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Introduction

Among devices using electrical mobility methods to measure aerosol particle size distribution, the SMPS is the most widely used to characterize particles smaller than 1 µm. It can be applied in fields like: indoors air quality measurement [START_REF] Kagi | Indoor air quality for chemical and ultrafine particle contaminants from printers[END_REF], vehicle exhaust pipes [START_REF] Vogt | On-road measurement of particle emission in the exhaust plume of a diesel passenger car[END_REF][START_REF] Mathis | Sampling conditions for the measurement of nucleation mode particles in the exhaust of a diesel vehicle[END_REF], atmospheric studies [START_REF] Park | Aerosol size distributions measured at the south pole during {ISCAT}[END_REF], toxicology testing [START_REF] Oberdörster | Translocation of inhaled ultrafine particles to the brain[END_REF][START_REF] Ravenzwaay | Comparing fate and effects of three particles of different surface properties: Nano-tio2, pigmentary tio2 and quartz[END_REF], etc.. . With the increasing importance of nanomaterials characterization in fundamental research and industrial applications, it is desirable that SMPS measurements are associated with an uncertainty. Indeed, measurement results are commonly expressed in terms of particle diameters (mean, median, mode, ...) calculated from the PSD with an associated standard deviation that simply reflects the measurement repeatability uncertainty [START_REF] Motzkus | Size characterization of airborne SiO 2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study[END_REF]. An uncertainty analysis in this context could be very useful especially to improve the measurements comparability between laboratories. The GUM and its supplements provide a generic uncertainty evaluation framework that is why the Monte-Carlo method (JCGM 101, 2008) will be used to compute the uncertainty associated with the PSD. Additionally, the paper addresses uncertainty issues that are not currently covered by the GUM: competitive models, functional uncertain inputs, .. . First task is to identify the main contributors to uncertainty. Then, a statistical model will be built for each source if possible (measurements available, literature review, expert opinions, ...) to be finally used in the propagation scheme. Obviously, there are many different ways of building such statistical models and, if more knowledge is available, the models should be updated accordingly or replaced if appropriate. A number of assumptions have been made in the development of the whole measurement model and its associated sources of uncertainty. The main assumptions are listed below:

• The list of recommendations made by [START_REF] Chen | Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray[END_REF] is followed throughout the whole presented work. They highlighted in their work that SMPS results are influenced by particle shape and morphology, as well as by the upper and lower size limits set by the instrument ("cutoff" phenomenon at the upper size bound of the SMPS display and counts of "phantom particles" may be registered around the lower size bound of the SMPS display).

• particles are spherical: it is known that nano-sized particles form agglomerates caused by interparticle forces, Van Der Waals as well electrostatic forces especially for combustion sources as power plants and vehicle engines that emit agglomerated particles. These agglomerates produce complex shapes whose morphology is usually characterized by fractal dimension. The charging probability, the penetration efficiencies, and the diffusion of agglomerated particles differ from that of individual spherical particles. All the analysis presented in this work refer to spherical particles only.

• effects of particles properties (especially chemical composition) are neglected: the material dependence has proven to yield to slight efficiency curves differences in the size range near the lower detection limit (ISO 27891, 2015). Yet, in the absence of statistical model to account for this source of uncertainty, the effect of particle properties on the CPC detection efficiency is neglected here.

• sample is considered to be carried in air: the effect of the carrier gas composition on the CPC detection efficiency is neglected. If the efficiency curves for N 2 and Ar usually coincide that is not the case for all carrier gases, for instance, the efficiencies are generally lower for CO 2 and higher for He.

Taking account of the above assumptions, the results that will be presented in section 5 illustrate the methodology on selected particle sizes larger than 100 nm. Indeed, the uncertainty in the CPC counting efficiency curve becomes negligible above that size. To treat smaller particles using our approach, we recommend to account for that source of uncertainty especially if selected particle sizes are close to the CPC lower detection limit.

Another key point that is essential to address is that the quantity of interest (the measurand) is the airborne PSD entering the DMA inlet. This is why the uncertainty in the aerosol generation as well as in the particles drying operation will not be investigated here. In fact, since SMPS is also used for in-situ measurements (atmospheric research, ...) where the aerosol generation is not controlled, the proposed general framework for uncertainty propagation focuses on the SMPS device.

2

Theoretical background

Differential mobility analysis combines a particle classifier (Differential Mobility Analyzer or DMA) that transmits particles within a narrow interval of mobilities from an initially polydisperse aerosol, and a detector (a Condensation Particle Counter or CPC) that counts the particles within that differential size interval. First, aerosol passes through an inertial impactor to prevent largest particles from entering the DMA column, then, the aerosol enters a charge neutralizer so that particles reach an equilibrium charge state. The particles are then selected by using an electrical classification method inside the column of the DMA: an electric field is created and the airborne particles drift along the column according to their electrical mobility, denoted Z. For a given voltage V, the centroid mobility Z * (V) for the ideal, non-diffusional transfer function in the cylindrical DMA is given by the following equation

Z * (V) = (q sh + q ex ) ln r 2 r 1 4πlV . (1) 
Matching Z * with the particle electrical mobility Z d whose expression is obtained by equating the electric field force with the Stokes drag force, (q sh + q ex ) ln r 2

r 1 4πlV = Z * (V) = Z d (p, D p ) = peC c (D p ) 3πη g D p , (2) 
the particle mobility diameter D p is the solution of 3(q sh + q ex ) ln

r 2 r 1 η g 4lV pe = C c (D p ) D p , (3) 
where e is the charge of the electron, p is the number of elementary charges, η g is the dynamic gas viscosity and C c is the slip correction that accounts for noncontinuum gas behavior on the motion of small particles and it is given by the following equation

C c (D p ) = 1 + K n (D p ) a + b exp - c K n (D p ) , K n (D p ) = 2λ m D p , (4) 
where (a, b, c) are dimensionless empirical constants so called the slip correction factors, K n is the Knudsen number and λ m is the particle mean free path of gas molecules corrected for any temperature and pressure using Willeke's relation

λ m = λ m,0 × T T 0 2 × P 0 P × T 0 + S T + S , λ m,0 = 67.3 nm. ( 5 
)
From a known mobility Z * , the particle mobility diameter D p can be computed via equation (3) using a root finding algorithm such as the bisection method. The solution is a function of the number of elementary unit of charge the particle carries.

The voltage applied to a scanning DMA varies exponentially [START_REF] Wang | Scanning electrical mobility spectrometer[END_REF] with time constant τ v [START_REF] Collins | The scanning DMA transfer function[END_REF]:

V(t) = V min exp ± t τ v , τ v = t s ln V max V min , ( 6 
)
where t s is the scanning time, V min and V max are the lower and upper limits of the voltage ramp, respectively. [START_REF] Collins | The scanning DMA transfer function[END_REF] admit in their paper that the most commonly used approach for calculating the particle mobility exiting the DMA is to replace in equation ( 1) the voltage V by the average voltage V the particles 3 have experienced over their residence time t f inside the column of the classifier. So, a particle counted at time t was subjected to some voltage V(t) whose expression can be derived from equation (6):

V(t) = 1 t f t-t d t-t d -t f V(u)du = V min τ v t f exp t -t d τ v 1 -exp -t f τ v . ( 7 
)
Assuming that the particle residence time equals the mean fluid residence time inside the column,

t f = π(r 2 2 -r 2 1 )l q sh + q a , (8) 
The time for particles to pass from the DMA outlet to the detection chamber of the CPC, commonly called the plumbing time, is denoted t d . It is deduced from the aerosol flow rate, q a , the plumbing tube diameter, D tube , and length, l tube

t d = πD tube l tube 2q a . ( 9 
)
Knowing the voltage, the corresponding electrical mobility can be calculated using equation (1). Then, the associated particle mobility diameter D p carrying a given number of elementary charges p is computed via equation (3). However, the classifier not only selects particles with centroid mobility Z * but also with slightly higher and lower mobilities, so the selection is modeled with a transfer function ω whose shape is either triangular when aerosol flows are balanced (q m = q a ) or trapezoidal when imbalanced (q m q a ). [START_REF] Wang | Scanning electrical mobility spectrometer[END_REF]) derived an expression of the non-diffusive transfer function for scanning DMA by choosing the average of the transfer function over the measurement time for every channel. Yet, for ultra-fine aerosol particles, particle diffusion must be taken into account. On this topic, the work of [START_REF] Stolzenburg | An Ultrafine Aerosol Size Distribution Measuring System[END_REF] stands as a reference because it has been validated through experiments [START_REF] Jiang | Transfer functions and penetrations of five differential mobility analyzers for sub-2 nm particle classification[END_REF] and numerical simulations [START_REF] Hagwood | The DMA transfer function with brownian motion a trajectory/montecarlo approach[END_REF][START_REF] Mamakos | Diffusion broadening of DMA transfer functions. numerical validation of stolzenburg model[END_REF]. This will be discussed later in the section 3.12.

