
HAL Id: hal-01844312
https://centralesupelec.hal.science/hal-01844312

Submitted on 19 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges for Reliable and Large Scale Evaluation of
Android Malware Analysis

Jean-François Lalande, Valérie Viet Triem Tong, Mourad Leslous, Pierre
Graux

To cite this version:
Jean-François Lalande, Valérie Viet Triem Tong, Mourad Leslous, Pierre Graux. Challenges for Reli-
able and Large Scale Evaluation of Android Malware Analysis. SHPCS 2018 - International Workshop
on Security and High Performance Computing Systems, Jul 2018, Orléans, France. pp.1068-1070,
�10.1109/HPCS.2018.00173�. �hal-01844312�

https://centralesupelec.hal.science/hal-01844312
https://hal.archives-ouvertes.fr


Challenges for Reliable and Large Scale 

Evaluation of Android Malware Analysis  

Jean-François Lalande, Valérie Viet Triem Tong, Mourad Leslous and Pierre Graux 

CentraleSupélec, Inria, Université de Rennes 1, CNRS, IRISA 

F-35065 Rennes, France 

jean-francois.lalande@inria.fr 

 

INVITED TALK EXTENDED ABSTRACT 
 

 
Since Android became the first smartphone operating 

system, malware developers have put large efforts to craft new 
threats uploaded to the Google Play store and other third 
market places. Companies and researchers now include in their 
activities the analysis of malware targeting smartphones. Most 
of the time, the problem that is addressed consists in deciding if 
an application should be considered as a malware or not. 
Nevertheless, once a malware is tagged as a malicious 
application, users that have been infected ask for more 
technical explanations about the threat they have been exposed 
to. Dissecting a malware requires a lot of efforts for a security 
analyst to be conducted and companies are in demand of new 
tools for automatizing the analysis. 

From a research perspective, testing new ideas about 
malware analysis requires performing experiments on malware 
datasets. Compared to other operating systems, Android has 
fast development cycles with a new major release each year. A 
lot of malware samples do not run anymore when executed on 
new versions of Android. Experiments of the literature 
becomes quickly out of date and non reproducible when 
studying few samples. Thus, working on larger datasets, built at 
the time of writing, may give more consistent experimental 
results. New challenges come from using such datasets. First, 
as the behavior of the samples are unknown, the obtained 
results from the experiments are difficult to evaluate. Second, 
the experiment itself may require a large amount of time, 
depending of the quality of the automatization and the 
complexity of the analysis.  Third, the protections that are put 
by developers in the malware decrease the quality of the 
results. This paper discusses these challenges and describes our 
efforts to build reliable and large scale experiments. 

A. Lessons Learned from Manual Investigation 

We started our research efforts in malware analysis with the 
help of several students that were asked to reverse known or 
unknown malware samples. Well known samples, such as 
SimpleLocker [1] or DroidKungFu [2], help to discover the 
basics of reverse engineering and to study complex attacks in a 
reasonable amount of time. Most of the time, picking randomly 
a sample identified as malicious by online platforms such as 
VirusTotal gives malware of low interest that send premium 
rated SMS or display unwanted ads. 

Studying malware samples helped us to understand that 
malware developers now implement countermeasures to defeat 
both static and dynamic analysis tools. To illustrate and discuss 
these countermeasures, we built a small representative dataset, 
called kharon dataset [3], that technically describes the way 
some samples try to escape analysis tools. These 
countermeasures can take different forms.  

For defeating static analysis, malware developers use: 
malformed files raising an exception when parsed but keeping 
intact the application behavior; obfuscated payloads mixed 
with benign code which complexifies manual investigations; 
native code that hide parts of the payload; dynamic loading or 
packers that make the code unavailable without analyzing the 
runtime. These countermeasures make unreliable using solely 
static analysis techniques. 

