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Abstract

Scanning Mobility Particle Sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used
as the standard method to measure airborne particle size distributions in the size range 1 nm - 1 µm. This
paper addresses the problem to assess the uncertainty associated with the particle size distribution (PSD)
when the Differential Mobility Analyzer (DMA) operates under scanning mode. The sources of uncertainty
are described and then modeled either through experiments or knowledge extracted from the literature.
Special care is brought to model the physics and to account for competing theories. Indeed, it appears that
the modeling errors resulting from approximations of the physics can largely affect the final estimate of this
indirect measurement especially for quantities that are not measured during the day-to-day experiments.
Monte-Carlo method is used to compute the uncertainty associated with the PSD. The method is finally
tested against real data sets that are monosize Polystyrene Latex Spheres (PSL) with nominal diameters of
100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol
particles are estimated as 101.22 nm ± 0.18 nm, 204.39 nm ± 1.71 nm and 443.87 nm ± 1.52 nm with the
new approach. Other statistical parameters such as the mean diameter, the mode and the geometric mean
and associated standard uncertainty are also computed. These results are finally compared with the results
obtained by SMPS embedded software.

Keywords: SMPS measurement, Uncertainty propagation, Monte-Carlo simulations

1. Introduction

Among devices using electrical mobility methods to measure aerosol particle size distribution, the SMPS
is the most widely used to characterize particles smaller than 1 µm. It can be applied in fields like: indoors
air quality measurement (Kagi et al., 2007), vehicle exhaust pipes (Vogt et al., 2003; Mathis et al., 2004),
atmospheric studies (Park et al., 2004), toxicology testing (Oberdörster et al., 2004; Ravenzwaay et al.,
2009), etc.. . With the increasing importance of nanomaterials characterization in fundamental research
and industrial applications, it is desirable that SMPS measurements are associated with an uncertainty. In-
deed, measurement results are commonly expressed in terms of particle diameters (mean, median, mode,
...) calculated from the PSD with an associated standard deviation that simply reflects the measurement
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repeatability uncertainty (Motzkus et al., 2013).
An uncertainty analysis in this context could be very useful especially to improve the measurements com-
parability between laboratories. The GUM and its supplements provide a generic uncertainty evaluation
framework that is why the Monte-Carlo method (JCGM 101, 2008) will be used to compute the uncertainty
associated with the PSD. Additionally, the paper addresses uncertainty issues that are not currently covered
by the GUM: competitive models, functional uncertain inputs, .. . First task is to identify the main con-
tributors to uncertainty. Then, a statistical model will be built for each source if possible (measurements
available, literature review, expert opinions, ...) to be finally used in the propagation scheme. Obviously,
there are many different ways of building such statistical models and, if more knowledge is available, the
models should be updated accordingly or replaced if appropriate. A number of assumptions have been made
in the development of the whole measurement model and its associated sources of uncertainty.
The main assumptions are listed below:

• The list of recommendations made by (Chen et al., 2016) is followed throughout the whole presented
work. They highlighted in their work that SMPS results are influenced by particle shape and mor-
phology, as well as by the upper and lower size limits set by the instrument (”cutoff” phenomenon
at the upper size bound of the SMPS display and counts of ”phantom particles” may be registered
around the lower size bound of the SMPS display).

• particles are spherical: it is known that nano-sized particles form agglomerates caused by interpar-
ticle forces, Van Der Waals as well electrostatic forces especially for combustion sources as power
plants and vehicle engines that emit agglomerated particles. These agglomerates produce complex
shapes whose morphology is usually characterized by fractal dimension. The charging probability,
the penetration efficiencies, and the diffusion of agglomerated particles differ from that of individual
spherical particles. All the analysis presented in this work refer to spherical particles only.

• effects of particles properties (especially chemical composition) are neglected: the material de-
pendence has proven to yield to slight efficiency curves differences in the size range near the lower
detection limit (ISO 27891, 2015). Yet, in the absence of statistical model to account for this source
of uncertainty, the effect of particle properties on the CPC detection efficiency is neglected here.

• sample is considered to be carried in air: the effect of the carrier gas composition on the CPC
detection efficiency is neglected. If the efficiency curves for N2 and Ar usually coincide that is not the
case for all carrier gases, for instance, the efficiencies are generally lower for CO2 and higher for He.

Taking account of the above assumptions, the results that will be presented in section 5 illustrate the method-
ology on selected particle sizes larger than 100 nm. Indeed, the uncertainty in the CPC counting efficiency
curve becomes negligible above that size. To treat smaller particles using our approach, we recommend to
account for that source of uncertainty especially if selected particle sizes are close to the CPC lower detec-
tion limit.

Another key point that is essential to address is that the quantity of interest (the measurand) is the airborne
PSD entering the DMA inlet. This is why the uncertainty in the aerosol generation as well as in the particles
drying operation will not be investigated here. In fact, since SMPS is also used for in-situ measurements
(atmospheric research, ...) where the aerosol generation is not controlled, the proposed general framework
for uncertainty propagation focuses on the SMPS device.
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2. Theoretical background

Differential mobility analysis combines a particle classifier (Differential Mobility Analyzer or DMA) that
transmits particles within a narrow interval of mobilities from an initially polydisperse aerosol, and a detec-
tor (a Condensation Particle Counter or CPC) that counts the particles within that differential size interval.
First, aerosol passes through an inertial impactor to prevent largest particles from entering the DMA col-
umn, then, the aerosol enters a charge neutralizer so that particles reach an equilibrium charge state. The
particles are then selected by using an electrical classification method inside the column of the DMA: an
electric field is created and the airborne particles drift along the column according to their electrical mo-
bility, denoted Z. For a given voltage V , the centroid mobility Z∗(V) for the ideal, non-diffusional transfer
function in the cylindrical DMA is given by the following equation

Z∗(V) =
(qsh + qex) ln

(

r2
r1

)

4πlV
. (1)

Matching Z∗ with the particle electrical mobility Zd whose expression is obtained by equating the electric
field force with the Stokes drag force,

(qsh + qex) ln
(

r2
r1

)

4πlV
= Z∗(V) = Zd(p,Dp) =

peCc(Dp)

3πηgDp

, (2)

the particle mobility diameter Dp is the solution of

3(qsh + qex) ln
(

r2
r1

)

ηg

4lV pe
=

Cc(Dp)

Dp

, (3)

where e is the charge of the electron, p is the number of elementary charges, ηg is the dynamic gas viscosity
and Cc is the slip correction that accounts for noncontinuum gas behavior on the motion of small particles
and it is given by the following equation

Cc(Dp) = 1 + Kn(Dp)
[

a + b exp
(

− c

Kn(Dp)

)]

, Kn(Dp) =
2λm

Dp

, (4)

where (a, b, c) are dimensionless empirical constants so called the slip correction factors, Kn is the Knudsen
number and λm is the particle mean free path of gas molecules corrected for any temperature and pressure
using Willeke’s relation

λm = λm,0 ×
(

T

T0

)2

×
(

P0

P

)

×
(

T0 + S

T + S

)

, λm,0 = 67.3 nm. (5)

From a known mobility Z∗, the particle mobility diameter Dp can be computed via equation (3) using a
root finding algorithm such as the bisection method. The solution is a function of the number of elementary
unit of charge the particle carries.
The voltage applied to a scanning DMA varies exponentially (Wang and Flagan, 1990) with time constant
τv (Collins et al., 2004):

V(t) = Vmin exp
(

± t

τv

)

, τv =
ts

ln
(

Vmax
Vmin

) , (6)

where ts is the scanning time, Vmin and Vmax are the lower and upper limits of the voltage ramp, respectively.