General Model. The instrument response is given as the number of particles counted over time by the CPC. It can be modeled as a set of Fredholm equations. Let k i be the non-negative kernel function for the time range corresponding to the i th channel (or equivalently for voltage settings corresponding to channel i), n the size distribution function that is the number of particles per volume of air with size D p , E[i] the measurement error in the i th channel and Y[i] the instrument response (number of particles counted over channel i) commonly modeled as follows

Y[i] = +∞ 0 k i (D p )n(log(D p ))d(log(D p )) + E[i], i = 1, ..., I, (10) 
with

k i (D p ) = q a t c [i]η(D p ) +∞ p=1 φ(p, D p )ω i (D p , p), ( 11 
)
and

ω i (D p , p) = 1 t c [i] t[i]+t c [i] t[i] ω(D p , p, t)dt, ( 12 
)
4 t[i] being the time when the counting for channel i begins (properly adjusted for flow time between the DMA and CPC [START_REF] Talukdar | An improved data inversion program for obtaining aerosol size distributions from scanning differential mobility analyzer data[END_REF]) and t c [i] is the counting time in channel i. η(D p ) is the bin averages of the efficiency as modeled by [START_REF] Collins | Improved inversion of scanning DMA data[END_REF] (cf section 3.10).

The charge distribution on the particles, denoted as φ(p, D p ) in equation ( 11), is the probability that a particle of diameter D p carries p elementary charges. It was fully described by [START_REF] Fuchs | On the stationary charge distribution of aerosol particles in a bipolar ionic atmosphere[END_REF] and modified afterwards by [START_REF] Hoppel | Ion aerosol attachment coefficients and the steady-state charge-distribution on aerosols in a bipolar ion environment[END_REF]. This expression will be fully detailed in section 3.11. Actually, only the DMA transfer function ω varies with time in equation ( 11) and synchronizes the times of the system to relate particle detection to particle selection through the voltage expression. When the DMA voltage is being continuously scanned, the average transfer function over the counting interval t c [i], denoted ω i , is given by equation ( 12). The x-axis is generally discretized to obtain a finite reconstruction problem. If we denote D p [ j] j=1,...,J the estimation points, then

n -→ N ∈ R J , with N[ j] = N(log(D p [ j])) and k[i, j] = k i (D p [ j]
). The matrix H ∈ R I×J is then defined as the discrete evaluation of the integral in equation ( 10) using Simpson quadrature: let w[ j] j=1,...,J the weights of the quadrature, then 10) is then re-written under matrix form as:

H[i, j] = k[i, j] w[ j]. Equation (
Y = H N + E, ( 13 
)
where Y ∈ R I is the vector of raw data points, N ∈ R J is the vector of solution elements and E ∈ R I is the vector of measurement errors.

Data Inversion. The inversion of SMPS measurements is to solve an ill-posed problem. Indeed, the stability cannot be guaranteed since matrix H presents very small singular values and that the subspace in which the noise lives overlaps non trivially with the subspace spanned by the singular vectors of H [START_REF] Seinfeld | Inversion aerosol size distribution data[END_REF]. To overcome this problem, several methods have been proposed: [START_REF] Twomey | On the numerical solution of fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature[END_REF][START_REF] Twomey | Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions[END_REF][START_REF] Markowski | Improving twomey's algorithm for inversion of aerosol measurement data[END_REF][START_REF] Seinfeld | Inversion aerosol size distribution data[END_REF][START_REF] Voutilainen | Statistical inversion methods for the reconstruction of aerosol size distributions[END_REF][START_REF] Collins | Improved inversion of scanning DMA data[END_REF][START_REF] Talukdar | An improved data inversion program for obtaining aerosol size distributions from scanning differential mobility analyzer data[END_REF][START_REF] Dubey | Improved inversion of scanning electrical mobility spectrometer data using a new multiscale expectation maximization algorithm[END_REF]. The scope of this paper is clearly not to describe a new inversion technique, yet, one must set an algorithm to estimate the PSD and we choose to focus on regularization techniques 1 . In this framework, the estimate of the size distribution, denoted as ˆ N [λ] , is the solution of the following minimization

ˆ N [λ] = arg min N≥0 H N -Y 2 + λ D 2 N 2 , ( 14 
)
where D 2 is the second order finite difference matrix used to penalize non-smooth solutions, λ is the regularization parameter and N ≥ 0 means N[ j] ≥ 0, ∀ j. The regularization parameter controls the strength of the prior assumption (here the solutions shall be smooth). [START_REF] Talukdar | An improved data inversion program for obtaining aerosol size distributions from scanning differential mobility analyzer data[END_REF] have proposed to estimate λ using a modified L-curve criterion initially developed by [START_REF] Lawson | Solving Least Squares Problems[END_REF]. Such graphical approach has the benefit that it does not require additional assumptions regarding the noise model. The adaptive pruning algorithm described in [START_REF] Hansen | An adaptive pruning algorithm for the discrete L-curve criterion[END_REF] is used to compute λ. Other methods can be found in [START_REF] Phillips | A technique for the numerical solution of certain integral equations of the first kind[END_REF] (discrepancy principle) or (Wahba, 1977) (Generalized Cross Validation).

Sources of uncertainty: expressions and modeling

The aim of this section is to bring the users with a procedure to model the contributions of every source to uncertainty. First, all the sources of uncertainty that are suspected to contribute to the variation of the 1 The uncertainty propagation scheme that will be presented later in the article stays valid regardless of the inversion technique being used to retrieve the PSD. 5 measurand must be considered. Each source will be either discarded if its contribution to uncertainty is negligible, or, if appropriate, included in the uncertainty budget. The contribution of some sources to uncertainty can be considerably lowered by specifying convenient experimental settings: increase the sheath flow rate to reduce the particle deposition by diffusion inside the column of the classifier, set an aerosol-to-sheath flow ratio at 0.1, lengthen the scanning time to avoid smearing effect and to ensure a slowly varying voltage ramp. All the precautions are taken to reduce the uncertainty. Two groups of sources of uncertainty are distinguished: the sources that result in fluctuations of the measured particle count (experimental dispersion) and the modeling errors. Where the experimental dispersion is directly available through the observations (measured particle count), the modeling errors appear when defining the general model, or, more precisely, when building the matrix H that is needed to estimate the PSD. The main contribution of this work is to account for the modeling errors, whereas, the common practice is to neglect them by setting a general model with consensual sub-models (bipolar charging law, DMA transfer function, etc.) and to set the model parameters to their nominal values. This approach, although faster, yields to inaccurate estimates of the PSD because it does not account for all the parameters (or functions) fluctuations responsible for the dispersion in the measured signals. Although some of the statistical models presented in this paper may seem pessimistic to the readers, our approach tends to get closer to the true measurement.

Coming sections give a short description of the sources of uncertainty as well as the associated statistical modeling. In the interests of brevity, the models that can be easily found on aerosol textbooks have been moved to annexes. Table 1 lists the considered sources of uncertainty, the associated modeling as well as their respective sections/annexes. 

CPC counting noise

Since the rate of particles entering the CPC occurs at random, the particle count is regularly modeled as a sample drawn from a Poisson process. An experimental verification to ensure that such random process remains accurate for higher concentrations of particles has been performed. Experiments have been carried out with aerosol particles of Di(2-Ethylhexyl) Phthalate (DEHP) for different amounts of dilution (0 to 1000), and so very different levels of concentration. Airborne particles were detected by a Model 3022 CPC manufactured by TSI Incorporated. 40 scans were recorded for each configuration (4 configurations: no dilution, dilution by a factor of 10, 100 and 1000). The mean and the variance of the measured raw count data should be equal to validate the Poisson assumption. Of course, the finite (and reduce) number of scans will not be sufficient to tend to equality but it should be enough to bare a trend. Figure 1 plots the variance of the raw count data as a function of the mean raw count data (each point in the figure, mean and variance being calculated over 40 scans). The results reflect that the Poisson assumption does not hold when the particle concentration is greater than 10 3 cm -3 . Indeed, above such concentration, the variance becomes quadratic (logarithm scale) because the CPC no longer operates in single particle count mode. For this reason, raw count data will be modeled as samples drawn from a multivariate normal vector whose parameters will be directly inferred from the measured particle count. This will be described later in the section 4. 

Geometric factors

Please refer to Appendix A.5.

DMA Voltage

The voltage at the center rod of the DMA scales with the selected particle mobility, so any fluctuation of the voltage tends to broaden the transfer function. Under scanning mode operation, the voltage is continuously increased (equation ( 6)). To validate this model, a dynamic evaluation of the voltage has been performed and is described in Appendix B.

Statistical Modeling. Because the mean voltage offsets are reasonably low compared with the repeatability uncertainty, the proposed model neglects the bias, and, as a direct consequence, this source of uncertainty will not be included in the uncertainty budget. The new voltage ramp V that accounts for the repeatability uncertainty and the input parameters fluctuations between consecutive scans is expressed as follows

V(t) = ǫ V × V(t, Vmin , Vmax ), ( 15 
)
where

               Vmin ∼ N V AI M min , σ V AI M min , Vmax ∼ N V AI M max , σ V AI M max , ǫ V ∼ U (0.985, 1.015) . (16) V AI M
min and σ V AI M min refer to the mean and standard deviation of the estimates of V min given by SMPS embedded software. The same goes for V AI M max and σ V AI M max with the estimates of V max . The uniform random variable ǫ V scales the voltage ramp. Its minimum and maximum values stand for a relative uncertainty value of 1.5 %. This model only applies for scanning times longer than 120 s.