For defeating dynamic tools, malicious applications contain 
countermeasures for interacting and testing their environment: 
emulators can be detected because of the lack of hardware 
components or because emulation side-effects [14]; 
reconnaissance techniques can recognize known analysis tools; 
logic bombs may encapsulate the payload and prevent its 
execution [4]; malicious code may require that the user uses the 
graphical interface of the application. Thus, any fully 
automated experiment on a dataset may suffer from these 
countermeasures and there are little chances to observe the 
dynamic behavior of a malware sample at runtime. For 
example, Tam et al. reported a successful stimulation of 2.78% 
to 3.08% of the malicious code related to SMS sending on their 
dataset [5]. When targeting more general parts of the code 
(telephony abuse, introspection, contact access), we observed a 
covering of 20% at runtime, without any particular stimulation 
[6]. These variations suggest that the chosen dataset may 
influence the experimental results and research efforts should 
be encouraged for elaborating evaluation datasets. 

B. Existing Malware Datasets 

Several papers have defined working datasets of malware in 
order to improve the repeatability of experiments. As pointed 
out by Wei et al. [7], the malware Genome project [8] is one of 
the first dataset to be largely used by the community which is 
now outdated and no longer supported.  



In parallel of this academic dataset, a lot of researchers use 
randomly chosen malware from public or fee paying 
repositories such as Contagio Mobile, VirusTotal, Koodous. 
This approach has several advantages. It avoids building 
manually any contextual information for each sample, for 
example the family of the samples, the location of the 
malicious code, the triggering conditions, the required 
environment. Nevertheless, manipulating a large dataset 
without any knowledge about the samples makes difficult a 
precise evaluation of the obtained results. At least, conducting 
large scale experiments on thousands of malware may improve 
the confidence in the results, compared to an evaluation 
conducted on a small number of samples manually reversed. 

Recently, new efforts have been done for building up-to-
date datasets with additional contextual information, as an 
improvement compared to random datasets. For example, 
AndroZoo [9] is a large dataset of three millions Android 
applications. In addition to the samples themselves, AndroZoo 
contains an analysis of pairs of repackaged applications [10] 
which helps to distinguish the original application and the 
repackaged one with the introduced payload. Another dataset, 
called AMD [7], has been built from 2010 to 2016 and contains 
24,650 malware spread among 71 families. Each representative 
sample has been manually reversed and a graphical 
representation of the malicious parts of the code is given. 
Nevertheless, a structured and digital version of these results is 
not available yet. The AMD dataset is, by far, the first to 
structure the nature of the malicious code but we believe that 
more information is needed when performing experiments 
when the malware is run. 

Using an existing dataset must be clearly linked with the 
reasons authors created it. For example, a dataset without 
enough precise attributes would not be usable for machine 
learning algorithms. Similarly, for an experiment that intends to 
execute the payload at runtime, the name of all methods that 
are malicious are required, especially when the code is 
repackaged in a benign application. The conditions to be met 
for executing the payload, i.e. the Android version, the events 
to trigger, the data expected by the malware, needs to be given 
for repeating experiments. Without such information, we 
believe that it is hazardous to compare experimental results on 
the same dataset as illustrated later in Section D and E. 

C. Building Malware Datasets 

Building a dataset from scratch is thus a difficult task. 
During our work on a specific dataset focused on Android 
malware that use native code,  we had to deal with the problem 
of determining if a sample can be confirmed as malicious. We 
collected 2000 malware samples by downloading each day 20 
recent samples from the Koodous repository and 30 random 
samples from the AndroZoo repository [9]. We identified 683 
samples that use native calls in order to build our specialized 
dataset. Submitting these samples to VirusTotal is the usual 
method that enables to decide if these samples are real malware 
(TP for True Positive) and not regular applications submitted to 
the repositories (False Positive) [11-13, 20]. As shown in 
Figure 1, 48% of samples are not recognized by any antiviruses 
used by VirusTotal. Then, for a detection of at least 5 antivirus 
and more the curve is almost linear: there is no obvious 

threshold to decide that a sample has been recognized by 
enough antiviruses to classify it as a TP. We were expecting a 
drop of detection for a certain number of antiviruses, as 
represented  by the clear curve. Additionally, these results may 
change with time, as the used antiviruses update frequently 
there data. We conclude from this experiment that using 
VirusTotal as an Oracle for confirming that a sample is 
malicious is not reliable, especially for recent samples. 

 

Figure 1. Ratio of recognized malware by at least x antivirus 

D. Automatizing Dynamic Analysis 

Large scale experiments require an automatization of the 
analysis process. For a static analysis, a distributed 
infrastructure can be employed, but for executing samples to 
observe its actions, the problem is more complex.  