(Collins et al., 2004) admit in their paper that the most commonly used approach for calculating the particle
mobility exiting the DMA is to replace in equation (1) the voltage V by the average voltage V the particles

3
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have experienced over their residence time t f inside the column of the classifier. So, a particle counted at
time t was subjected to some voltage V(t) whose expression can be derived from equation (6):

V(t) =
1
t f

t−td
∫

t−td−t f

V(u)du =
Vminτv

t f

exp
(

t − td

τv

) (

1 − exp
(−t f

τv

))

. (7)

Assuming that the particle residence time equals the mean fluid residence time inside the column,

t f =
π(r22 − r21)l

qsh + qa

, (8)

The time for particles to pass from the DMA outlet to the detection chamber of the CPC, commonly called
the plumbing time, is denoted td. It is deduced from the aerosol flow rate, qa, the plumbing tube diameter,
Dtube, and length, ltube

td =
πDtubeltube

2qa

. (9)

Knowing the voltage, the corresponding electrical mobility can be calculated using equation (1). Then, the
associated particle mobility diameter Dp carrying a given number of elementary charges p is computed via
equation (3).
However, the classifier not only selects particles with centroid mobility Z∗ but also with slightly higher and
lower mobilities, so the selection is modeled with a transfer function ω whose shape is either triangular
when aerosol flows are balanced (qm = qa) or trapezoidal when imbalanced (qm , qa).
(Wang and Flagan, 1990) derived an expression of the non-diffusive transfer function for scanning DMA by
choosing the average of the transfer function over the measurement time for every channel.
Yet, for ultra-fine aerosol particles, particle diffusion must be taken into account. On this topic, the work
of (Stolzenburg, 1988) stands as a reference because it has been validated through experiments (Jiang et al.,
2011) and numerical simulations (Hagwood et al., 1999; Mamakos et al., 2007). This will be discussed later
in the section 3.12.

General Model. The instrument response is given as the number of particles counted over time by the
CPC. It can be modeled as a set of Fredholm equations. Let ki be the non-negative kernel function for the
time range corresponding to the ith channel (or equivalently for voltage settings corresponding to channel
i), n the size distribution function that is the number of particles per volume of air with size Dp, ~E[i] the
measurement error in the ith channel and ~Y[i] the instrument response (number of particles counted over
channel i) commonly modeled as follows

~Y[i] =

+∞
∫

0

ki(Dp)n(log(Dp))d(log(Dp)) + ~E[i], i = 1, ..., I, (10)

with

ki(Dp) = qatc[i]η(Dp)
+∞
∑

p=1

φ(p,Dp)ωi(Dp, p), (11)

and

ωi(Dp, p) =
1

tc[i]

t[i]+tc[i]
∫

t[i]

ω(Dp, p, t)dt, (12)

4
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t[i] being the time when the counting for channel i begins (properly adjusted for flow time between the
DMA and CPC (Talukdar and Swihart, 2003)) and tc[i] is the counting time in channel i. η(Dp) is the bin
averages of the efficiency as modeled by (Collins et al., 2002) (cf section 3.10).
The charge distribution on the particles, denoted as φ(p,Dp) in equation (11), is the probability that a
particle of diameter Dp carries p elementary charges. It was fully described by (Fuchs, 1963) and modified
afterwards by (Hoppel and Frick, 1986). This expression will be fully detailed in section 3.11.
Actually, only the DMA transfer function ω varies with time in equation (11) and synchronizes the times of
the system to relate particle detection to particle selection through the voltage expression. When the DMA
voltage is being continuously scanned, the average transfer function over the counting interval tc[i], denoted
ωi, is given by equation (12).
The x-axis is generally discretized to obtain a finite reconstruction problem. If we denote

(

Dp[ j]
)

j=1,...,J

the estimation points, then n 7−→ ~N ∈ R
J , with ~N[ j] = ~N(log(Dp[ j])) and k[i, j] = ki(Dp[ j]). The matrix

~~H ∈ R
I×J is then defined as the discrete evaluation of the integral in equation (10) using Simpson quadrature:

let
(

~w[ j]
)

j=1,...,J the weights of the quadrature, then
~~H[i, j] = k[i, j]~w[ j]. Equation (10) is then re-written

under matrix form as:

~Y =
~~H ~N + ~E, (13)

where ~Y ∈ R
I is the vector of raw data points, ~N ∈ R

J is the vector of solution elements and ~E ∈ R
I is the

vector of measurement errors.

Data Inversion. The inversion of SMPS measurements is to solve an ill-posed problem. Indeed, the stabil-

ity cannot be guaranteed since matrix ~~H presents very small singular values and that the subspace in which

the noise lives overlaps non trivially with the subspace spanned by the singular vectors of ~~H (Seinfeld and
Wolfenbarger, 1990). To overcome this problem, several methods have been proposed: (Twomey, 1963,
1975; Markowski, 1987; Seinfeld and Wolfenbarger, 1990; Voutilainen, 2001; Collins et al., 2002; Talukdar
and Swihart, 2003; Dubey and Dhaniyala, 2013). The scope of this paper is clearly not to describe a new
inversion technique, yet, one must set an algorithm to estimate the PSD and we choose to focus on regular-

ization techniques1. In this framework, the estimate of the size distribution, denoted as ~̂N[λ], is the solution
of the following minimization

~̂N[λ] = argmin
~N≥0

[

‖ ~~H ~N − ~Y‖2 + λ‖D2 ~N‖2
]

, (14)

where D2 is the second order finite difference matrix used to penalize non-smooth solutions, λ is the reg-
ularization parameter and ~N ≥ 0 means ~N[ j] ≥ 0, ∀ j. The regularization parameter controls the strength
of the prior assumption (here the solutions shall be smooth). (Talukdar and Swihart, 2003) have proposed
to estimate λ using a modified L-curve criterion initially developed by (Lawson and Hanson, 1974). Such
graphical approach has the benefit that it does not require additional assumptions regarding the noise model.
The adaptive pruning algorithm described in (Hansen et al., 2007) is used to compute λ. Other methods can
be found in (Phillips, 1962) (discrepancy principle) or (Wahba, 1977) (Generalized Cross Validation).