DMA flow rates

Please refer to Appendix A.6.

Slip correction factors

The Cunningham slip correction factor C c is used to correct Stokes's law for the fact that the no-slip boundary condition is violated for small aerosol particles moving with respect to the gaseous medium [START_REF] Allen | Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus[END_REF]. The Knudsen-Weber form of the slip correction is given by equation ( 4). Table 2 summarizes several published values for the empirical constants a, b and c. Considering the traceability of the experiments, standard (ISO 15900, 2009) recommends the use of the coefficients determined by [START_REF] Kim | Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyser Nano-DMA for knudsen number from 0.5 to 83[END_REF] for particle size measurements. It also points out that the results of the experiments led by [START_REF] Allen | Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus[END_REF] closely agree with those of [START_REF] Hutchins | Slip correction measurements for solid spherical particles by modulated dynamic light scattering[END_REF]. Quite recently, [START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF] have re-evaluated the coefficients determined by [START_REF] Kim | Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyser Nano-DMA for knudsen number from 0.5 to 83[END_REF] Mean values for A, B and C are set as the coefficients of [START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF]. Indeed, it is the most recent study that brings us with traceable results. The other sets will be used for the truncation as shown below.

=           A B C           , a
θ A,B,C ∼ N [θ low A,B,C ,θ up A,B,C ] (θ mean A,B,C , Σ θ A,B,C ), ( 17 
)
θ low A,B,C =           a A b H c K           =           1.142 0.4695 0.997           , θ mean A,B,C =           a J b J c J           =           1.165 0.480 1.001           , θ up A,B,C =           a H b A c H           =           1.231 0.558 1.1783           .
The covariance matrix Σ θ A,B,C is defined as follows 3 :

Σ θ A,B,C = diag max |θ mean A,B,C -θ low A,B,C | 2 , |θ up A,B,C -θ mean A,B,C | 2 . ( 18 
)
The covariances are neglected here (the covariance matrix Σ θ A,B,C is diagonal). Moreover, the variances are voluntary increased compared to [START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF] because the coefficients are not estimated during the 2 Superscripts A, H, J and K refer to [START_REF] Allen | Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus[END_REF], [START_REF] Hutchins | Slip correction measurements for solid spherical particles by modulated dynamic light scattering[END_REF], [START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF] and [START_REF] Kim | Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyser Nano-DMA for knudsen number from 0.5 to 83[END_REF], respectively.

3 diag (max (Vector1, Vector2)) :=                   max (Vector1[1], Vector2[1]) 0 . . . 0 0 max (Vector1[2], Vector2[2]) . . . 0 0 0 . . . 0 0 0 . . . max (Vector1[n], Vector2[n])                   9
experiment and, by definition, will not be updated. Figure 2 gives some realizations of the relative difference to Jung's correction for the authors listed in table 2. The relative difference lies within +3% and -4% in the diameter range 1 nm-1 µm. It also shows the relative difference to some realizations of C c (D p ; θ A,B,C ). The proposed statistical modeling appears to reach a consensual solution to model the current knowledge.

Figure 2: Relative difference to [START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF] correction for the authors listed in table 2 as well as the relative difference to some realizations of C c (D p ; θ A,B,C ) (grey curves) over the particle range 1 nm-1 µm. 

Diffusion losses

Please refer to Appendix A.7.

Bipolar charging law

The approximation of [START_REF] Wiedensohler | An approximation of the bipolar charge distribution for particles in the submicron size range[END_REF] derived from [START_REF] Fuchs | On the stationary charge distribution of aerosol particles in a bipolar ionic atmosphere[END_REF], simple and fast, is the most commonly used approach to compute the charge distribution function. Nevertheless, standard (ISO 15900, 2009) considers that an expert user of DMAs should be able to calculate φ as described by [START_REF] Fuchs | On the stationary charge distribution of aerosol particles in a bipolar ionic atmosphere[END_REF]. For this reason, to derive the uncertainty associated with φ, starting with Fuchs original theory seems to be the best approach. Two widely accepted approaches exist for treating diffusion charging of aerosol particles in the transition regime: the limiting-sphere theory and approximate solutions of the Boltzmann equation. The limitingsphere theory assumes two regions separated by an imaginary sphere concentric to the particle. Between this sphere and the particle surface, motion of the ions is determined by the thermal speed and interaction potential with the particle, while outside the sphere, this is described by the macroscopic diffusion-mobility theory (for more details, see [START_REF] Reischl | Bipolar charging of ultrafine particles in the size range below 10 nm[END_REF] and [START_REF] Biskos | Theoretical and experimental investigation of the differential mobility spectrometer[END_REF]). Fuchs, matching the two fluxes at the surface of the limiting-sphere, derived an expression of the bipolar charging law such that

φ(p, D p ) =                    +∞ p=+1 β + p-1 β - p Υ , if p ≥ 1, -∞ p=-1 β - p+1 β + p Υ , if p ≤ -1, 1 Υ , if p = 0, (19) 10 
where

Υ = +∞ p=+1         +∞ p=+1       β + p-1 β - p               + -∞ p=-1         -∞ p=-1       β - p+1 β + p               + 1. ( 20 
)
Fuchs calculations are based on the definition of the ion-aerosol attachment coefficients β ± p . See Appendix C for the calculations of these coefficients. To compute the bipolar charging law, the ionic properties of the carrier gas must be known, namely the electrical mobilities and the masses of small ions (positive and negative), denoted as z + I , z - I , m I + and m - I , respectively. Table 3 gives some published values of the ionic properties for dry air. It reflects that large differences exist within the authors especially for the masses of small ions (m - I stands between 50 and 140 amu and m - I stands between 109 and 290 amu). [START_REF] Wiedensohler | An approximation of the bipolar charge distribution for particles in the submicron size range[END_REF]) uses a fixed ratio for ion mobilities z + I /z - I equal to 0.875 whereas the computed ratios for the various authors listed in table 3 belong to the interval [0.7228; 0.8889]. Statistical Modeling. For a known quadruplet (z + I , z - I , m + I , m - I ), φ can be computed for any particles with diameter D p carrying p charges (K = 9 quadruplets from table 3). First approach to model the bipolar law is to sample as many quadruplets as necessary 4 and to compute the associated φ. However, calculating φ for a given quadruplet is time consuming that is why a more effective solution is preferable. Our concern is that the proposed statistical modeling, first, preserves the spatial correlations, and, second, accounts for the various options available to model the ionic properties. To fulfill these requirements, φ is modeled as a sample drawn from a multivariate Gaussian distribution Φ p whose parameters are directly estimated through the disposable data set. The currently available information can be summarized within a J × K matrix that contains the sampled J-dimensional vectors φ k (p, D p ), where φ k (p, D p ) is the bipolar charging law calculated with the k th quadruplet from table 3. Let Φ p,samp be this matrix, it can be written as follows

Φ p,samp =                  φ 1 (p, D p [1]) φ 2 (p, D p [1]) . . . φ k (p, D p [1]) . . . φ K (p, D p [1]) φ 1 (p, D p [2]) φ 2 (p, D p [2]) . . . φ k (p, D p [2]) . . . φ K (p, D p [2]) . . . . . . . . . . . . φ 1 (p, D p [J]) φ 2 (p, D p [J]) . . . φ k (p, D p [J]) . . . φ K (p, D p [J])                  . ( 21 
)
Let µ Φ p,samp and σ Φ p,samp the J-dimensional mean vector and standard deviation vector of Φ p,samp , respectively. These quantities are computed as follows

µ Φ p,samp [ j] = 1 K K k=1 Φ p,samp [k, j], σ Φ p,samp [ j] = 1 K -1 K k=1 Φ p,samp [k, j] -µ Φ samp p [ j] 2 , j = 1, ..., J. ( 22 
)
4 A large amount here since the Monte Carlo method is used to propagate the uncertainty through the all system 11 Let C Φ p,samp the J × J matrix containing the pairwise Pearson's linear correlation coefficient between each pair of columns in the matrix Φ T p,samp . Using a SVD decomposition, C Φ p,samp can be written as

C Φ p,samp = U C Φp,samp Σ C Φp,samp U T C Φp,samp
. A new J-dimensional random vector φ p , distributed as a multivariate normal distribution Φ p , can then be obtained

φ p = µ Φ p,samp + U C Φp,samp Σ 1 2 C Φp,samp z • σ Φ p,samp , (23) 
where • refers to the Hadamard product or element-wise product and z is sampled from Z with Z ∼ N(0, I J ). Such formulation has the benefit to account for the dispersion among listed authors regarding the values of the ionic properties via the expression of σ Φ p,samp . Moreover, it maintains the correlation structure between consecutive discrete function evaluations (realistic transition between φ p [ j] and φ p [ j + 1] for all j) via the definition of C Φ p,samp .

Figure 3 shows the set of bipolar charging laws calculated from the list of published quadruplets in table 3. It also prints the computed 95 % confidence region associated with Φ 1 over the all diameter range. The developed model seems a convenient way to express the many options available from the literature. On the other hand, these approach may seem quite conservative to the readers (high dispersion of φ p for a given diameter), but, since the ionic properties are not measured during the day-to-day experiments, they will not be updated.

