is sharp as shown in Figure

6.

Fig. 6. Comparison of the set valued mapping using increasing fdfom
This example illustrates that the matrix should not be set disturbances. Original nonlinear system vs. linear approximation of the

conceived only as a local approximation (via the Jacofyynamics
linearization for example) of the (stable) nonlinear mapping



f (:). The choice of the linear part represents an importatite positive invariance properties, there exists a nonnegative
degree of freedom which can be exploited as long as theegerT < 1 such thatx;(k) 2 B ;8k T and for any
model mismatch (x) = f(x) Ax is incorporated in the xed > 0 according to Assumption 1. The proof of ultimate
disturbance set for alt 2 R". The state-dependent boundindpoundedness is complete. ]

W () de ned in (7) represents the envelope of the mismatch. Based on the ultimate bounds obtained for disturbances
The freedom ofA can be used to reduce globally the impaawithin the star-shaped s&& S ¢(R"), the homogeneity

on the uncertainty. properties of the dynamics (9) can be exploited to de ne:

a(S) (S)=(C a(8) (S)= (a(S) 9

where the ultimate-bound set (1st block) and the disturbance
set (2nd block) are scaled by alpha. This leads to a parame-

A. Linear systems with bounded additive disturbances

Consider the linear system with additive disturbances

x(k+1) = Ax(k)+ w(k); (9) terized family of ultimate bounds:
with w(k) 2 S with S 2 Sp(R"), a star-shaped set at the Fa(;S) : R+ S o(R")!S o(R") P o(R")
origin and Assumption 1 holds true fér(x(k)) = Ax (k). Fa(:S) = ( a(S) S) (14)
For the dynamics (9) there exists an invarian€set
M This parametrization simply says that given a Schur matrix
A(S) = Als (10) A, for any star shaped disturbance one has a unique ultimate
i=0 bounded set with respect to the LTI dynamics. The scaling of

containing a collection of initial states for which the futurehe disturbance leads to a scaling of the ultimate bound.
trajectories remain within the same set and which satisfy:

A a(S) S = S:lIndependent of the star-shaped propertigs. Nonlinear systems with state-dependent disturbances

of the argument, the relationship (10) de nes a mapping The link between the parameterized family of ultimate

A():Pg(RMIP o(RM): (11) bounds for LTI systems and the ultimate bounds for the
nonlinear dynamics (4) can be drawn via the transformation

Theorem 1 For any setS 2 Sy(R") there exists a star- (7) by de ning the function:
shaped set A(S) B 2 So(R") which represents a robust
ultimate bounded set for the systg®). This robust ultimate
bounded is not dependent on the initial state. G(:S) = ( a(8) W( a(S) (15)

Proof: The start-shaped property follows from the fact that thaenOI its comparison with the counterpart in (14).

Minkowski sum is a closed operation over the class of sta]t- .

heorem 2 Consider a star-
shaped sets (see [18]). On one hand, the Balis convex,

A
contains the origin and thus is star-shaped at the origin. On
the other hand A(S) is an in nite Minkowski sum of star Fa(58) Ga(;S)8 L (16)

shaped sets. The seh (S) is positive invariant with respect to Proof: The setS being xed, it characterizes uniquely the

(9) and by consequence the trajectories initiated frop(S) set ('S) and consequently the ultimate bounds for a LTI

WI|! remain in A(S).at all future instances accord_ln_g. to (1(_))'system interms of S) B . In the same time, by multiplying
This proves the uIt|rln:?1t.e boundedness for.the mmgl pom\tﬁith the scalar 2 R., one obtains the set ( S) which
Xo2 a(S). For the |r.1|t|al §tate3(o Z a(S) I_t Is suf cient ,Preserves the invariance and leads to ultimate-boundedness
to observg that.the trajectories are representing a superposi 6%‘perties for an LTI systems with additive disturbances
of two trajectories

within S . With respect to the nonlinear system (4), the set

G (;S) : Rs So(R")!S o(R") P g(R")

shaped-s&2 Sp(R"). The set
(S) B 2 Sp(R") is an ultimate bound fo(4) if

xi(k+1) = Axy(k) (12) ( S) B represent a candidate ultimate bound. By writing
xo(k+1) = Axa(k)+ w(k) (13) the nonlinear dynamics in the equivalent form (6), the link
to the LTI case is established and the validity of the ultimate
initiated atx1(0) andx2(0) respectively and satisfyingo =  pounds is related to the covering of the admissible disturbance

x1(0) + x2(0). While xa(k) 2 a(S);8k 0 in virtue of ety (x) by S with an appropriate (state-dependent) scaling
2Denotedminimal robust positive invariant sesee [2] for further de niti- - Two cases need to be treated in order to prove the ultimate
ons and related characterizations. boundedness.



of the disturbance set can often reduce conservativeness of
computed ultimate bounds. This section will point to the
structural properties of the parametrization and provide the
formal extension to non-zero centered disturbances.