3. Sources of uncertainty: expressions and modeling

The aim of this section is to bring the users with a procedure to model the contributions of every source
to uncertainty. First, all the sources of uncertainty that are suspected to contribute to the variation of the

1The uncertainty propagation scheme that will be presented later in the article stays valid regardless of the inversion technique
being used to retrieve the PSD.
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measurand must be considered. Each source will be either discarded if its contribution to uncertainty is
negligible, or, if appropriate, included in the uncertainty budget.
The contribution of some sources to uncertainty can be considerably lowered by specifying convenient
experimental settings: increase the sheath flow rate to reduce the particle deposition by diffusion inside
the column of the classifier, set an aerosol-to-sheath flow ratio at 0.1, lengthen the scanning time to avoid
smearing effect and to ensure a slowly varying voltage ramp. All the precautions are taken to reduce the
uncertainty.
Two groups of sources of uncertainty are distinguished: the sources that result in fluctuations of the mea-
sured particle count (experimental dispersion) and the modeling errors. Where the experimental dispersion
is directly available through the observations (measured particle count), the modeling errors appear when

defining the general model, or, more precisely, when building the matrix ~~H that is needed to estimate the
PSD.
The main contribution of this work is to account for the modeling errors, whereas, the common practice is to
neglect them by setting a general model with consensual sub-models (bipolar charging law, DMA transfer
function, etc.) and to set the model parameters to their nominal values. This approach, although faster,
yields to inaccurate estimates of the PSD because it does not account for all the parameters (or functions)
fluctuations responsible for the dispersion in the measured signals. Although some of the statistical models
presented in this paper may seem pessimistic to the readers, our approach tends to get closer to the true
measurement.
Coming sections give a short description of the sources of uncertainty as well as the associated statistical
modeling. In the interests of brevity, the models that can be easily found on aerosol textbooks have been
moved to annexes. Table 1 lists the considered sources of uncertainty, the associated modeling as well as
their respective sections/annexes.

Table 1: List of the considered sources of uncertainty, the associated modeling and their respective sections/annexes.

Source Model Section

Coincidence Corrected with (Collins et al., 2013) Appendix A.1
Smearing effect Corrected with (Collins et al., 2002) Appendix A.2
CPC counting noise Non parametric law identified from experiments section 3.3
Temperature of the carrier gas Uniform distribution with fixed parameters Appendix A.3
Pressure of the carrier gas Uniform distribution with fixed parameters Appendix A.3
Viscosity of air Gaussian distribution with fixed parameters Appendix A.4
DMA geometry Uniform distribution with fixed parameters Appendix A.5
DMA voltage Custom model based on experiments section 3.7
DMA flow rates Gaussian distribution with fixed parameters Appendix A.6
Slip correction factors Multivariate Gaussian distribution with parameters identi-

fied from the literature
section 3.9

Diffusion losses Corrected with the total penetration efficiency model based
on effective lengths from the literature

Appendix A.7

Bipolar charging law Multivariate Gaussian distribution with parameters identi-
fied from the literature

section 3.11

DMA transfer function Combination of convective and convective-diffusive mod-
els

section 3.12

CPC counting efficiency CPC efficiency curves are taken using air as the sample
carrier gas and modeled as error free functions

section 3.13

3.1. Coincidence correction

Please refer to Appendix A.1
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3.2. Smearing effect correction

Please refer to Appendix A.2.

3.3. CPC counting noise

Since the rate of particles entering the CPC occurs at random, the particle count is regularly modeled as
a sample drawn from a Poisson process. An experimental verification to ensure that such random process
remains accurate for higher concentrations of particles has been performed. Experiments have been carried
out with aerosol particles of Di(2-Ethylhexyl) Phthalate (DEHP) for different amounts of dilution (0 to
1000), and so very different levels of concentration. Airborne particles were detected by a Model 3022
CPC manufactured by TSI Incorporated. 40 scans were recorded for each configuration (4 configurations:
no dilution, dilution by a factor of 10, 100 and 1000). The mean and the variance of the measured raw
count data should be equal to validate the Poisson assumption. Of course, the finite (and reduce) number
of scans will not be sufficient to tend to equality but it should be enough to bare a trend. Figure 1 plots
the variance of the raw count data as a function of the mean raw count data (each point in the figure, mean
and variance being calculated over 40 scans). The results reflect that the Poisson assumption does not hold
when the particle concentration is greater than 103 cm−3. Indeed, above such concentration, the variance
becomes quadratic (logarithm scale) because the CPC no longer operates in single particle count mode. For
this reason, raw count data will be modeled as samples drawn from a multivariate normal vector whose
parameters will be directly inferred from the measured particle count. This will be described later in the
section 4.

Figure 1: Variance of the raw count data as a function of the mean raw count data for 160 scans of DEHP aerosol (40 scans : no
dilution; 40 scans : dilution 10; 40 scans : dilution 100; 40 scans : dilution 1000). Every red dot (mean and variance) is computed
over 40 scans. The black line stands as the reference Poisson statistic over the whole concentration range.
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3.4. Temperature, Pressure

Please refer to Appendix A.3.

7

Page 11 of 39 AUTHOR SUBMITTED MANUSCRIPT - MST-106463.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



3.5. Viscosity of air

Please refer to Appendix A.4.

3.6. Geometric factors

Please refer to Appendix A.5.

3.7. DMA Voltage

The voltage at the center rod of the DMA scales with the selected particle mobility, so any fluctuation of the
voltage tends to broaden the transfer function. Under scanning mode operation, the voltage is continuously
increased (equation (6)). To validate this model, a dynamic evaluation of the voltage has been performed
and is described in Appendix B.

Statistical Modeling. Because the mean voltage offsets are reasonably low compared with the repeatability
uncertainty, the proposed model neglects the bias, and, as a direct consequence, this source of uncertainty
will not be included in the uncertainty budget. The new voltage ramp V̂ that accounts for the repeatability
uncertainty and the input parameters fluctuations between consecutive scans is expressed as follows

V̂(t) = ǫV × V(t, V̂min, V̂max), (15)

where






























V̂min ∼ N
(

VAIM
min
, σVAIM

min

)

,

V̂max ∼ N
(

VAIM
max , σVAIM

max

)

,

ǫV ∼ U (0.985, 1.015) .