Figure 3: Bipolar charging law φ(p = 1, D p ) for various ionic properties (cf table 3) in the size range 1 nm-1 µm and the 95 % confidence region associated with Φ 1 computed over 50 000 samples. 

DMA transfer function

To derive the expression of the DMA transfer function operating in scanning mode, the convection-diffusion equation that models the motion of a particle subject to Brownian motion through an electric field must be solved. DMA selects particles in the size range 1 nm -1 µm and it is well known that diffusion is the primary transport mechanism for particles smaller than 100 nm. The larger the particles, the less meaningful the diffusive transport. Two models for the transfer function are investigated: the convective and the convective-diffusive. If most 12 algorithms set one model for the DMA transfer function, our approach combines convective and convectivediffusive models. See Appendix D for the expressions of ω nd (non-diffusive model) and ω d (diffusive model).

Statistical modeling. The diffusive transfer function ω d properly models the diameter range 1 nm -100 nm and the ideal transfer function ω nd commonly codes for particles larger than 100 nm. To cover the whole diameter range, both theories can be combined. In fact, the transition from convective-diffusive to convective transport is purposefully made smoother by defining g, a continuous and regular function 5 , and a random threshold D p,thres that represents the diameter above which the convective transport will progressively (linear transition) replace the convective-diffusive transport. So, ω is defined as a combination of ω d and ω nd via the following expression

ω = g(D p )ω nd + (1 -g(D p ))ω d , ( 24 
)
where g is given by

g(D p ) =            0 , if D p ≤ D p,thres , 1 , if D p ≥ D p,thres + ∆ thres , D p -D p,thres ∆ thres , if D p ∈]D p,thres , D p,thres + ∆ thres [, (25) 
and

D p,thres ∼ U[D low p,thres , D up p,thres ], (26) 
where ∆ thres , D low p,thres and D up p,thres are set to 100, 100 and 400 nm, respectively. D p,thres is modeled as a uniform random variable to account for the uncertainty in the location of the exact transition between the two regimes. Of course, one can discuss the range of variation of D p,thres . Additionally, ω depends on several parameters (flow rates, electrical mobility, ...) via the expressions of ω nd and ω d , parameters that will be drawn from their respective distributions as detailed throughout the section 3.

CPC counting efficiency

The primary parameter of interest when evaluating the performance of CPCs is particle detection efficiency as a function of particle diameter. [START_REF] Scheibel | Generation of monodisperse Ag-and NaCl-aerosols with particle diameters between 2 and 300 nm[END_REF] described the measurement method that has usually been used to determine particle detection efficiency: particle concentration measurements made by CPCs are compared with aerosol electrometer measurements (Faraday cup electrometer) of singly charged particles. In most experiments, the nearly monodispersed aerosol is produced by using a Scheibel-Porstendörfer generator (or a Bartz et al. generator (Bartz et al., 1987)) with an electrostatic classifier (DMA). The CPC detection efficiency mainly depends on the particle number concentration, the particle size, and the particle composition. Moreover, there are slight differences in the efficiency curves of each instrument (instrument to instrument variation), the working fluids (water or alcohol) exhibit some material dependence and the carrier gas composition affects the efficiency. Indeed, the dependence of the detection efficiency of CPCs on the particle properties has been shown by several authors, especially on the chemical composition of sampled particles. The material dependence was 5 Continuity and regularity will ensure a smooth transition between the two regimes which seems to be much closer to the physics. 13 studied mainly with sodium chloride and silver. Some difference in the detection efficiency was observed in the size range near the lower detection limit, and silver seemed to show slightly higher detection efficiencies than sodium chloride. More recent work with 1-butanol-based CPCs investigated a wider variety of materials which showed that oils were easiest to detect while inorganic salts were hardest (ISO 27891, 2015). The effect of the carrier gas composition on the detection efficiency was studied by [START_REF] Niida | Counting efficiency of condensation nuclei counters in N 2 , Ar, CO 2 and He[END_REF] where he investigated the counting efficiency of CPCs using N 2 , Ar, CO 2 and He. He noted slight efficiency curve differences: the efficiency curves for N 2 and Ar usually coincide, He leads to higher efficiencies and, for CO 2 , the efficiencies are generally lower. Later, [START_REF] Sem | Design and performance characteristics of three continuous-flow condensation particle counters: a summary[END_REF] reviewed available data describing the performance of TSI 3010, 3022A and 3025A CPCs. He summarized the data reported in the literature including the sources of uncertainty coming from the response time for step increase and step decrease of aerosol concentration, the effects on detection efficiency of RH of 0-50 % and the dependence of counting efficiency on input particle concentration. As a reminder, one of the main assumption used in this work is that the sample is considered to be carried in air. Furthermore, as far as we know, no statistical model is available to account for the CPC measurement uncertainty and, assessing such uncertainty is out of the scope of this paper. For that reason, the CPC efficiency curves are taken using air as the sample carrier gas and modeled as error free functions. Aware of this limitation, the results shown in section 5 refer to selected particle sizes very much larger (100 nm PSL, 200 nm PSL and 450 nm PSL) than the lower detection limit making these listed sources of uncertainty less meaningful.

Propagation of the sources via Monte-Carlo simulations

The proposed approach to propagate the sources of uncertainty is based on the Monte Carlo method. It can be referred to as a two-stage approach: the first stage models the experimental dispersion and the second stage handles the modeling errors. In practice, several scans are collected. Since the quantity to be characterized varies over time, it is crucial to ensure that the aerosol remains stable during the experiment. The stability is not quantified here, but, the experimentalists have to check whether the fluctuations among samples are kept reasonably low. First, the measured particle count is corrected for coincidence and smearing. Then, depending on the number of scans available, the measured raw count data Y are either modeled as samples drawn from a multivariate Poisson distribution (N scans = 1) or as samples drawn from a multivariate Gaussian distribution (N scans > 1). In the case where N scans > 1, let C Y be the measured samples empirical correlation matrix, µ Y and σ Y the measured particle count mean vector and standard deviation vector. C Y can be decomposed by SVD (Singular Value Decomposition) such that

C Y = U C Y Σ C Y U T C Y
. Then, the simulated raw count data samples ˜ y are sampled

˜ y = µ Y + U C Y Σ 1 2 C Y z • σ Y , (27) 
by drawing as many samples of z, with z ∼ N(0, I I ), I I being the unit matrix of size I. The experimental dispersion (fluctuations of the temperature, pressure, ...) is taken into account through the Q sampled random vectors ˜ y. The uncertainty propagation scheme can be applied regardless of the inversion routine being used, yet, the user must ensure that the chosen inversion algorithm does not bring additional uncertainty or, if it does, this new source of uncertainty, if not negligible, must be quantified and included in the uncertainty budget.
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Next stage is to account for the modeling errors. Instead of a fixed model H, Q kernel matrices are randomly drawn. Drawing a random kernel matrix has the meaning of drawing the kernel matrix whose coefficients are computed with parameters (and functions) drawn from their respective random variables (and random processes). However, among the sources of uncertainty, the time constants of the fluctuations vary and must be modeled in consequence. If the time constant of the source fluctuation is infinite, the source will not vary within a scan or between scans of the same experiment because it depends only on the device being used. When the time constant is in the order of magnitude of the scanning time of the experiment, the source is fixed for a given scan, and, it is updated between consecutive scans. On the contrary, if the time constant is shorter than the scanning time of the experiment, the source will vary within a scan 6 and between consecutive scans.

The flowchart shown in figure 4 summarizes the uncertainty propagation.

6 A new sample is drawn for every channel (time interval of about 1 s). 

For q = 1 : Q Start Monte Carlo loop Sample from η 0 , L, R 1 , R 2 , ǫ V , Vmin , Vmax , θ A,B,C and Φ p (p ≤ 5)
Parameters with time constant greater than the scanning time that are kept constant for a given simulation Parameters with time constant lower than the scanning time that are updated for every channel Calculate i th row of H [q] Fill random kernel matrix H [q] End loop i

ˆ N [q] = arg min N≥0 H [q] N -˜ y [q] 2 + λ50 D 2 N 2
Compute the estimate of the size distribution for the q th simulation Estimate D

[q] p,mod , D [q]
p,50 , D p [q] , D p,g

[q]
Estimation of the statistical diameters of ˆ N [q] (Appendix E) End loop q 16

Results

In this section, the uncertainty propagation scheme is tested against real data sets. The particle samples under study are Standard Reference Materials. They are monosize polystyrene latex spheres (PSL) of different sizes: 100 nm, 200 nm and 450 nm. We conduct the experiments only for the 200 nm PSL.