One of the structural properties of the results presented in
the previous section is that a given star-shape®<25,(R")
bounding the disturbances for LTI dynamics (9) induces a

function for admissible state-dependent disturbances:
Fig. 7. A star-shaped set (left), a ultimate bound (right, red) and trajectories P

with random disturbances (right, colored lines) (X) - RIS O(Rn) S O(Rn) (17)

(x) = FMH ,(5(x);S) (18)
Case 1:The invariance of a(S) is guaranteed itW (x)
S;8x 2  A(S). This last inclusion holds ifW( A(S)) S
and is equivalent withF5 (1;S) G a(1;9), i.e., the limit
case ( =1) in (16). It follows that for the initial statexg 2
A(S) the set A(S) itself represent an ultimate bound.
Case 2:For any initial statesxgo 2 A(S), using the
fact that the origin is a point in the interior d8, there (x) : R"IS o(R") P a(R") (19)
exists (Xg) > 1 such thatxg 2 (Xg) a(S). The level of xX) = GH ,():W( a(9) (20)
admissible additive disturbances in this particular point of the

. S . iS not n rily increasing from the origin. This mak
state space is represented by a set which is increasing frc?m ot necessarlly Increasing from the orig S MaKes

the origin (or more precisely from (S)). As long as the a major difference between the linear (homogeneous) con-

level of disturbances satis &8 (x) (x)S, the convergence struction and the original nonlinear form (4) leading to pos-

towards the ultimate bound is guaranteed based on the Ifl_lﬁle c.ct).nsirvatw;a resultts ]:N:;?never the tTheorem 2 Ist u?re]d.
. . mitigation r i nservatism represen
model contractiveness. The conditiérn(;S) G a(;S) € gation ot a part of this conservatism represents the

. : motivation for introducing a supplementary degree of freedom
resumes this requirement for alk> 1. | T ) ) )
for the parametrization of the ultimate bounds inherited from

Example 3 Consider the systertd) with x(k);w(k) 2 R2 the linear dynamical models. The idea will be to relax the

which is increasing from zero. This function, de ned for
each point in the state space, provides the pair of admissible
disturbances and the related ultimate bound.

Although the origin is a xed point for both the nonlinear
system (4) and the linear system (9), the function

andf (x(k)) = A (x(k))x(k) with hypothesis of a disturbance set centered at the origin and to
" _ # admit an arbitrary point in the kernel of the star-shaped set.
A (x(k))=0:75 C_OS( (k) sin (- (x(k)) : Consider the generalized counterpart of the function (14):
sin( (x(k)))  cos( (x(k)))
FA(;S) : Ry Sw(RM!S w(R") S w(R"
and (X(k)): §+ TR A(. ) ) W(l )  A) W( ) W( )
The bounds are Fa(GS) = (1 A “w A(S f  wg)
(w (S f wg) (21)

W(x) = maxf0:1(1+O:1jx1j+0:1jx1x2j0:2+0:5p X2); 0:9gP:

whereP denotes the star-shaped set in Fig. 7 (left). and the generalized function with respect to (15):

Take A = A (0), i.e,, A is the Jacobian off at the Gy\(;S) : R+ S w(R")!S ( a) :w(R") P a(R")
origin. A star-shaped ultimate bound can be obtained readilg, (.5 = (1 A) lw A(S f wg) (22)
as illustrated on the right of Fig. 7. Theorem 2 guarantees this W A) lw (Sw | wg)

A

ultimate bound to represent a ultimate bound {4} 8 1
then the following result resumes the suf cient conditions for

the existence of ultimate bounds with respect to the non-linear
IV. EXTENSIONS dynamics.

A. Parametrization of ultimate bounds with respect to the
xed-points Theorem 3 ConsiderS, a star-shaped-set iR". A (S)
Althouah the f d iibrium is the oriain. th i B is an ultimate bound fo4) if there exists a pointv 2
ough the focused equilibrium is the origin, enonmea]rnt( kern(S)) such thatFa(:S w) G a(:Sw):8 1
state-dependent bound¥ (k) does not have to be centered
at zero. Indeed, introducing exibility in choosing the center Proof: Similar to Theorem 2.