(16)

VAIM
min

and σVAIM
min

refer to the mean and standard deviation of the estimates of Vmin given by SMPS embedded

software. The same goes for VAIM
max and σVAIM

max
with the estimates of Vmax. The uniform random variable ǫV

scales the voltage ramp. Its minimum and maximum values stand for a relative uncertainty value of 1.5 %.
This model only applies for scanning times longer than 120 s.

3.8. DMA flow rates

Please refer to Appendix A.6.

3.9. Slip correction factors

The Cunningham slip correction factor Cc is used to correct Stokes’s law for the fact that the no-slip bound-
ary condition is violated for small aerosol particles moving with respect to the gaseous medium (Allen and
Raabe, 1985). The Knudsen-Weber form of the slip correction is given by equation (4).
Table 2 summarizes several published values for the empirical constants a, b and c. Considering the trace-
ability of the experiments, standard (ISO 15900, 2009) recommends the use of the coefficients determined
by (Kim et al., 2005) for particle size measurements. It also points out that the results of the experiments
led by (Allen and Raabe, 1985) closely agree with those of (Hutchins et al., 1995). Quite recently, (Jung
et al., 2012) have re-evaluated the coefficients determined by (Kim et al., 2005) using the current smallest
SRMR©1964 and have found a new value for c = 1.001.

8
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Table 2: Some published values of Slip correction factors for Stokes’ law (Standard (ISO 15900, 2009))

Authors \ Parameters λm,0 [nm] a b c

Knudsen and Weber (1911) 94.17 0.772 0.400 1.630
Millikan (1923b) 94.17 0.864 0.290 1.250
Davies (1945) 66.00 1.257 0.400 1.100
DeMarcus, Thomas (1952) 65.50 1.250 0.440 1.090
Reif (1958) 65.20 1.260 0.450 1.080
Fuchs (1964) 65.30 1.246 0.420 0.870
Dahneke (1973) 66.00 1.234 0.414 0.870
Allen et Raabe (1982) 67.30 1.155 0.471 0.596
Allen et Raabe (1985) 67.30 1.142 0.558 0.999
Rader (1990) 67.40 1.207 0.440 0.780
Hutchins et al. (1995) 67.30 1.231 0.4695 1.1783
Kim et al. (2005) 67.30 1.165 0.483 0.997
Jung et al. (2012) 67.30 1.165 0.480 1.001

Statistical Modeling. a, b and c are modeled as samples drawn from the truncated normal distributions A,

B and C, respectively. Let θA,B,C =





















A

B

C





















, a multivariate truncated normal vector and Cc(Dp; θA,B,C), the slip

correction calculated at diameter Dp with the empirical constants drawn from θA,B,C . Four sets of coeffi-

cients are used to model A, B and C: θA
A,B,C =





















aA

bA

cA





















, θH
A,B,C =





















aH

bH

cH





















, θJ
A,B,C

=





















aJ

bJ

cJ





















, and θK
A,B,C =





















aK

bK

cK





















2.

Mean values for A, B and C are set as the coefficients of (Jung et al., 2012). Indeed, it is the most recent
study that brings us with traceable results. The other sets will be used for the truncation as shown below.

θA,B,C ∼ N[θlow
A,B,C ,θ

up
A,B,C ]

(θmeanA,B,C ,ΣθA,B,C ),

(17)

θlowA,B,C =





















aA

bH

cK





















=





















1.142
0.4695
0.997





















, θmeanA,B,C =





















aJ

bJ

cJ





















=





















1.165
0.480
1.001





















, θ
up
A,B,C =





















aH

bA

cH





















=





















1.231
0.558
1.1783





















.

The covariance matrix ΣθA,B,C is defined as follows
3:

ΣθA,B,C = diag
(

max
(

|θmeanA,B,C − θlowA,B,C |2, |θ
up
A,B,C − θ

mean
A,B,C |2

))

. (18)

The covariances are neglected here (the covariance matrix ΣθA,B,C is diagonal). Moreover, the variances are
voluntary increased compared to (Jung et al., 2012) because the coefficients are not estimated during the

2Superscripts A, H, J and K refer to (Allen and Raabe, 1985), (Hutchins et al., 1995), (Jung et al., 2012) and (Kim et al., 2005),
respectively.

3diag (max (Vector1,Vector2)) :=





































max (Vector1[1],Vector2[1]) 0 . . . 0
0 max (Vector1[2],Vector2[2]) . . . 0

0 0
. . . 0

0 0 . . . max (Vector1[n],Vector2[n])




































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experiment and, by definition, will not be updated.
Figure 2 gives some realizations of the relative difference to Jung’s correction for the authors listed in
table 2. The relative difference lies within +3% and −4% in the diameter range 1 nm–1 µm. It also shows
the relative difference to some realizations of Cc(Dp; θA,B,C). The proposed statistical modeling appears to
reach a consensual solution to model the current knowledge.

Figure 2: Relative difference to (Jung et al., 2012) correction for the authors listed in table 2 as well as the relative difference to
some realizations of Cc(Dp; θA,B,C) (grey curves) over the particle range 1 nm–1 µm.
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3.10. Diffusion losses

Please refer to Appendix A.7.

3.11. Bipolar charging law

The approximation of (Wiedensohler, 1988) derived from (Fuchs, 1963), simple and fast, is the most com-
monly used approach to compute the charge distribution function. Nevertheless, standard (ISO 15900,
2009) considers that an expert user of DMAs should be able to calculate φ as described by (Fuchs, 1963).
For this reason, to derive the uncertainty associated with φ, starting with Fuchs original theory seems to be
the best approach.
Two widely accepted approaches exist for treating diffusion charging of aerosol particles in the transition
regime: the limiting-sphere theory and approximate solutions of the Boltzmann equation. The limiting-
sphere theory assumes two regions separated by an imaginary sphere concentric to the particle. Between
this sphere and the particle surface, motion of the ions is determined by the thermal speed and interaction
potential with the particle, while outside the sphere, this is described by the macroscopic diffusion-mobility
theory (for more details, see (Reischl et al., 1996) and (Biskos, 2004)). Fuchs, matching the two fluxes at
the surface of the limiting-sphere, derived an expression of the bipolar charging law such that

φ(p,Dp) =







































∏+∞
p=+1

(

β+
p−1
β−p

)

Υ
, if p ≥ 1,

∏−∞
p=−1

(

β−
p+1
β+p

)

Υ
, if p ≤ −1,

1
Υ

, if p = 0,

(19)
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where

Υ =

+∞
∑

p=+1

















+∞
∏

p=+1













β+
p−1

β−p





























+

−∞
∑

p=−1

















−∞
∏

p=−1













β−
p+1

β+p





























+ 1. (20)

Fuchs calculations are based on the definition of the ion-aerosol attachment coefficients β±p . See Appendix C
for the calculations of these coefficients. To compute the bipolar charging law, the ionic properties of the
carrier gas must be known, namely the electrical mobilities and the masses of small ions (positive and
negative), denoted as z+

I
, z−

I
, mI+ and m−

I
, respectively.