The 100 nm PSL and 450 nm PSL are TSI free data sets that one obtains when downloading AIM (Aerosol Instrument Manager) software. By choosing such data sets, we intend to check that the method is consistent, firstly with the commonly used approach, namely AIM software, and, secondly, with any kind of data, settings or devices being used. Table 4 summarizes the settings for each data set. The output of the experiments is a number of particles counted over time. First, care has to be taken in interpreting the results, indeed, as shown in the recent study of [START_REF] Yang | Performance of bipolar diffusion chargers: Experiments with particles in the size 25 range of 100 to 900 nm[END_REF], particle stable charging cannot be achieved using TSI 3077 charger for the 200 nm PSL case. Nevertheless, the model used to represent the charging process is very conservative as depicted in figure 3.

For that reason, the uncertainty propagated from the unstable charging is most likely already included in the current model. Figure 5 shows the measured particle count (every scan is plotted) as a function of the electrical mobility diameter D p for PSL 100 nm (3 scans), 200 nm (15 scans) and 450 nm (2 scans). The 100 nm PSL reveals the presence of doubly charged monomers (around 70 nm), whereas the 200 nm PSL shows doubly charged monomers (around 140 nm) as well as dimers (around 260 nm). The 450 nm PSL is more difficult to analyze since the measured particle count is very low, yet, multiply charged monomers are 17 also suspected.

A MATLAB graphical user interface (GUI) has been developed in order to run the simulations. The amount of time taken to run a simulation is about one second. Figure 6 gives the results of the computations for each data set. The mean estimate of the PSD (red curve) and its 95% confidence region (grey shadow) are computed over Q = 50000 simulations. All results extracted from AIM software (1 curve per scan) are corrected for diffusion losses and multiply charged monomers. The results reveal that the estimates of the PSDs retrieved by AIM software and by the new approach are consistent in terms of peak concentration location and level of concentration. Moreover, for 200 nm PSL and 450 nm PSL, AIM estimates are in accordance with the computed 95% confidence region. It should be noted that AIM estimates are a bit broader at the peak location, especially for the 100 nm PSL.

From a more global perspective, the results suggest that the uncertainty can be kept reasonably low for very repeatable measurements as it is the case with the 100 nm PSL. Moreover, the particle concentration dN/d log(D p ) is far more subject to fluctuations than the particle mobility diameter D p . For the 100 nm PSL, the particle count at D p ≃100 nm varies between 220 and 270 particles and leads to a variation of ±12% of the peak concentration. For the 200 nm PSL, the particle count at D p ≃200 nm varies between 250 and 375 particles and leads to a variation of ±40% of the peak concentration. As a consequence, given the largest measured fluctuation in the particle count, a simple rule of three yields to a first guess of the expected variation of the peak concentration. For the 200 nm PSL, this first guess would be ±30% and the remaining ±10% could be imputed to the other sources. Nevertheless such analysis cannot be extended to the 450 nm PSL that is a low concentration PSD. For these case, the shape of the confidence region reveals that both particle mobility diameter and concentration are subject to variations (distortion of the confidence region at the peak concentration). In fact, since the particle count follows a Poisson statistic, in such a low count situation, the peak location estimate varies between simulations.

If the confidence region is a widely used approach to provide the uncertainty associated with a 2-D function in the statistics field, the aerosol community generally expresses the size distribution in terms of statistical parameters (scalar representation) such as the mode diameter D p,mod , the median diameter D p,50 , the mean diameter D p , the geometric mean diameter D p,g and the geometric standard deviation σ g . These quantities are computed for every estimate of the size distribution ˆ N (see Appendix E) and finally expressed in terms of expectation (average over the total number of simulations Q) and standard uncertainty (simply the standard deviation). Figure 7 offers a graphical comparison between the computed statistics available from AIM (repeatability analysis) with the new statistics brought by the new approach (full uncertainty analysis) and table 5 summarizes the numerical statistics computed by using the two methods. It gives an uncertainty comparison obtained from the proposed method and common repeatability. The measurement repeatability uncertainty is always smaller than that obtained from the full uncertainty analysis for the three cases studied here. As expected, accounting for modeling errors in the uncertainty propagation scheme enlarge the commonly reported uncertainty. The mean diameter and the geometric mean diameter are sensitive to fluctuations over the whole diameter range because they tend to measure a global behavior. For that reason, large differences exist between the computed diameters from AIM estimates and from the new approach especially for the 200 nm PSL. On the other hand, the mode diameter and the median diameter provide a central measure that is the reason why low differences appear.
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Conclusion

This paper brings the users with a new framework to perform uncertainty propagation computations for PSD measured with an SMPS by using the Monte Carlo method. The main effort was made with regard to investigating the very different existing approximations to model the physics. Innovative and consensual statistical models are shown that account for that many options to compute the bipolar charging law, the slip correction, the DMA transfer function, .. . Since several quantities are still not measured during the day-to-day experiments, some of the statistical models may seem conservative to the readers. In fact, the proposed methodology will never be perfectly suited for every setup that is why, if more knowledge is available (new experiments, new publications, ...), we recommend to update the statistical model parameters (mean, variance, bounds, ...) or eventually create new ones. The presented work reflects that the SMPS is well-designed for accurate sizing of airborne PSD with a very low uncertainty associated with the estimated particle mobility diameter (median particle sizes with relative standard uncertainty of ±0.17% for the 100 nm PSL, ±0.83% for the 200 nm PSL and ±0.34% for the 450 nm PSL). On the other hand, the peak particle number concentration uncertainty is very large and reaches ±40% for the 200 nm PSL and that is most likely due to the repeatability uncertainty (particle count measurement) and also to the conservative model set to represent the bipolar charging law. A fine characterization of the ionic population can considerably reduce the particle number concentration uncertainty by making such modeling more accurate. Further work is still necessary to clearly identify the main contributors to uncertainty and to achieve a numerical evaluation of their respective contributions. A global sensitivity analysis is being investigated to solve this complex problem. gas and its resolution varies between 0.001 and 0.010 lpm depending on the flow rate measurement range (0.001 lpm when the flow rate is less than 9 lpm and 0.01 lpm otherwise). On the basis of this short analysis, the total %RSD is no more than 1%. Standard (ISO 15900, 2009) gives a sheath air flow standard uncertainty of ±0.06 lpm when q sh is set to 3 lpm which corresponds to a relative standard uncertainty of 2%.
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Statistical Modeling. The sampled flow rates are normally distributed for low flow rates and tend to follow a t-distribution for higher flow rates since larger tails are observed. To simplify the process, the sheath air flow rate is sampled from a Gaussian random variable Q sh such that Q sh ∼ N(q sh 0 , σ q sh ), q sh 0 being the set-point value and σ q sh = 0.02 × q sh 0 . We decide to apply the relative standard uncertainty of 2% for any q sh 0 : for q sh 0 = 6 lpm, the standard uncertainty is 0.12 lpm and for q sh 0 = 10 lpm, it is 0.2 lpm. Such modeling seems appropriate since these estimates are consistent with the experimental results presented in table A.6. As no leakage is assumed as well as balanced flows, the other flow rates (mean value and standard deviation) are directly deduced from Q sh :

Q sh = Q ex , Q a = Q sh /10 9 and Q m = Q a .
Appendix A.7. Diffusion losses When particles are smaller than 100 nm, Brownian motion creates a net flux of particles from regions with high concentrations towards regions with low concentrations. The walls of a tube are a sink for small particles creating a region of low concentration near them. This is why diffusion always generates a net transport of particles to the walls where they deposit. This mechanism affects the measured particle count and, as a consequence, the estimated PSD will under represent small particles. Diffusion losses in the SMPS are frequently characterized in terms of penetration efficiencies. To compute the total penetration through the system, η, five different flow paths are distinguished:

• the penetration through the impactor inlet, η inlet ,

• the penetration through the neutralizer and internal plumbing, η neutralizer ,

• the penetration through the tubing to the DMA and CPC, η tube ,

• the penetration through the DMA, η DMA ,

• the penetration through the CPC, η CPC .

The DMA transfer function and the CPC detection efficiency that will be presented later in section 3.12 and 3.13 stand for the penetration through the DMA and through the CPC, respectively. The penetration efficiency through the tubing, η tube , is computed based on the [START_REF] Gormley | Diffusion from a stream flowing through a cylindrical tube[END_REF] equation:

9 10 corresponds to an aerosol-to-sheath ratio of 0.1. This value must be updated if the ratio changes.

Figure B

.8 shows the standard relative voltage uncertainty (repeatability uncertainty) in percent as a function of the voltage for the two scanning times. The results reveal a high level of repeatability of the voltage ramp. Indeed, the relative voltage uncertainty is almost constant over the range of voltages being measured for t s = 120 s and t s = 180 s with their maximum values close to 1.5 % and 1 %, respectively. For this reason, we recommend to lengthen the scanning time in order to ensure a slowly-varying voltage ramp.

Appendix B.2. Model versus measurement

Since the voltage is not measured during the day-to-day measurements, a validation step is required for ensuring the adequacy between voltage ramp model and experimental results. SMPS embedded software provides the users with the estimates of V AI M min and V AI M max for every scan.

