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Coverage estimation of multicast OFDM systems
based on stochastic geometry

José Saavedra, Christopher Flores, Anthony Busson, Pierre Duhamel

Abstract—Quality of service has become crucial in wireless
communications, due to the high data rates needed to provide
multimedia services with sufficient quality. In this sense, the
integration of OFDM in wireless technologies has made it
possible to grant reliable communications, reducing the effects of
attenuation and multipath propagation that degrades the services
in environments where the devices are located. This problem may
become even more important if, as it is expected, the classical
broadcast TV is left to the wireless network operators, in order
to recover the frequencies that are currently used for this service.
This paper aims to provide efficient tools to estimate the coverage
of an OFDM transmission system using stochastic geometry and
information theory to model the capacity of a cell when users are
known to the transmitter (multicast situation). We consider that
users are distributed uniformly over a fixed radius ball from the
base stations. We derive the equations and develop simulations
to model the distribution of channel capacity to ensure a certain
quality of service. Our results indicate that for a user, on average,
wireless multicast can be improved by 20% compared to classical
broadcast.

Keywords—Wireless Multicast, OFDM, Coverage Capacity.

I. INTRODUCTION

N the last decade wireless technologies have grown quickly.

The devices that deliver telephony, data and multiple ser-
vices, are widely deployed. Between the standards, Orthogonal
Frequency Division Multiplexing (OFDM) are more and more
present. By the side of wireless packet data transmission
we have 802.11a/g/n/ac/ad [1], popularly known as Wireless
Fidelity (WI-FI) and by the side of mobile communications we
have the consortium of the 3rd Generation Partnership Project
Long Term Evolution (3GPP-LTE) with 5G [2] [3], both have
integrated OFDM given its capacity to overcome impairments
due to scattering environments where the devices are deployed.
The main trick of OFDM is to take a channel bandwidth and
split them in many orthogonal sub-channels with low data rate,
granting reliable communication.

Usually, in wireless networks, when the same data stream
is provided to a group of users, Time Division Multiplexing is
used to allocate the same data to different block time resources,
for each user, with power allocation and the modulation and
coding scheme negotiated between the base station (BS) and
the user device. This is very costly in terms of resource (one
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resource allocated to each user). In classical broadcasting, in
contrast, the same information is transmitted via the same
resource to all users, which are a priori unknown to the
transmitter. This corresponds to a large saving in terms of
resource but no power allocation can be performed by the
transmitter, which corresponds to a waste of energy. This
strategy is unavoidable when the number of users is very large.
However, there is a possibility that, in the near future, pure
broadcast (for terrestrial TV) will disappear, and the wireless
networks will be in charge of performing this service [4] [S]. If
this happens, the number of users to be served simultaneously
by the same transmitter (base station) will be reasonable, and
one can envision to use a wireless multicast strategy, where
the users are known to the transmitter, which can therefore
perform some optimization. The frontier between these two
cases is however not obvious, and this paper tries to clarify
this trade-off.

Our work focuses on find an objective criterion to decide
if the optimization is still useful, or if the uniform power
allocation is the best way to transmit data to a group of users.
We name wireless multicast when a group of users subscribe
to the same service and the CSI are available on BS. When the
uniform power allocation is used to transmit the same data,
we name it broadcast, like the old-fashioned broadcast-TV.

In such a situation the transmitter has no hope that the
transmitted signal will be received by all users, because the
randomness of channels makes some of them really intractable.
In such case, one way to take these events into account is via
outage capacity: a broadcast channel is always designed in
such a way that z % of the users are certain to obtain a given
rate [6] [7].

In practical situations, the coverage of an access point or
base station can be made using long simulations using a
merge between analytic and empirical methods [8]. However,
in the last decade, techniques based on stochastic geometry
[9] [10] were proposed, which allow to solve analytically such
problems related to wireless communications.

