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Introduction

We consider data matrices . Each data matrix is called a block and represents a set of variables observed on individuals. The number and the nature of the variables may differ from one block to another, but the individuals must be the same across blocks. We assume that all variables are centered. The objective of RGCCA is to find block components (where the block-weight vector is a column-vector with elements) summarizing the relevant information between and within the blocks. The second generation RGCCA, detailed in [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis: A framework for sequential multiblock component methods[END_REF], subsumes fifty years of multiblock component methods and is defined as the following optimization problem: [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis: A framework for sequential multiblock component methods[END_REF] With a convex function, a positive definite matrix and a symmetric matrix of nonnegative elements describing the network of connections between blocks that the user wants to take into account. Usually, for two connected blocks and 0 otherwise.

Multiway Generalized Canonical Correlation Analysis

In this paper, we adopt the standardized notations and terminology proposed by [START_REF] Kiers | Towards a standardized notation and terminology in multiway analysis[END_REF] for multiway data analysis. Let us consider L tensors . Each tensor is of dimension and represents a set of variables observed over modalities on individuals. The number of frontal and lateral slices and the nature of the variables can differ from one tensor to another, but the individuals must be the same across tensors. Let be the matricized version of . Each matrix is of dimension and represents all the frontal slices of next to each other. The major drawback of the optimization problem (1) applied to matricized three-way data is that the data structure is not preserved and leads potentially (i) to very large block-weight vector to estimate and (ii) to an estimation procedure that ignores the original three-way structure of the data. These aspects can yield a lack of relevant interpretations and additional structural constraints are required. From that perspective, we propose Multiway Generalized Canonical Correlation Analysis (MGCCA) that specifically address the peculiar three-way structure of the data within the RGCCA optimization process. The MGCCA optimization problem is defined as the following optimization problem:

(2)

The weight vectors are modeled as the Kronecker product between a weight vector associated with the frontal slices and a weight vector associated with the lateral slices: . This structural constraints yield a more parsimonious model ( instead of parameters to estimate), and allows to separately study the effects of the variables and the modalities. These Kronecker constraints are usual in the multi-way literature ( [START_REF] Bro | Multiway calidration. Multilinear PLS[END_REF], [START_REF] Kolda | Tensor decompositions and applications[END_REF] and [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF]). A fast algorithm that converges to a stationary point of ( 2) is implemented (proof of convergence published soon) and is available as part of the RGCCA package [START_REF] Tenenhaus | RGCCA: Regularized and Sparse Generalized Canonical Correlation Analysis for Multi-Block Data[END_REF].

Analysis of Raman Spectroscopy data

This study aims at analyzing the efficiency of a moisturizer thanks to Raman spectroscopy. For this, on volunteers, a Raman spectroscopy was performed on both of their arms over different depths each of which lead to wavelengths. However, only one of their arms had received the moisturizer. Thus, one arm plays the role of the control, the other one of the test. In addition, the acquisition was repeated at time points. The resulting dataset is characterized by 5 three-way tensors of dimension . In this context, MGCCA will provide time points, wavelengths and depths that help to discriminate between treated and non-treated arms. Figure 1.c shows the and 1.d the coefficients obtain for . It appears that at each time point, wavelengths that discriminate the most between treated and non-treated arms are the ones associated to the absorption band of water. 

Conclusion

Work in progress includes to incorporate within the optimization problem (2) specific penalties on the weight vectors and .

Figure 1 -

 1 Figure 1 -For an individual, intensity of absorption depending on the wavelength and the depth of the skin, for a non-treated (a) and a treated (b) arm. (c) shows the coefficients (associated to the wavelengths) and (d) shows the coefficients (associated to the depths P1 to P7) for