Table 3 gives some published values of the ionic properties for dry air. It reflects that large differences exist
within the authors especially for the masses of small ions (m−

I
stands between 50 and 140 amu andm−

I
stands

between 109 and 290 amu). (Wiedensohler, 1988) uses a fixed ratio for ion mobilities z+
I
/z−

I
equal to 0.875

whereas the computed ratios for the various authors listed in table 3 belong to the interval [0.7228; 0.8889].

Table 3: Some published values of the ionic properties for dry air.

Authors \ Parameters z+I [amu] z−I [amu] mI+ [amu] m−
I [amu]

Vohra (1969) 1.40 1.90 109 50
Mohnen (1977) 1.40 1.90 130 100
Postendörfer et al. (1983) 1.15 1.39 140 101
Wen et al. (1984) 1.40 1.90 130 130
Hoppel and Frick (1986) 1.20 1.35 150 90
Wiedensohler et al. (1986) 1.35 1.60 148 130
Hoppel and Frick (1990) 1.33 1.84 200 100
Wiedensohler and Fissan (1991) 1.40 1.60 140 101
Reischl et al. (1996) 1.15 1.425 290 140

Statistical Modeling. For a known quadruplet (z+
I
, z−

I
,m+

I
,m−

I
), φ can be computed for any particles with

diameter Dp carrying p charges (K = 9 quadruplets from table 3). First approach to model the bipolar law
is to sample as many quadruplets as necessary4 and to compute the associated φ. However, calculating φ
for a given quadruplet is time consuming that is why a more effective solution is preferable. Our concern
is that the proposed statistical modeling, first, preserves the spatial correlations, and, second, accounts for
the various options available to model the ionic properties. To fulfill these requirements, φ is modeled
as a sample drawn from a multivariate Gaussian distribution Φp whose parameters are directly estimated
through the disposable data set. The currently available information can be summarized within a J × K
matrix that contains the sampled J-dimensional vectors φk(p,Dp), where φk(p,Dp) is the bipolar charging
law calculated with the kth quadruplet from table 3.
Let Φp,samp be this matrix, it can be written as follows

Φp,samp =



































φ1(p,Dp[1]) φ2(p,Dp[1]) . . . φk(p,Dp[1]) . . . φK(p,Dp[1])
φ1(p,Dp[2]) φ2(p,Dp[2]) . . . φk(p,Dp[2]) . . . φK(p,Dp[2])

...
...

...
...

φ1(p,Dp[J]) φ2(p,Dp[J]) . . . φk(p,Dp[J]) . . . φK(p,Dp[J])



































. (21)

Let µΦp,samp and σΦp,samp the J-dimensional mean vector and standard deviation vector of Φp,samp, respec-
tively. These quantities are computed as follows

µΦp,samp [ j] =
1
K

K
∑

k=1

Φp,samp[k, j], σΦp,samp [ j] =

√

√

√

1
K − 1

K
∑

k=1

(

Φp,samp[k, j] − µΦsampp
[ j]

)2
, j = 1, ..., J. (22)

4A large amount here since the Monte Carlo method is used to propagate the uncertainty through the all system
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Let CΦp,samp the J × J matrix containing the pairwise Pearson’s linear correlation coefficient between each
pair of columns in the matrix ΦT

p,samp. Using a SVD decomposition, CΦp,samp can be written as CΦp,samp =

UCΦp,samp
ΣCΦp,samp

UT
CΦp,samp

. A new J-dimensional random vector φp, distributed as a multivariate normal

distribution Φp, can then be obtained

φp = µΦp,samp +

(

UCΦp,samp
Σ
1
2
CΦp,samp

z

)

◦ σΦp,samp , (23)

where ◦ refers to the Hadamard product or element-wise product and z is sampled from Z with Z ∼
N(0, ~~IJ).
Such formulation has the benefit to account for the dispersion among listed authors regarding the values of
the ionic properties via the expression of σΦp,samp . Moreover, it maintains the correlation structure between
consecutive discrete function evaluations (realistic transition between φp[ j] and φp[ j + 1] for all j) via the
definition of CΦp,samp .
Figure 3 shows the set of bipolar charging laws calculated from the list of published quadruplets in table 3.
It also prints the computed 95 % confidence region associated with Φ1 over the all diameter range. The
developed model seems a convenient way to express the many options available from the literature. On the
other hand, these approach may seem quite conservative to the readers (high dispersion of φp for a given
diameter), but, since the ionic properties are not measured during the day-to-day experiments, they will not
be updated.

Figure 3: Bipolar charging law φ(p = 1,Dp) for various ionic properties (cf table 3) in the size range 1 nm–1 µm and the 95 %
confidence region associated with Φ1 computed over 50 000 samples.

1 10 100 1000
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Hoppel and Frick (1990)
Wiedensohler and Fissan (1991)
Reischl et al. (1996)

3.12. DMA transfer function

To derive the expression of the DMA transfer function operating in scanning mode, the convection-diffusion
equation that models the motion of a particle subject to Brownian motion through an electric field must be
solved. DMA selects particles in the size range 1 nm – 1 µm and it is well known that diffusion is the pri-
mary transport mechanism for particles smaller than 100 nm. The larger the particles, the less meaningful
the diffusive transport.
Two models for the transfer function are investigated: the convective and the convective-diffusive. If most
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algorithms set one model for the DMA transfer function, our approach combines convective and convective-
diffusive models. See Appendix D for the expressions of ωnd (non-diffusive model) and ωd (diffusive
model).

Statistical modeling. The diffusive transfer function ωd properly models the diameter range 1 nm – 100
nm and the ideal transfer function ωnd commonly codes for particles larger than 100 nm. To cover the
whole diameter range, both theories can be combined. In fact, the transition from convective-diffusive to
convective transport is purposefully made smoother by defining g, a continuous and regular function5, and
a random threshold Dp,thres that represents the diameter above which the convective transport will progres-
sively (linear transition) replace the convective-diffusive transport. So, ω is defined as a combination of ωd
and ωnd via the following expression

ω = g(Dp)ωnd + (1 − g(Dp))ωd, (24)

where g is given by

g(Dp) =























0 , if Dp ≤ Dp,thres,

1 , if Dp ≥ Dp,thres + ∆thres,
Dp−Dp,thres

∆thres
, if Dp ∈]Dp,thres,Dp,thres + ∆thres[,

(25)

and

Dp,thres ∼ U[Dlow
p,thres,D

up
p,thres], (26)

where ∆thres, Dlow
p,thres and D

up
p,thres are set to 100, 100 and 400 nm, respectively. Dp,thres is modeled as a uni-

form random variable to account for the uncertainty in the location of the exact transition between the two
regimes. Of course, one can discuss the range of variation of Dp,thres. Additionally, ω depends on several
parameters (flow rates, electrical mobility, ...) via the expressions of ωnd and ωd, parameters that will be
drawn from their respective distributions as detailed throughout the section 3.