Stochastic geometry (SG) is a discipline of applied mathe-
matics that studies spatial random patterns with emphasis on
the theory of Point Processes (PP) [10]. The classic SG models
are mainly based on the study of Poisson Point Processes
(PPP) [11]. The simplest model is the Boolean (BM), which is
composed of random balls centered at each point of the process
[10]. Another model commonly used in SG are the Voronoi
Tessellations (VT), which are composed of finite polyhedrons
(cells) containing all the points that are closest to the center
of the cell [10] [12]. The SG has diverse applications in
biology, astronomy, wireless communications, among others.



For instance, in the context of wireless communications, the
location of base stations (BSs) can be modeled using a PPP,
while coverage areas can be defined using a Voronoi cell [13].

We intend to extend the stochastic geometry techniques to
OFDM channels systems, and it will be shown that analytical
solutions are not fully feasible, and that only mixed analyti-
cal/numerical solutions are obtained. This process will anyway
be faster than the many simulations usually required.

It’s known that the percentage of users meeting the given
bitrate constraint depend on their location. Therefore, we
assume that the users are distributed according to a certain
spatial point process. It allows us to consider the spatial
distribution of the users around the base station,from which we
deduce the distribution of the capacity. Then, for a typical user,
we compute a coverage area where a minimum/fixed capacity
is guaranteed with a certain probability. This corresponds to an
outage probability on the capacity. This outage probability may
also be interpreted as the proportion of users for which this
fixed capacity will be offered, which is precisely the desired
design criterion for old-fashioned broadcast transmission.

Our solution involves some approximations to obtain semi-
analytical results, therefore, a first set of numerical results
checks that the different approximations of the distributions
(channels, capacity of a given channel, etc.) involved in the
computation of the final capacity are accurate. Then, the
extrapolated capacity is compared to simulations, in order to
check if our optimization is correct over this scenario, meaning
that the required percentage of users indeed meets the desired
bit rate.

II. SYSTEM MODEL

Our model consider an ideal OFDM system were the
channels are perfectly orthogonal. The user ¢ is one user
among L-total users. The received signal of the user / is:

ye=Hx+ 2z (D

where x = (1), .., (")) ~ CN(0, S) is the input vector
of N OFDM symbols and Sx is the covariance matrix of the
vector x. Since the modulated symbols are independent and
orthogonal, the covariance matrix Sy is a diagonal matrix such
that Sy = diag{p,}, n € {1,..., N}, where p,, is the power

allocated to the n-th subcarrier. The total power available to
N

optimize is P, such that Y _ p, < P. The Matrix Hy is the a

diagonal channel gain ma?r_bl( which dimension is N x N , the
elements are the channel impulse response of channel on each
orthogonal sub-carrier frequency, H; = diag{h(e’”)}) and is
the Channel Sate Information (CSI) present at the transmitter.
The vector z is the AWGN at the receiver z; ~ CAN (0, Sy,).
The problem of broadcast the same information for L-users
are faced in [14]. Where we develop an optimal algorithm to
allocate efficiently the power among the subcarriers. From that
we recall the capacity of one user (L = 1), since we use it
to perform a coverage statistic over a spatial distribution. And
we can compare with previous results.

We recall the capacity formula for the ideal OFDM scheme,
as parallel independent channel capacity [14] [15].
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The complex subcarrier gain 2("™ is expressed in the frequency
domain.

III. OFDM REALISTIC CHANNEL AND COVERAGE
MODELING

The goal is to find a closed-form expression to calculate
the coverage, and have an impartial instrument to say if the
multicast optimization is still useful under a spatial distribution
of the users, with an outage criterion in mind.

Let P (C > Cyyt) denote the outage probability. It is the
probability that the capacity of a typical user, denoted C,
is greater than a predetermined value C,,; [7], [15]. Given
a capacity requirement C,,; and an outage probability, we
can calculate the maximal coverage, i.e. the maximal distance
where users can be distributed while statistically meeting these
two constraints.