Let V i the voltage ramp calculated according to equation ( 6) with the estimates V AI M,i min and V AI M,i max for scan i and V i exp the measured voltage for scan i. The mean voltage offset (or mean bias), denoted δ V , is given by Appendix C. Calculations of the combination coefficient of positive and negative ions with a particle carrying p elementary units of charge by [START_REF] Fuchs | On the stationary charge distribution of aerosol particles in a bipolar ionic atmosphere[END_REF] The combination coefficient β ± p of positive and negative ions with a particle carrying p elementary units of charge (p is considered positive, if the charges of the ion and the particle are of the same sign) can be written as:

δ V [t] = 1 8 8 i=1 V i exp (t) -V i (t) .
β ± p = πv ± I α ± p δ ±2 I exp - ς p (δ ± I ) k b T 1 + exp - ς p (δ ± I ) k b T v ± I α ± p δ ±2 I 4D ± I R p Rp δ ± I 0 exp ς p Rp ξ k b T dξ , (C.1)
where α ± p is the probability of an ion (positive or negative) entering the limiting-sphere to collide and transfer its charge to the particle (collision probability), δ I is the limiting sphere radius and ς p is the electrostatic potential energy of an ion in the field of the particle given as:

ς p (r) = +∞ r F int dr = 1 4πǫ 0        pe 2 r -κ R 3 p 2r 2 (r 2 -R 2 p )        , κ = (ǫ 1 -1)e 2 ǫ 1 + 1 , (C.2)
where F int is the force of electrostatic interaction between the ion and the particle, r is the distance of the ion from the center of the particle and κ is the image force parameter for particles with dielectric constant ǫ 1 . The radius of the limiting sphere δ I is given as follows:

δ ± I = R 3 p λ ±2 I         1 5 1 + λ ± I R p 5 - 1 3       1 + λ ±2 I R 2 p       1 + λ ± I R p 3 + 2 15 1 + λ ± I R p 5 2         . (C.3)
In the absence of electrical forces, α ± p is given as the square of the ratio of the particle radius to the limiting sphere:

α ± p = R p δ ± I 2 . (C.4)
For the case of charged particles, α ± p is calculated according to the impact parameter b of the minimum apsoidal distance, denoted as b min :

α ± p = b min δ ± I 2 . (C.5)
The equation that relates the impact parameter b to the apsoidal distance r a comes from the two-body theory of classical mechanics, so b min is computed as the minimum of

b 2 = r 2 a 1 + 2 3k b T ς p (δ I ) -ς p (r a ) . (C.6)
At this stage, 4 ionic properties are required to compute the ion-aerosol attachment coefficients β ± p : the electrical mobilities and the masses of small ions (positive and negative), denoted as z ± I and m ± I . Indeed, the diffusion D ± I , the ionic mean thermal velocity v ± I and the mean free path of small ions λ ± I are deduced from them with the following relations:

D ± I = k b T z ± I e , v ± I = 8k b T πm ± I , λ ± I = 16 √ 2 3π D ± I v ± I M M + m ± I 1 2 . (C.7)
The expression for the mean free path of small ions is taken from [START_REF] Fuchs | Highly Dispersed Aersols[END_REF] following the argument of consistency of [START_REF] Reischl | Bipolar charging of ultrafine particles in the size range below 10 nm[END_REF].

Appendix D. DMA transfer functions: ideal and diffusive

                    ,(D.3)
The dimensionless flow parameters β and δ in equation (D.3) are defined as β = q a + q m q sh + q ex , δ = q mq a q m + q a , (D.4) and the function ǫ ω is given by

ǫ ω (x) = x 0 erf(u)du = x erf(x) + exp(-x 2 ) √ π . (D.5)
Stolzenburg derived the expression of the diffusive motion of particles inside the column of the classifier, denoted σ, where

σ(p, D p , t) = G Z d (p, D p ) Z * (V(t)) ln r 2 r 1 k b T peZ * (V(t)) , (D.6)
and it depends on the geometric parameter

G G = 4(1 + β) 2 1 - r 2 1 r 2 2         I      
computed as follows:

N [q] tot = J j=1 ˆ N[ j] [q] , (E.1) D [q] p,mod = D p max j ˆ N[ j] [q] , (E.2) D [q] p,50 = D p        N [q] tot 2        , (E.3) D p [q] = J j=1 ˆ N[ j] [q] D p [ j] N [q] tot , (E.4) D p,g [q] = exp                  J j=1 ˆ N[ j] [q] ln(D p [ j]) N [q] tot                  , (E.5) σ [q] g = exp                  J j=1 ˆ N[ j] [q] ln(D p [ j]) -ln(D p,g [q] ) 2 N [q] tot                  1/2 . (E.6)

Nomenclature

Math symbols Fuchs' parameter: collision probability of small ions (positive and negative) with a particle that represents the fraction of ions emerging from the limiting sphere that actually reach the particle β ± p Attachment coefficient of small ions (positive and negative) with a particle carrying p elementary units of charge (p is considered positive, if the charges of the ion and the particle are of the same sign)

[m 3 .s -1 ] δ ± I Radius of Fuchs' limiting sphere: radius of a sphere that divides the free molecular regime near the particle and the continuum regime far from the particle 

Figure 1 :

 1 Figure 1: Variance of the raw count data as a function of the mean raw count data for 160 scans of DEHP aerosol (40 scans : no dilution; 40 scans : dilution 10; 40 scans : dilution 100; 40 scans : dilution 1000). Every red dot (mean and variance) is computed over 40 scans. The black line stands as the reference Poisson statistic over the whole concentration range.

  Please refer to Appendix A.3. 7 3.5. Viscosity of air Please refer to Appendix A.4.

  multivariate truncated normal vector and C c (D p ; θ A,B,C ), the slip correction calculated at diameter D p with the empirical constants drawn from θ A,B,C . Four sets of coefficients are used to model A, B and C: θ A A,B,C =

  Relative difference to[START_REF] Jung | Re-evaluation of the slip correction parameter of certified PSL spheres using a nanometer differential mobility analyzer NDMA[END_REF] correction [%] Knudsen and Weber (1911) Millikan (1923b) Davies (1945) DeMarcus, Thomas (1952) Reif (1958) Fuchs (1964) Dahneke (1973) Allen et Raabe (1982) Allen et Raabe (1985) Rader (1990) Hutchins et al. (1995)[START_REF] Kim | Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyser Nano-DMA for knudsen number from 0.5 to 83[END_REF] 
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Figure 4 :

 4 Figure 4: Flowchart of the uncertainty propagation via the Monte Carlo method.

For

  i = 1 : I Start channel loop Sample from T , P, Q sh , Q a , and D p,thres

Figure 5 :Figure 6 :

 56 Figure 5: Measured particle count as a function of the electrical mobility diameter for the 100 nm PSL (3 scans), 200 nm PSL (15 scans) and 450 nm PSL (2 scans).

Figure 7 :

 7 Figure7: Comparison of the statistical diameters computed by using the new method (50000 simulations) for the 100 nm PSL, 200 nm PSL and 450 nm PSL with the experimental results obtained by AIM software. The red dots refer to the mean estimate and associated red bars refer to the standard deviation computed over the total number of simulations (full uncertainty analysis). The black dots refer to the average diameter computed over the number of real measurements and associated black bars represent the standard deviation (repeatability uncertainty).

Figure

  Figure B.9 shows the computed mean voltage bias for the two scanning times. The offsets are not centered around zero as would be expected for an unbiased model. Still, the maximum offset value is about ±20 V within the time range.

Figure B. 8 :

 8 Figure B.8: Voltage relative uncertainty σ(V) V in percent as a function of the voltage for the two scanning times: 120 s and 180 s.

Figure B. 9 :

 9 Figure B.9: Voltage mean bias δ as a function of the voltage for the two scanning times: 120 s and 180 s.

II

  Mean free path of small ions (positive and negative)[m] ς pElectrostatic potential energy of an ion when it moves in the electrostatic field of a charged particle (p being positive if the charges of the ion and the particle are of the same sign) a i (p) Charge fraction matrix coefficients b Impact parameter between the ion and the particle b min Impact parameter of the minimum apsoidal distance D ± I Diffusion coefficient of small ions (positive and negative) in air [m 2 .s -3 ] K Number of listed authors that published values of the ionic properties for dry air m ± I Mass of small ions (positive and negative) [amu] r Distance of the ion from the center of the particle R Electrical mobility of small ions (positive and negative)[m 2 .V -1 .s -1 ] F intForce of the electrostatic interaction between the ion and the particleStatistical modeling(a A , b A , c A ) Slip correction factors of (Allen and Raabe, 1985) (a H , b H , c H ) Slip correction factors of (Hutchins et al., 1995) (a J , b J , c J ) Slip correction factors of (Jung et al., 2012) (a K , b K , c K ) Slip correction factors of (

Table 1 :

 1 List of the considered sources of uncertainty, the associated modeling and their respective sections/annexes.

	Source	Model	Section
	Coincidence	Corrected with (Collins et al., 2013)	Appendix A.1 section 3.9
	Diffusion losses	Corrected with the total penetration efficiency model based	Appendix A.7
		on effective lengths from the literature	
	Bipolar charging law	Multivariate Gaussian distribution with parameters identi-	section 3.11
		fied from the literature	
	DMA transfer function	Combination of convective and convective-diffusive mod-	section 3.12
		els	
	CPC counting efficiency	CPC efficiency curves are taken using air as the sample	section 3.13
		carrier gas and modeled as error free functions	
	3.1. Coincidence correction		
	Please refer to Appendix A.1		
		6	