Fig. 8. Validation of the suf cient condition in Theorem 2 féta (;S ) Fig. 9. Validation of the suf cient condition in Theorem 3 féta (;S )
depicted in blue, based on a senteredat the originS =[ 1;1] 2 So(R"). depicted in blue, based on a s&t=[ 0:8;1:2] 2 Sp.2(R"). The state
The state dependent bounds are depicted in red. dependent bounds are depicted in red.

Example 4 In order to illustrate the reduction of conserva-
tiveness in the ultimate bound estimation let us consider the

system:
x(K + 1) = 0 :5x(k) + w(k) (23)
with state-dependent bounds on the disturbance:
1 w(x) 05+ 0:5IO X ifx O
0:2 w(x) 0:2+0:1x ifoO x 3 Fig. 10. Superposition 0f000 trajectories of (23) generated with different
02 w(x) Ol12+x+5 ﬁ) ifx 3 initial conditions and random disturbance realizations within the bounds. Left:

absence of an active control signalk) = 0 ; 8k. Right: piecewise constant
The parametrization of invariant sets is particularly simple: active input (25).

Fa(:S)= (2S) 9):

By consideringS = [ 1:1], the suf cient condition in Theo- Ultimate bounds, the input signal can be updated in order to
rem 2 leads to the ultimate bougj  2:618 shown in Fig. further adjust the shape of the ultimate bounds thus leading to
8. a feedback scheme

By usingw = 0:2 in Theorem 3, the symmetry with respect
to the origin is relaxed and the ultimate bounds can be
improved up to To illustrate the concept, consider again Example 4. In the
jXj 2:.02 absence of an active input, the system converge towards an

ultimate bound presented in the left part of Fig. 10. The
piecewise constant input signal:

wa(K) = w(k) + u(k):

as shown in Fig. 8.

B. Active input design and impact on the ultimate-bounds 2 1lfor 0 k 30
u(k) = S 055 for 30 k 80 (25)

Based on the previous discussion, the parametrization can
0:18 for 80 k

be utilized for active input design. By considering the system
with both disturbances and inputs: leads to the result presented in the right hand side of Fig. 10
with obvious improvements in terms of ultimate bounds.
These design avenues are subject to current developments,
the natural idea is to consider the case where the exogenthes algorithmic part of the developments being of primer
signal can be complemented with a feed-forward controhportance, according to the topology to the set-valued maps
wy(K) = w(k)+ u thus playing an active role in the design ofn Assumption 2. For example, to achieve a desired small
improved ultimate bounds upon the theoretical foundations oitimate bound, a judicious switching procedure is needed,
the Theorem 2. Finally, once the system trajectory enter thecording to the assumptions, in order to make sure that

x(k+1) = f(x(k)+ w(k)+ u; (24)



equilibria are not in the exterior of the ultimate set in th@3] S. Olaru and V. Reppa, “Ultimate bounds and robust invariant sets for
presence ofv; . linear systems wi.th .sta.te-dependent disturbancesDémelopments in
Model-Based Optimization and ControlSpringer, 2015, pp. 339-359.
[14] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
V. CONCLUSIONS Nonlinear and optimal control theory Springer, 2008, pp. 163-220.
[15] z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
A novel framework for the analysis of systems affected nonlinear systemsAutomatica vol. 37, no. 6, pp. 857-869, 2001.

by additive state-dependent disturbances has been introdudéh Z-P- Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS
systems and applicationdylathematics of Control, Signals and Systems

based on set-theoretic notions. It aims to relax the assumptions 4 7 5. 2. pp. 95-120, 1994.
on the bounds and mappings as for example to deal wijth] H. Ito, “Utility of iISS in composing lyapunov functions for intercon-

systems which have asymmetric nonlinearities. The basic nections/ IFAC Proceedingsvol. 46, no. 23, pp. 723-730, 2013.
[18] S. Olaru, J. De Doa, M. Seron, and F. Stoican, “Positive invariant sets

prlnC|pIe is to make use of a linear nominal part for which for fault tolerant multisensor control schemelsiternational Journal of
the ultimate bounds exist. The ultimate bounds of the whole Control, vol. 83, no. 12, pp. 2622-2640, 2010.

nonlinear system are parameterized in terms of shapes and
scaling factors of the disturbances representing nonlinearities.
It is worth to be mentioned that star-shaped sets are employed
within the parametrization thus avoiding the usual convexity
assumptions of the linear analysis. Several suf cient conditions
are presented for the characterization of ultimate bounds, with
details on the degrees of freedom within the parametrization.
The approach is considered attractive for the design of open-
loop or closed-loop excitation signals to improve the ultimate
bounds.
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