A. Realistic Channel

The first step towards characterizing properly the capacity is
to first evaluate the probability density function of the channel
h("), We know that [8] [1] it is modelled by (3), evaluated at
frequency f:

I
pn) — Zﬁie—j(QanTH-@i) (3)

i=1
Where f3; is the product of the path loss gain ﬁ and
the complex gain of the path g;: 5; = ﬁ - g;- We can

express it as:

I
1 .
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The multipath part of this expression can be written as:

I
g(n) — Z giefj(Qﬂ'fnTi‘ng) (5)
i=1

Given that the path gains {g;} are Rayleigh distributed with
parameter o; and that the phases {6; } are uniformly distributed
on the interval [0,27], we define §; = g;e 7% as a single
random variable with a complex gaussian distribution with
zero mean and variance o7. The random variables {gi},_, ;
form a sequence of independent complex Gaussian random
variables with zero mean and different variances. The real and
imaginary parts are assumed to be independent. The multipath

part thus reduces to:

I
g(") — Zgie—ﬂﬂfnﬂ (6)
i=1

Finally the complex channel gain 2("™) can be viewed as:
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But we can see that ¢(™ is a combination of different
random variables, all of them with zero mean, but of various
variances. Under this situation the central limit theorem does
not apply, because the involved random variables have differ-
ent variances. However, in order to simplify our next compu-
tations, we will make a Gaussian approximation of ¢(™. In
fact, for the considered model, the model E described in [16],
we can empirically show by simulation that the real and the
imaginary part of (") are very close to Gaussian distributions.
We illustrate in Fig, 1 the distribution of imaginary and the real
part of g("") for this model. In this figure we can appreciate the
actual model in red line and the approximated by the complex
gaussian function in cross blue line. The curves are almost
superimposed, and the complex normal distribution seems to
be a good approximation for our purpose.
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Fig. 1: Multipath Channel Distribution
Therefore, in the rest of this work, we assume that the

random variables (¢("),, follow complex normal distributions.

Hence, the probability distribution function of ¢(") is approx-
imated by:
Zz
5 exp{— } ®)
m Zz 1 O' Zf:l U'£2
which will be useful for a proper characterization of the
capacity distribution.

fom (2) =

B. Outage probability

Unfortunately, analytical computation of the capacity pdf is
not tractable for our model. Instead, we approximate it with
a known distribution. Parameters of this distribution will be
deduced from mean and variance of the capacity. Therefore,
in this Section, we compute mean and variance of the capacity
for our model.

If we retake the formula (2) and put inside the channel
expression (7) we obtain:

C—NZIOg< +)|g(")|2pn) [bits/s/Hz] (9)

The random variables that compose the equation of the
capacity (9) are the distance D and the complex channel gains
g™.

The distance D is the distance between a typical user and
the base station. We assume that users are distributed in an
observation window. In our numerical evaluation, it consists in
a ball with radius R. Within this ball, users location can follow
any distribution. Here we consider that users are independently
and uniformly distributed in this window. Since the base
station is at the center of this ball, the pdf of the distance
from a user to the BS is given by:

2d
fp(d) = 2
where d belongs to [0, R].

The multipath complex channel gain ¢(™) has fgem (2) as
probability density function (8). In order to characterize the
capacity random variable, we start with an expression of the
expectation considering the cited distributions and we follow
with the variance.

The computation of the mean capacity is straightforward. It

is given by:

N n n
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R
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For the variance, we get:
N N—1,N
Var(C)=>» Var(Cp)+2 Y Cov(C;,Cn) (12)
n=1 n=1,i>n

where C,, is the capacity over one subcarrier.

Considering that the channels can have a correlation be-
tween the subcarriers, the covariances are not nil. This corre-
lation is due to the random variables g; (see formula 6) which
are the same for all the channels.



The covariance Cov(C};, C),) has the form:

Cov(C;, Cy) fo Jo Joen(2 d)ei(2,d)...
e fgm) gt >( M) 2O fp(d )dz(”)dz( )dd

where ¢, (2", d) is the capacity of the subcarrier n for a
given sample of g™ (equals to z™) and a sample of the distance
D (). f(g(n)g(i))(z("),z(i)) is the joint probability density
function of the random variables (g™, g*).