Table 2 :

 2 using the current smallest SRM R 1964 and have found a new value for c = 1.001. Some published values of Slip correction factors for Stokes' law (Standard (ISO 15900, 2009))
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Statistical Modeling. a, b and c are modeled as samples drawn from the truncated normal distributions A, B and C, respectively. Let θ A,B,C

Table 3 :

 3 Some published values of the ionic properties for dry air.

	Authors \ Parameters Vohra (1969)	z + I [amu] z -I [amu] m I + [amu] m -I [amu] 1.40 1.90 109 50
	Mohnen (1977)	1.40	1.90	130	100
	Postendörfer et al. (1983)	1.15	1.39	140	101
	Wen et al. (1984)	1.40	1.90	130	130
	Hoppel and Frick (1986)	1.20	1.35	150	90
	Wiedensohler et al. (1986)	1.35	1.60	148	130
	Hoppel and Frick (1990)	1.33	1.84	200	100
	Wiedensohler and Fissan (1991)	1.40	1.60	140	101
	Reischl et al. (1996)	1.15	1.425	290	140

Table 4 :

 4 SMPS settings for the 100 nm PSL, 200 nm PSL and 450 nm PSL.

	Parameters	Variable Unit	PSL 100 nm	PSL 200 nm	PSL 450 nm
	Classifier Model	-	-	TSI 46058	TSI 3080	TSI 3080
	DMA Model	-	-	TSI 3081	TSI 3081	TSI 3081
	Neutralizer Model	-	-	TSI 3088	TSI 3077	None
	Detector Model	-	-	TSI 3772	TSI 3022	TSI 3025
	Impactor	-	[cm]	None	0.0457	None
	Ref Gas Viscosity Ref Mean Free Path Ref Gas Temperature	η 0 λ m,0 T 0	[kg/(m*s)] [m] [K]	1.832450 ×10 -5 6.73 ×10 -8 296.15	1.832450 ×10 -5 6.6420 ×10 -8 296.15	1.820300 ×10 -5 6.650 ×10 -8 293.15
	Ref Gas Pressure	P 0	[kPa]	101.30	101.30	101.3
	Particle Density	ρ	[g/cc]	2.2	2.2	0.8
	Temperature range	T	[K]	[295.65 -296.15]	[292.75 -293.15]	[293.15 -293.15]
	Pressure range	P	[kPa]	[98.20 -98.20]	[101.0 -101.1]	[101.3 -101.3]
	DMA Sheath Flow	q sh	[lpm]	10.0	3.0	4.0
	DMA Aerosol Flow	q a	[lpm]	1.0	0.3	0.3
	Detector Inlet Flow	q m	[lpm]	1.0	0.3	0.3
	Detector Sample Flow	q cpc	[lpm]	1.0	0.3	0.03
	Low Voltage range	V min	[V]	[10.77 -10.78]	[10.30 -10.31]	[10.19 -10.19]
	High Voltage range	V max	[V]	[9944.93 -9949.66]	[9690.66 -9699.31]	[9738.40 -9738.40]
	Scan Up Time	t s	[s]	120	180	300
	Retrace Time	t r	[s]	6	30	15
	Plumbing Time	t d	[s]	1.03	3.53	3.38
	Residence Time	t f	[s]	2.26	7.52	5.77
	DMA Inner Radius	r 1	[cm]	0.937	0.937	0.937
	DMA Outer Radius	r 2	[cm]	1.961	1.961	1.961
	DMA Length	L	[cm]	44.369	44.369	44.369
	Number of scans	N scan	-	3	15	2

Table 5 :

 5 Summary of the statistics for the 100 nm PSL, 200 nm PSL and 450 nm PSL.

		PSL 100 nm	PSL 200 nm	PSL 450 nm
	Statistics	Mean [nm]	St. Dev [nm]	Mean [nm]	St. Dev [nm]	Mean [nm]	St. Dev [nm]
	Median	101.22	0.18	204.39	1.71	443.87	1.52
	Mode	101.58	0.17	197.02	1.95	443.55	2.65
	Geometric Mean	101.76	0.27	236.59	3.93	424.24	4.36
	Mean	102.07	0.28	251.40	5.70	431.21	3.60
	Median [AIM ]	101.48	0.13	202.40	0.41	447.86	0.03
	Mode [AIM]	101.45	0.00	196.09	0.26	446.32	0.27
	Geometric Mean [AIM]	101.80	0.19	216.65	1.66	426.46	3.74
	Mean [AIM]	102.13	0.21	222.17	1.51	433.98	2.91
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Table A .

 A 6: Statistics summary for the sheath flow rate monitoring experiment.

	Setpoint values \ Statistics min 1st quartile median mean 3rd quartile 3 lpm 2.97 3.00 3.00 3.00 3.00	max 3.03	standard deviation %RSD 0.01 0.28
	6 lpm	5.90	5.99	6.00	6.00	6.00	6.13	0.02	0.41
	10 lpm	9.86	9.98	9.99	9.99	10.01	10.14	0.03	0.35

  [START_REF] Kim | Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyser Nano-DMA for knudsen number from 0.5 to 83[END_REF]) ∆P Modeled tolerance around P ∆T Modeled tolerance around T ∆ thres Diameter range for the transition between ω d and ω nd ǫ V Uniform random variable used to scale the voltage ramp T Uniform random variable that models the gas carrier temperature inside the classifier Vmax Gaussian random variable that models the maximum voltage dispersion Vmin Gaussian random variable that models the minimum voltage dispersion µ Φ p,samp J-dimensional mean vector of Φ p,samp δ V (p, D p ) Bipolar charging law calculated with the k th quadruplet of table 3 Φ p,samp J × K matrix containing the J-dimensional vectors φ k (p, D p ) Φ p Multivariate normal random vector that models the bipolar charging law with p charges σ g Φ p,samp J-dimensional standard deviation vector of Φ p,samp Σ θ A,B,C Covariance matrix of θ A,B,C Σ Y Covariance matrix of Y Σ C Φp,samp Diagonal matrix with non-negative real numbers known as the singular values of C Φ p,samp on the diagonal θ A,B,C Multivariate truncated normal vector containing A, B and C ˜ Y Multivariate normal random vector that models the measured particle count ˜ Y poisson Multivariate Poisson random vector that models the measured particle count A, B, C Truncated normal variables that models the slip correction factors a, b and c C Φ p,samp J × J rank correlation matrix of Φ T Uniform random variable that models the diameter from which the transition from ω d to ω nd begins D low Upper bound of D p,thres g Mixing function that handles the transition between ω d and ω nd L, R 1 , R 2 Uniform random variables that model the geometrical parameters of the DMA N tot Total concentration [#.m -3 ] Q Number of simulations of Monte Carlo Q sh , Q a , Q m , Q ex Normal random variables that model the DMA flow rate U C Φp,samp Orthogonal matrix or rotation matrix of the singular value decomposition of C Φ p,samp

		p,samp	
	D p,50	Median diameter	[m]
	D p,mod	Mode diameter	[m]
	D p,thres		
	p,thres up D p,thres	Lower bound of D p,thres	
	Physical constants	
	ǫ 0	Vacuum permittivity	[F.m -1 ]
	ǫ 1	Dielectric constant	[F.m -1 ]
	e	Charge of an electron	[C]
	k b	Boltzmann constant	[J.K -1 ]
	M	Average molecular mass of air	[amu]
	S	Sutherland constant, S = 110.4 K	[K]
		Mean voltage offset	
	η 0	Normal random variable that models the reference gas viscosity	
	D p,g	Geometric mean diameter	[m]
	D p	Mean diameter	[m]
	φ k Geometric standard deviation	
	σ 2 η 0	Variance of η 0	

σ

Smearing effect

Corrected with [START_REF] Collins | Improved inversion of scanning DMA data[END_REF] Appendix A. Appendix A. Sources of uncertainty Appendix A.1. Coincidence correction Coincidence occurs when more than one particle occupies the optical sensing region simultaneously. Coincidence theory describes the deviation and non linearity between true and observed counting rate for high concentrations of particles. [START_REF] Collins | A new coincidence correction method for condensation particle counters[END_REF] derived an expression to calculate the true rate of coincidence using the Lambert W function. The actual particle count, denoted as Y a , is a function of the measured particle count, Y, and of the CPC per-event dead time, τ cpc , via the following equation

Please note that CPCs recent models already correct for coincidence and one must first check whether this treatment is already done on the data.

The measured particle count are corrected for coincidence and no additional uncertainty has been introduced for it (fixed correction).

Appendix A.2. Smearing effect correction

The plumbing delay is the time a classified particle must travel after exiting the DMA until it is detected by the CPC. Due to mixing and deviations from plug flow within the tubing and the CPC, the particles experience several delay times. [START_REF] Russell | Asymmetric instrument response resulting from mixing effects in accelerated DMA-CPC measurements[END_REF] examined the smearing of the transfer function as a result of flow disturbances in the system and developed a model to predict the distortion of the transfer function in terms of the delay time distribution. Nevertheless, they did not incorporate the diffusional broadening of the DMA transfer function into their derivation. Later, [START_REF] Collins | Improved inversion of scanning DMA data[END_REF] have developed a simplified approach with an adjustment of the raw data to account for the delay time distribution prior to the final inversion. Their method is preferred here.