First of all, the setup of the execution environment is of 
primary importance. We believe that executing a sample in an 
emulator would lead to inconsistent results because of their 
ability to detect emulation artifacts [14]. Thus, a reliable 
environment requires a real smartphone connected to the 
internet and with plausible traces of usage. The version of the 
operating system may also influence the results and thus, 
repeating experiments may avoid compatibility issues and help 
to get a working malware execution. Additionally, because 
experimenting with a malware may damage the operating 
system, a fresh install should be restored between two 
experiments. Such a setup cannot be easily deployed in a cloud 
infrastructure which limits the scalability of experiments. 

Second, proper inputs should feed the application that is 
analyzed [15]. In particular, the graphical interface should be 
manipulated carefully [6, 16], external events such as SMS 
receiving or internal messages should be generated if needed 
[5, 17]. Fuzzing techniques [18], symbolic or concolic 
executions [19] are now actively investigated for reducing the 
number of inputs necessary to trigger the payload. 

Finally, an oracle is required to evaluate the success of an 
experiment where a malware is executed. When using a pre-
built dataset where the malicious code is clearly identified, the 
oracle should monitor the successful execution of this part of 
the code. For a dataset that is built manually or if the malicious 
code is not clearly pointed out, the implementation of the 
oracle becomes a scientific challenge. 

With these remarks in mind, we designed an execution 
platform, called the Kharon platform located in the High 
Security Laboratory of Inria Rennes. It is composed of two 
components: a static and dynamic analysis that are orchestrated 



by GroddDroid [5, 20], and a kernel component, Blare [21], 
that helps to monitor the actions of the malware

1
. We briefly 

discuss the performance of the platform in the next section. 

E. Performances of Dynamic Analysis 

Even if the performances are linked to the difficulties of the 
scalability of the experimental setup, some other figures from 
our experiments should be mentioned. 

Executing unknown applications, even if in a polished 
environment that is as close as possible to a real smartphone, 
may result in an unexpected crash. When launching the 
application (or implemented component such as a service) 
without any further stimulation, we observed 5% of crash for 
the AMD dataset [7] and 20% of crash for our specialized 
native dataset. Such results are of good quality, compared to 
the 76% of crashed apps reported by Yang et al. [22]. Malware 
that have crashed are usually removed from experiments [22] 
and never investigated, hiding potential dangerous samples. 

We measured the analysis time when a sample is operated 
by the Kharon platform. The preparation of the smartphone 
requires 60s, the static analysis phase is of 7s on average and 
the dynamic analysis lasts 245s on average. In total, we need 
312s for executing one suspicious method. Thus, for the AMD 
dataset where our 135 samples contain 99 suspicious locations 
on average, we need in the worst case 48 days of experiment 
when using one smartphone. Repeating experiments on 
Android versions from KitKat to Oreo, which covers 72% of 
devices according to Google

2
, would require 8 repeated 

experiments, requiring in total approximatively one year. Such 
a simple estimation illustrates the limits of dynamic analysis. In 
particular, locating the malicious code is of primary 
importance, before executing this code. 

F. Conclusion 

This paper has presented some of the difficulties related to 
experiments with Android malware. Currently, no dataset is 
enough mature for being used for comparison purpose and for 
different research objectives. Challenges remain unaddressed 
for building datasets with meta-data and execution 
environments that help to reproduce large scale experiments. 
Finally, processing samples with multiple smartphones, in a 
scalable way, remains a difficult challenge that requires 
rethinking the architecture of both the experiments and the 
internal components of Android. 

REFERENCES 

[1] R. Lipovsky, RESET analyzes first android fileencrypting, TOR-enabled 
ransomware, June 2014. 

http://www.welivesecurity.com/2014/06/04/simplocker/ 

[2] X. Jiang, Security alert: New sophisticated android malware droidkungfu 
found in alternative chinese app markets, May 2011. 
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html 

[3] N. Kiss, J.-F. Lalande, M. Leslous, and V. Viet Triem Tong, “Kharon 
dataset: Android malware under a microscope,” in The LASER 

                                                           
1
 Platform: http://kharon.irisa.fr and resources: http://kharon.gforge.inria.fr 
2 Distribution dashboard : https://developer.android.com/about/dashboard 

This work has received a French government support granted to the COMIN 
Labs excellence laboratory (ANR-10-LABX-07-01 

Workshop: Learning from Authoritative Security Experiment Results, 
2016, pp. 1–12. 