If we assume that the vector (¢(™,¢(") is still normal
complex, the joint distribution is:

13)
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u=1
The joint distribution above is obtained under the assump-
tion that (g("), g(i)) is normal complex, and is function of
variance, covariance of these two random variables [17], [18].
It can be seen that the mean and the variance do not have
an easy form. These integrals must be calculated numerically.

C. Modelling the capacity pdf

Let f(E[C],Var[C],z), the pdf parameterized with the
mean E[C] and the variance Var[C]. To calculate the outage
probability under the given scenario, we use the following
formula:

P(C>Cou) =1—

Cout
=1 —/ f(E[C], Var[C],z)dz (16)
0

]P) (O S Cout)

Once the mean and variance are obtained, we will compare
the shape of the actual pdf obtained by simulation with a well
known function, in order to find the best fit. Good candidates
belong to the log-normal probability distributions.

For instance f(FE[C], Var[C],x) can be the log-normal pdf.
It can be used to approach the empirical pdf of the capacity
under a realistic environment. This function has the following
form:

f(EIC], Var[C],

7) = 3k e ) I

exp—(

L E[C)?
Wherepg =1 <\/(var[0] + E[C]2)>
B Var[C|
=In ( E[C]2 T 1)

where the parameters pg and oy are deduced from mean
and variance of the capacity C. Once we have (17) param-
eterized, we can calculate numerically C,,; from (16). The

mean F[C] and the Var[C] was calculated using numerical
integration. We took the probabilistic distribution (10) with
R = 200. We use the parameters of the model E [16] to
model the pdf of the fading channel, and parameterize (8).
For the path loss, we use the equations from [14], taking in
account the distance breakpoint. Using this parameters, the
calculated mean has value: E[C] = 0.4529 and the variance:
Var|C] = 0.8827. On the other hand, in order to have values
to compare, we perform an empirical test generating samples,
the empirical mean are 0.4525 and the variance of the samples
are 0.9996. The difference are essentially due to the iterations
needed to perform the integrations.

With that the log-normal distribution are parameterized and
the pdf is shown in the Fig. 2. The curve in blue is the pdf of
the empirical random variable, made with many samples. The
curve in magenta, is the log-normal pdf but parameterized with
the empirical values of the mean and variances of the samples.
And finally, the black curve shown is parameterized with the
computed values using the theoretical pdf. It appears that the
curves are quite different on the peak of the distributions, but
the distribution tails are very close to each other.

Empirical data distribution

Empirical log-normal

Computed log-normal I

Density
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Fig. 2: PDF of the capacity of a given scenario

The formula (16) can be used in different ways. It gives
the distribution of the capacity offers to broadcast communi-
cations when the parameters are given. It can also be used to
parameterize the system in order to achieve a certain quality of
service: fix the maximum radio range R of the BS to ensure a
capacity C,,; with a certain probability, etc. In the next section
we show numerical results that can be found performing many
realizations.

IV. NUMERICAL RESULTS

The simulations are performed under the assumption that
the users are uniformly distributed over a ball of radius
R = 200[m]. To aim a SNR close to 10dB we set the noise
with a power of 1.0 x 10~!2[IW]. And to aim a SNR close to
15dB we set the noise with a power of 1.0 x 10~ 13[W]. We
perform the simulations using our optimization algorithm for
both cases and compare with the non optimized case. We set
the P(C > C\byt) = 0.95 and we calculate C,,,; . The target
here is to check how the optimization criterion (sum capacity)



matches the broadcast optimization criterion (outage capacity)
. Also we see if the extrapolation by a known pdf are useful
in order to establish a design criteria for the broadcast channel
situation.

A. Numerical results at 10 dB

Fig. 3 shows the results and present the followed concepts:

o The capacity outage C,,; where the probability is 95 %
for Broadcast scheme, Brown - Circle.