3.13. CPC counting efficiency

The primary parameter of interest when evaluating the performance of CPCs is particle detection efficiency
as a function of particle diameter. (Scheibel and Porstendörfer, 1983) described the measurement method
that has usually been used to determine particle detection efficiency: particle concentration measurements
made by CPCs are compared with aerosol electrometer measurements (Faraday cup electrometer) of singly
charged particles. In most experiments, the nearly monodispersed aerosol is produced by using a Scheibel-
Porstendörfer generator (or a Bartz et al. generator (Bartz et al., 1987)) with an electrostatic classifier
(DMA).
The CPC detection efficiency mainly depends on the particle number concentration, the particle size, and
the particle composition. Moreover, there are slight differences in the efficiency curves of each instrument
(instrument to instrument variation), the working fluids (water or alcohol) exhibit some material dependence
and the carrier gas composition affects the efficiency.
Indeed, the dependence of the detection efficiency of CPCs on the particle properties has been shown by
several authors, especially on the chemical composition of sampled particles. The material dependence was

5Continuity and regularity will ensure a smooth transition between the two regimes which seems to be much closer to the
physics.
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studied mainly with sodium chloride and silver. Some difference in the detection efficiency was observed
in the size range near the lower detection limit, and silver seemed to show slightly higher detection effi-
ciencies than sodium chloride. More recent work with 1-butanol-based CPCs investigated a wider variety
of materials which showed that oils were easiest to detect while inorganic salts were hardest (ISO 27891,
2015).
The effect of the carrier gas composition on the detection efficiency was studied by (Niida et al., 1988)
where he investigated the counting efficiency of CPCs using N2, Ar, CO2 and He. He noted slight efficiency
curve differences: the efficiency curves for N2 and Ar usually coincide, He leads to higher efficiencies and,
for CO2, the efficiencies are generally lower.
Later, (Sem, 2002) reviewed available data describing the performance of TSI 3010, 3022A and 3025A
CPCs. He summarized the data reported in the literature including the sources of uncertainty coming from
the response time for step increase and step decrease of aerosol concentration, the effects on detection
efficiency of RH of 0-50 % and the dependence of counting efficiency on input particle concentration.
As a reminder, one of the main assumption used in this work is that the sample is considered to be carried
in air. Furthermore, as far as we know, no statistical model is available to account for the CPC measurement
uncertainty and, assessing such uncertainty is out of the scope of this paper. For that reason, the CPC
efficiency curves are taken using air as the sample carrier gas and modeled as error free functions. Aware of
this limitation, the results shown in section 5 refer to selected particle sizes very much larger (100 nm PSL,
200 nm PSL and 450 nm PSL) than the lower detection limit making these listed sources of uncertainty less
meaningful.

4. Propagation of the sources via Monte-Carlo simulations

The proposed approach to propagate the sources of uncertainty is based on the Monte Carlo method. It
can be referred to as a two-stage approach: the first stage models the experimental dispersion and the
second stage handles the modeling errors. In practice, several scans are collected. Since the quantity to be
characterized varies over time, it is crucial to ensure that the aerosol remains stable during the experiment.
The stability is not quantified here, but, the experimentalists have to check whether the fluctuations among
samples are kept reasonably low.
First, the measured particle count is corrected for coincidence and smearing. Then, depending on the
number of scans available, the measured raw count data ~Y are either modeled as samples drawn from a
multivariate Poisson distribution (Nscans = 1) or as samples drawn from a multivariate Gaussian distribution
(Nscans > 1). In the case where Nscans > 1, let C~Y be the measured samples empirical correlation matrix,
µ~Y and σ~Y the measured particle count mean vector and standard deviation vector. C~Y can be decomposed
by SVD (Singular Value Decomposition) such that C~Y = UC~Y

ΣC~Y
UT

C~Y
. Then, the simulated raw count data

samples ~̃y are sampled

~̃y = µ~Y +
(

UC~Y
Σ
1
2
C~Y

z

)

◦ σ~Y , (27)

by drawing as many samples of z, with z ∼ N(0, ~~II),
~~II being the unit matrix of size I. The experimental

dispersion (fluctuations of the temperature, pressure, ...) is taken into account through the Q sampled ran-
dom vectors ~̃y.
The uncertainty propagation scheme can be applied regardless of the inversion routine being used, yet, the
user must ensure that the chosen inversion algorithm does not bring additional uncertainty or, if it does, this
new source of uncertainty, if not negligible, must be quantified and included in the uncertainty budget.
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Next stage is to account for the modeling errors. Instead of a fixed model ~~H, Q kernel matrices are randomly
drawn. Drawing a random kernel matrix has the meaning of drawing the kernel matrix whose coefficients
are computed with parameters (and functions) drawn from their respective random variables (and random
processes).
However, among the sources of uncertainty, the time constants of the fluctuations vary and must be modeled
in consequence. If the time constant of the source fluctuation is infinite, the source will not vary within a
scan or between scans of the same experiment because it depends only on the device being used. When the
time constant is in the order of magnitude of the scanning time of the experiment, the source is fixed for
a given scan, and, it is updated between consecutive scans. On the contrary, if the time constant is shorter
than the scanning time of the experiment, the source will vary within a scan6 and between consecutive scans.

The flowchart shown in figure 4 summarizes the uncertainty propagation.

6A new sample is drawn for every channel (time interval of about 1 s).
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Figure 4: Flowchart of the uncertainty propagation via the Monte Carlo method.