[4] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. 
Vigna, “TriggerScope: Towards Detecting Logic Bombs in Android 
Applications,” in 37th IEEE Symposium on Security and Privacy, 2016, 
pp. 1–33. 

[5] K. Tam, S. Khan, A. Fattori, and L. Cavallaro, “CopperDroid: 
Automatic Reconstruction of Android Malware Behaviors,” in 22nd 
Annual Network and Distributed System Security Symposium, 2015. 

[6] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J. F. Lalande, and V. 
Viet Triem Tong, “GroddDroid: A gorilla for triggering malicious 
behaviors,” in 10th International Conference on Malicious and 
Unwanted Software, MALWARE 2015, 2015, pp. 119–127. 

[7] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep Ground Truth 
Analysis of Current Android Malware,” in International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment, 
2017, pp. 252–276. 

[8] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization 
and Evolution,” in IEEE Symposium on Security and Privacy, 2012, no. 
4, pp. 95–109. 

[9] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: 
collecting millions of Android apps for the research community,” in 13th 
International Workshop on Mining Software Repositories, 2016, pp. 
468–471. 

[10] L. Li et al., “Understanding Android App Piggybacking: A Systematic 
Study of Malicious Code Grafting,” IEEE Trans. Inf. Forensics Secur., 
vol. 12, no. 6, pp. 1269–1284, Jun. 2017. 

[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: semantics-
based detection of Android malware through static analysis,” in 22nd 
ACM SIGSOFT International Symposium on Foundations of Software 
Engineering, 2014, pp. 576–587. 

[12] Y. Duan et al., “Things You May Not Know About Android 
(Un)Packers: A Systematic Study based on Whole-System Emulation,” 
in Annual Network and Distributed System Security Symposium, 2018. 

[13] M. Zheng, M. Sun, J. C. S. Lui, and C. Science, “DroidAnalytics: A 
Signature Based Analytic System to Collect, Extract, Analyze and 
Associate Android Malware,” in 12th IEEE International Conference on 
Trust, Security and Privacy in Computing and Communications, 2013, 
pp. 163–171. 

[14] T. Vidas and N. Christin, “Evading Android Runtime Analysis via 
Sandbox Detection,” in 9th ACM Symposium on Information, Computer 
and Communications Security, 2014, pp. 447–458. 

[15] M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator for 
the Dynamic Analysis of Android Malware,” in The Network and 
Distributed System Security Symposium, 2016, no. February, pp. 21–24. 

[16] Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero, 
“PuppetDroid: A User-Centric UI Exerciser for Automatic Dynamic 
Analysis of Similar Android Applications,” 19-Feb-2014. 

[17] M. Y. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator for 
the Dynamic Analysis of Android Malware,” in The Network and 
Distributed System Security Symposium, 2016, no. February, pp. 21–24. 

[18] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making Malory Behave 
Maliciously: Targeted Fuzzing of Android Execution Environments,” 
2017 IEEE/ACM 39th Int. Conf. Softw. Eng., pp. 300–311, 2017. 

[19] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. 
Vigna, “TriggerScope: Towards Detecting Logic Bombs in Android 
Applications,” in 37th IEEE Symposium on Security and Privacy, 2016, 
pp. 1–33. 

[20] M. Leslous, V. Viet Triem Tong, J.-F. Lalande, and T. Genet, 
“GPFinder: Tracking the Invisible in Android Malware,” in 12th 
International Conference on Malicious and Unwanted Software, 2017, 
pp. 39–46. 

[21] R. Andriatsimandefitra, S. Geller, and V. Viet Triem Tong, “Designing 
information flow policies for Android’s operating system,” in IEEE 
International Conference on Communications, 2012, pp. 976–981. 

[22] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware Detection in 
Adversarial Settings: Exploiting Feature Evolutions and Confusions in 
Android Apps,” 2017, pp. 288–302. 