« The capacity outage C,,; where the probability is 95 %
for Optimized scheme, Dark Red - Star.

o The Mean Broadcast capacity where probability is over
95 % , Cyan - Cross.

e The Mean Optimized capacity where probability is over
95 % , Pink - Square.

o The Mean of the Broadcast capacity (100 %), Yellow -
triangle.

o The Mean of the Optimized capacity (100 %), blue -
Diamond.

e Log-Normal based computed Outage Capacity, Blue-
Green - Plus.

o Log-Normal based empirical Outage Capacity, Red -
Dash.
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Fig. 3: Mean capacity, Outage capacity for 95 % and Mean
over 95 % for SNR 10 dB

At first glance we can see that the capacity gain in mean
is weak. From the Fig. 3, we can see 20 % of increase in
one user and 13 % when we have 2 users. The mean of the
sub-set that is over 95 % of probability is equal with the
one with all the samples. The mean of the optimized capacity
shows weak improvement between one and eight users. The
outage capacity of the samples is near 0.03 [bits/s/Hz]. We
try to approximate the actual pdf by a log normal pdf. When
we parameterize the log-normal pdf with the mean and the
variance of the samples, the log-normal based empirical outage
capacity is 0.0103[bits/s/Hz]. And when we parameterize
with the mean and the variance obtained computing E[C]
and Var[C], the log-normal based computed capacity is
0.0127[bits/s/Hz].

On the other hand, we consider the percentage increase
histograms (Fig. 4). It is computed for each sample as:

Optimized Capacity

1) - 100 (18)

Broadcast Capacity

Fig. 4 shows the distribution of this percentage increase.
A percentage increase of 0% means that the optimized and
broadcast capacity are the same (the ratio is 1).
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Fig. 4: Percentage increase at 10 dB

We can observe that for approximately 30% of the samples,
there is a percentage increase superior to 100%, meaning
that the optimized capacity is at least two times greater than
the broadcast one. Also, it is worth noting that for one user
the mean percentage increase is 72 %. The difference with
the results shown in Fig. 3 may be explained by the fact
that these improvements mainly concerns users with small
capacity keeping mean capacity quite constant. The later can
be appreciated comparing the histograms in Fig. 5, for one
user. It clearly appears that the distribution of the capacity is
different for the first part (approximately for capacity less than
0.5 bit/s/Hz), and similar for higher capacities. More precisely,
for one user the optimized mean capacity is 0.55 bits/s/Hz, the
broadcast mean capacity is 0.46 bits/s/Hz. If we compare the
means we have 20 % of increase between the means. For 2,
3,4 and 5 users this comparison gives 13 %, 8.7 %, 8.8 %
and 6.66 % respectively.

V. CONCLUSION

In this work we explore the capacity of the OFDM with new
elements. We consider that the user are distributed uniformly
over a ball with a fixed radius from the base station. Following
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the goal of characterizing the outage probability, we derive
expressions for the mean and the variance of the capacity
under the studied scenario. These two quantities could be
used to extrapolate the capacity distribution. The derived
expression are difficult to handle and finally we perform
numerical simulations. From this distribution, the broadcast
can be designed in order to ensure a certain quality of service.
For example, the system can be tuned in order to ensure to
a certain proportion of users and in a certain radio range a
given capacity. Comparisons between the optimized and the
classical broadcasts have shown that there is not a significant
improvement in average. The mean capacity increases of 20
% for one user and decreases slowly with the number of
users. But, it concerns users with small capacity that explains
the poor improvement in average. However, this is an issue
of practical importance, since the largest improvement is
provided to the users with the smallest quality of service. A
topic that could extend this work would consist in comparing
the capacity improvement with different spatial distributions.
Indeed, it appeared clearly that the distance between the users
and the BS impacts the capacity gain of the optimized case.
Spatial distributions where the users are far from the BS should
greatly increase the benefit of an optimized allocation power,
whereas distributions where the users are gathered near the
BS should lead to cases where this optimization is almost

useless. It could be particularly interesting to collect real users
spatial distributions and real scenarios, to have better insight
of the situations where multicast is really worth the additional
complexity needed for the optimization.
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