Real measurement ~Y

Coincidence and
smearing corrections

Sample Q random

vectors ~̃y from ~̃Y

Sample Q random vec-

tors ~̃y from ~̃Ypoisson

Nscans > 1
YES

NO

Calculate the regularization param-
eter of equation (14) as the median
parameter over 50 discrete L-curves

Compute λ̂50 over 50

samples ~̃y with ~~H = ~~H0

For q = 1 : Q Start Monte Carlo loop

Sample from η0, L, R1, R2, ǫV ,
V̂min, V̂max, θA,B,C and Φp (p ≤ 5)

Parameters with time con-
stant greater than the scan-
ning time that are kept con-
stant for a given simulation

For i = 1 : I Start channel loop

Sample from T̂ , P̂, Qsh, Qa, and Dp,thres

Parameters with time constant
lower than the scanning time that
are updated for every channel

Calculate ith row of ~~H[q] Fill random kernel matrix ~~H[q]

End loop i

~̂N[q] = argmin
~N≥0

[

‖ ~~H[q] ~N − ~̃y[q]‖2 + λ̂50‖D2 ~N‖2
]

Compute the estimate of the size
distribution for the qth simulation

Estimate D
[q]
p,mod, D

[q]
p,50, Dp

[q]
, Dp,g

[q] Estimation of the statistical
diameters of ~̂N[q] (Appendix E)

End loop q
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5. Results

In this section, the uncertainty propagation scheme is tested against real data sets. The particle samples
under study are Standard Reference Materials. They are monosize polystyrene latex spheres (PSL) of
different sizes: 100 nm, 200 nm and 450 nm. We conduct the experiments only for the 200 nm PSL.
The 100 nm PSL and 450 nm PSL are TSI free data sets that one obtains when downloading AIM (Aerosol
Instrument Manager) software. By choosing such data sets, we intend to check that the method is consistent,
firstly with the commonly used approach, namely AIM software, and, secondly, with any kind of data,
settings or devices being used.
Table 4 summarizes the settings for each data set. The output of the experiments is a number of particles
counted over time.

Table 4: SMPS settings for the 100 nm PSL, 200 nm PSL and 450 nm PSL.

Parameters Variable Unit PSL 100 nm PSL 200 nm PSL 450 nm

Classifier Model - - TSI 46058 TSI 3080 TSI 3080
DMA Model - - TSI 3081 TSI 3081 TSI 3081
Neutralizer Model - - TSI 3088 TSI 3077 None
Detector Model - - TSI 3772 TSI 3022 TSI 3025
Impactor - [cm] None 0.0457 None
Ref Gas Viscosity η0 [kg/(m*s)] 1.832450 ×10−5 1.832450 ×10−5 1.820300 ×10−5
Ref Mean Free Path λm,0 [m] 6.73 ×10−8 6.6420 ×10−8 6.650 ×10−8
Ref Gas Temperature T0 [K] 296.15 296.15 293.15
Ref Gas Pressure P0 [kPa] 101.30 101.30 101.3
Particle Density ρ [g/cc] 2.2 2.2 0.8
Temperature range T [K] [295.65 - 296.15] [292.75 - 293.15] [293.15 - 293.15]
Pressure range P [kPa] [98.20 - 98.20] [101.0 - 101.1] [101.3 - 101.3]
DMA Sheath Flow qsh [lpm] 10.0 3.0 4.0
DMA Aerosol Flow qa [lpm] 1.0 0.3 0.3
Detector Inlet Flow qm [lpm] 1.0 0.3 0.3
Detector Sample Flow qcpc [lpm] 1.0 0.3 0.03
Low Voltage range Vmin [V] [10.77 - 10.78] [10.30 - 10.31] [10.19 - 10.19]
High Voltage range Vmax [V] [9944.93 - 9949.66] [9690.66 - 9699.31] [9738.40 - 9738.40]
Scan Up Time ts [s] 120 180 300
Retrace Time tr [s] 6 30 15
Plumbing Time td [s] 1.03 3.53 3.38
Residence Time t f [s] 2.26 7.52 5.77
DMA Inner Radius r1 [cm] 0.937 0.937 0.937
DMA Outer Radius r2 [cm] 1.961 1.961 1.961
DMA Length L [cm] 44.369 44.369 44.369
Number of scans Nscan - 3 15 2

First, care has to be taken in interpreting the results, indeed, as shown in the recent study of (Yang et al.,
2018), particle stable charging cannot be achieved using TSI 3077 charger for the 200 nm PSL case. Nev-
ertheless, the model used to represent the charging process is very conservative as depicted in figure 3.
For that reason, the uncertainty propagated from the unstable charging is most likely already included in
the current model. Figure 5 shows the measured particle count (every scan is plotted) as a function of the
electrical mobility diameter Dp for PSL 100 nm (3 scans), 200 nm (15 scans) and 450 nm (2 scans). The
100 nm PSL reveals the presence of doubly charged monomers (around 70 nm), whereas the 200 nm PSL
shows doubly charged monomers (around 140 nm) as well as dimers (around 260 nm). The 450 nm PSL is
more difficult to analyze since the measured particle count is very low, yet, multiply charged monomers are
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also suspected.
A MATLAB graphical user interface (GUI) has been developed in order to run the simulations. The amount
of time taken to run a simulation is about one second. Figure 6 gives the results of the computations for
each data set. The mean estimate of the PSD (red curve) and its 95% confidence region (grey shadow) are
computed over Q = 50000 simulations. All results extracted from AIM software (1 curve per scan) are cor-
rected for diffusion losses and multiply charged monomers. The results reveal that the estimates of the PSDs
retrieved by AIM software and by the new approach are consistent in terms of peak concentration location
and level of concentration. Moreover, for 200 nm PSL and 450 nm PSL, AIM estimates are in accordance
with the computed 95% confidence region. It should be noted that AIM estimates are a bit broader at the
peak location, especially for the 100 nm PSL.
From a more global perspective, the results suggest that the uncertainty can be kept reasonably low for
very repeatable measurements as it is the case with the 100 nm PSL. Moreover, the particle concentration
dN/d log(Dp) is far more subject to fluctuations than the particle mobility diameter Dp. For the 100 nm
PSL, the particle count at Dp ≃100 nm varies between 220 and 270 particles and leads to a variation of
±12% of the peak concentration. For the 200 nm PSL, the particle count at Dp ≃200 nm varies between
250 and 375 particles and leads to a variation of ±40% of the peak concentration. As a consequence, given
the largest measured fluctuation in the particle count, a simple rule of three yields to a first guess of the
expected variation of the peak concentration. For the 200 nm PSL, this first guess would be ±30% and the
remaining ±10% could be imputed to the other sources. Nevertheless such analysis cannot be extended to
the 450 nm PSL that is a low concentration PSD. For these case, the shape of the confidence region reveals
that both particle mobility diameter and concentration are subject to variations (distortion of the confidence
region at the peak concentration). In fact, since the particle count follows a Poisson statistic, in such a low
count situation, the peak location estimate varies between simulations.
If the confidence region is a widely used approach to provide the uncertainty associated with a 2-D function
in the statistics field, the aerosol community generally expresses the size distribution in terms of statistical
parameters (scalar representation) such as the mode diameter Dp,mod, the median diameter Dp,50, the mean
diameter Dp, the geometric mean diameter Dp,g and the geometric standard deviation σg. These quanti-

ties are computed for every estimate of the size distribution ~̂N (see Appendix E) and finally expressed in
terms of expectation (average over the total number of simulations Q) and standard uncertainty (simply the
standard deviation). Figure 7 offers a graphical comparison between the computed statistics available from
AIM (repeatability analysis) with the new statistics brought by the new approach (full uncertainty analysis)
and table 5 summarizes the numerical statistics computed by using the two methods. It gives an uncertainty
comparison obtained from the proposed method and common repeatability. The measurement repeatabil-
ity uncertainty is always smaller than that obtained from the full uncertainty analysis for the three cases
studied here. As expected, accounting for modeling errors in the uncertainty propagation scheme enlarge

Table 5: Summary of the statistics for the 100 nm PSL, 200 nm PSL and 450 nm PSL.