Appendix A.3. Temperature, Pressure Gas temperature and pressure, T and P, must be controlled for an accurate sheath flow rate q sh . Indeed, SMPS uses thermal flow sensors that are sensitive to changes in air density and air velocity which is the reason why such flowmeters indicate flow rate with reference to a set of standard conditions in terms of temperature and pressure.

Statistical Modeling. For a given two minutes scan, SMPS embedded software prints out a unique couple for the gas temperature and pressure (T , P). Given that the gas temperature and pressure are not measured during the experiment and that both quantities have time constants lower than the scan duration, additional assumptions are necessary. As a first approximation, we consider to set tolerances on both quantities. T is modeled as a sample drawn from a uniform random variable T with T ∼ U(T -∆T, T + ∆T ) and ∆T = 0.5 • C. P is modeled as a sample drawn from a uniform random variable P with P ∼ U(P -∆P, P + ∆P) and ∆P = 100 Pa. New samples will be drawn from their respective distributions, namely T and P, for every time of the simulation following the argument of time constants shorter than the scanning time. When several scans are available, T and P will be replaced by the average gas temperature and gas pressure over the number of scans. In such situation, ∆T and ∆P shall be re-adjusted.

Appendix A.4. Viscosity of air [START_REF] Mulholland | Measurement of 100 nm and 60 nm particle standards by differential mobility analysis[END_REF] The viscosity of air η 0 is used to compute the dynamic gas viscosity η g that will be used to determine the particle electrical mobility Z d . [START_REF] Birge | Values of certain atomic constants with particular reference to the electronic charge[END_REF] reported the weighted average value of the viscosity of air, η 0 = (1.83245 ± 0.00069) × 10 -5 kg.m -1 .s -1 from six different results. For a new temperature T , the viscosity η g can be obtained using the Sutherland formula

Statistical Modeling. The viscosity of air is modeled as a sample drawn from the normal random variable η 0 with η 0 ∼ N(η 0 , σ 2 η 0 ) and σ η 0 = 0.00069 × 10 -5 kg.m -1 .s -1 .

Appendix A.5. Geometric factors

The geometry of the DMA defines the air flow field inside the classification region, the electric field and the trajectory of the particle inside the column. [START_REF] Kinney | Use of the electrostatic classification method to 0.1 µm SRM particles -a feasibility study[END_REF] have computed the uncertainty associated with the values of the center rod radius r 1 (±0.2%), the outer cylinder radius r 2 (±0.3%) and the length of the DMA column l (±0.5%) for the electrostatic classifier TSI Model 3071 (Long DMA). For the nano-DMA mainly used to size ultra-fine aerosol particles, only a tolerance is associated with each dimension.

Statistical Modeling. The manufacturer states that the tolerances represent the greatest deviations possible. From such information, l, r 1 and r 2 are modeled as samples drawn from uniform random variables L, R 1 and R 2 whose bounds are taken as the given tolerances.

Appendix A.6. DMA flow rates

The sheath flow rate q sh is directly linked to the electrical mobility (see equation ( 1)), so any fluctuations of q sh result in broadening the transfer function of the DMA. SMPS utilizes a recirculating flow scheme so that q sh matches the exhaust flow q ex . Such scheme secures equality of q sh and q ex within 0.01% ( [START_REF] Mulholland | Measurement of 100 nm and 60 nm particle standards by differential mobility analysis[END_REF]). This is why the leakage rate in the recirculation system has not been investigated here. The DMA controller ensures a laminar flow in order to minimize the flow disturbances that cause decreasing resolution, it also ensures balanced flows (q a = q m ). The internal flow-meters which control the sheath and bypass flow are NIST traceable, micro-processor controlled, and they adjust for differences of temperature T and pressure P. The flow-meter uncertainty is stated measuring dry gas (less than 10 % Relative Humidity) at standard conditions of 21.1 • C and 101.3 kPa. The computed uncertainty accounts for the reading repeatability, the resolution (display) and the correction due to the calculations to retrieve the volumetric flow rate 7 from the measured standard flow rate 8 . The sheath flow rate was measured by a flow-meter Model 4140 manufactured by TSI Incorporated during 1000 s (more than 15 minutes) for 3 set-point values: 3 lpm, 6 lpm and 10 lpm. The flow rate is recorded with a sampling rate of 1 Hz. Table A.6 gives some descriptive statistics (min value, 1st and 3rd quartiles, median, mean, standard deviation and %RSD) for the measured sheath air flow for every set-point value. The results reflect a wellcontrolled sheath flow rate with very small dispersion around the setpoint value.

The percent relative standard deviations (%RSD) are 0.28% for 3 lpm, 0.41% for 6 lpm and 0.35% for 10 lpm. The flow-meter reading uncertainty varies between 0.005 and 0.010 lpm, depending on the measured 7 The volumetric flow rate is the true volume flow of the gas exiting the flow-meter. 8 The standard flow rate is the flow rate the air would be moving if T and P were at 21.1 where ∆ is the diffusion parameter for a circular tube

R tube and L tube being respectively the tube radius and length, v the mean velocity in the tube and D the diffusion coefficient related to D p via the Stokes-Einstein relation

The penetration efficiency through the impactor inlet, η inlet is computed based on the [START_REF] Gormley | Diffusion from a stream flowing through a cylindrical tube[END_REF] modified equation using an effective length:

η inlet = 0.82 exp(-11.5µ) + 0.10 exp(-70.0µ) + 0.03 exp(-180µ) + 0.02 exp(-340µ), (A.6) where µ = (DL eff )/q m , q m being the sampling flow rate and L eff the effective tube length. The penetration efficiency through the neutralizer and internal plumbing, η neutralizer , is computed in a similar fashion with a different value of L eff .

Statistical Modeling. The total penetration efficiency η is simply the product of the individual efficiencies,

where η is a function of the particle diffusion coefficient D, effective length L eff and flow rate q m . Obviously, the effective lengths vary among SMPSs and shall be adjusted depending on the device in use (for instance, L eff = 0.4 m [START_REF] He | Experimental characterization of flowrate-dependent bipolar diffusion charging efficiencies of sub-50 nm particles[END_REF] in the calculations of η neutralizer for the Model TSI 3077 Neutralizer and L eff = 0.57 m in the calculations of η inlet for an inertial impactor size of 0.0457 cm). Then, they will be considered as fixed and no additional uncertainty will be introduced for it. . The uncertainty in the total penetration efficiency directly comes from D and q m . As a reminder, D is a function of the slip correction, the gas temperature T and the dynamic gas viscosity η g that are all uncertain quantities as described in previous sections.

Appendix B. Dynamic voltage measurement

Appendix B.1. Experimental results

A high voltage calibration facility was set up to measure the voltage of the DMA rod using a high voltage divider and a digital voltmeter in a similar fashion as what was done in [START_REF] Mulholland | Measurement of 100 nm and 60 nm particle standards by differential mobility analysis[END_REF]. The output signal was measured using a Hewlett Packard 3458A digital multimeter. 2 configurations have been studied where only the scanning time t s varies: 120 s and 180 s. 8 measurements are recorded for every configuration with a 10 Hz sampling rate.

Appendix D.1. Non-diffusive transfer function [START_REF] Knutson | Aerosol classification by electric mobility: Apparatus, theory, and applications[END_REF] developed DMA theory based on particle trajectory equations for a fixed voltage V. Neglecting particle diffusivity and assuming that the electric field is ramped exponentially with time, [START_REF] Wang | Scanning electrical mobility spectrometer[END_REF] derived the expression of the non-diffusive transfer function ω nd for a scanning DMA ω nd (D p , p, t) = max 0, min s(D p , p, t) + q mq sh q a , -s(D p , p, t) + q a + q sh q a , q m q a , 1 , (D.1)

where s is the so called mobility parameter that is computed for particles that reach the sample extraction slot at time tt d and it is given by the following expression

Later, [START_REF] Collins | The scanning DMA transfer function[END_REF] have simulated ω for a long DMA (TSI Model 3081). They exhibit distortions in that configuration and brought simplified corrections to adjust the concentration and mobility of size distributions recovered with fixed voltage transfer function. Their corrections only apply for an aerosol to sheath flow ratio of 0.1.

Appendix D.2. Diffusive transfer function

The most widely used approach that includes particle diffusivity on the transfer function of the DMA is that of [START_REF] Stolzenburg | An Ultrafine Aerosol Size Distribution Measuring System[END_REF]. He convoluted the non-diffusive transfer function with a Gaussian distribution to model the diffusive deviations of the particles along their ideal trajectories. Its expression can be modified, replacing the fixed voltage V by V(t) (cf equation ( 7)), such that ω d can be written as follows

Appendix E. Statistical diameters calculations

For a given simulation q, the total concentration

tot , the mode diameter D

[q] p,mod , the median diameter D

[q] p,50 , the mean diameter D p [q] , the geometric mean diameter D p,g [q] and the geometric standard deviation σ

[q]

g are