PSL 100 nm PSL 200 nm PSL 450 nm

Statistics Mean [nm] St. Dev [nm] Mean [nm] St. Dev [nm] Mean [nm] St. Dev [nm]
Median 101.22 0.18 204.39 1.71 443.87 1.52
Mode 101.58 0.17 197.02 1.95 443.55 2.65
Geometric Mean 101.76 0.27 236.59 3.93 424.24 4.36
Mean 102.07 0.28 251.40 5.70 431.21 3.60
Median [AIM ] 101.48 0.13 202.40 0.41 447.86 0.03
Mode [AIM] 101.45 0.00 196.09 0.26 446.32 0.27
Geometric Mean [AIM] 101.80 0.19 216.65 1.66 426.46 3.74
Mean [AIM] 102.13 0.21 222.17 1.51 433.98 2.91
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the commonly reported uncertainty. The mean diameter and the geometric mean diameter are sensitive to
fluctuations over the whole diameter range because they tend to measure a global behavior. For that reason,
large differences exist between the computed diameters from AIM estimates and from the new approach
especially for the 200 nm PSL. On the other hand, the mode diameter and the median diameter provide a
central measure that is the reason why low differences appear.
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Figure 5: Measured particle count as a function of the electrical mobility diameter for the 100 nm PSL (3 scans), 200 nm PSL (15
scans) and 450 nm PSL (2 scans).
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Figure 6: The mean estimate of the aerosol size distribution (red curve) over Q = 50000 simulations, its computed 95 % confidence
region and AIM built-in software estimates (one estimate per scan) with multiple charge correction as well as diffusion losses
correction for the 100 nm PSL , 200 nm PSL and 450 nm PSL.
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Figure 7: Comparison of the statistical diameters computed by using the new method (50000 simulations) for the 100 nm PSL, 200
nm PSL and 450 nm PSL with the experimental results obtained by AIM software. The red dots refer to the mean estimate and
associated red bars refer to the standard deviation computed over the total number of simulations (full uncertainty analysis). The
black dots refer to the average diameter computed over the number of real measurements and associated black bars represent the
standard deviation (repeatability uncertainty).
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6. Conclusion

This paper brings the users with a new framework to perform uncertainty propagation computations for
PSD measured with an SMPS by using the Monte Carlo method. The main effort was made with regard
to investigating the very different existing approximations to model the physics. Innovative and consensual
statistical models are shown that account for that many options to compute the bipolar charging law, the slip
correction, the DMA transfer function, .. .
Since several quantities are still not measured during the day-to-day experiments, some of the statistical
models may seem conservative to the readers. In fact, the proposed methodology will never be perfectly
suited for every setup that is why, if more knowledge is available (new experiments, new publications, ...),
we recommend to update the statistical model parameters (mean, variance, bounds, ...) or eventually create
new ones.
The presented work reflects that the SMPS is well-designed for accurate sizing of airborne PSD with a
very low uncertainty associated with the estimated particle mobility diameter (median particle sizes with
relative standard uncertainty of ±0.17% for the 100 nm PSL, ±0.83% for the 200 nm PSL and ±0.34% for
the 450 nm PSL). On the other hand, the peak particle number concentration uncertainty is very large and
reaches ±40% for the 200 nm PSL and that is most likely due to the repeatability uncertainty (particle count
measurement) and also to the conservative model set to represent the bipolar charging law. A fine charac-
terization of the ionic population can considerably reduce the particle number concentration uncertainty by
making such modeling more accurate.
Further work is still necessary to clearly identify the main contributors to uncertainty and to achieve a nu-
merical evaluation of their respective contributions. A global sensitivity analysis is being investigated to
solve this complex problem.
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Appendix A. Sources of uncertainty

Appendix A.1. Coincidence correction

Coincidence occurs when more than one particle occupies the optical sensing region simultaneously. Coin-
cidence theory describes the deviation and non linearity between true and observed counting rate for high
concentrations of particles. (Collins et al., 2013) derived an expression to calculate the true rate of coinci-
dence using the LambertW function. The actual particle count, denoted as ~Ya, is a function of the measured
particle count, ~Y , and of the CPC per-event dead time, τcpc, via the following equation

~Ya =
−W(−~Yτcpc)
τcpc

. (A.1)

Please note that CPCs recent models already correct for coincidence and one must first check whether this
treatment is already done on the data.
The measured particle count are corrected for coincidence and no additional uncertainty has been introduced
for it (fixed correction).

Appendix A.2. Smearing effect correction

The plumbing delay is the time a classified particle must travel after exiting the DMA until it is detected
by the CPC. Due to mixing and deviations from plug flow within the tubing and the CPC, the particles
experience several delay times. (Russell et al., 1995) examined the smearing of the transfer function as
a result of flow disturbances in the system and developed a model to predict the distortion of the transfer
function in terms of the delay time distribution. Nevertheless, they did not incorporate the diffusional
broadening of the DMA transfer function into their derivation. Later, (Collins et al., 2002) have developed
a simplified approach with an adjustment of the raw data to account for the delay time distribution prior to
the final inversion. Their method is preferred here.

Appendix A.3. Temperature, Pressure

Gas temperature and pressure, T and P, must be controlled for an accurate sheath flow rate qsh. Indeed,
SMPS uses thermal flow sensors that are sensitive to changes in air density and air velocity which is the
reason why such flowmeters indicate flow rate with reference to a set of standard conditions in terms of
temperature and pressure.

Statistical Modeling. For a given two minutes scan, SMPS embedded software prints out a unique couple
for the gas temperature and pressure (T , P). Given that the gas temperature and pressure are not measured
during the experiment and that both quantities have time constants lower than the scan duration, additional
assumptions are necessary. As a first approximation, we consider to set tolerances on both quantities. T is
modeled as a sample drawn from a uniform random variable T̂ with T̂ ∼ U(T −∆T,T +∆T ) and ∆T = 0.5◦

C. P is modeled as a sample drawn from a uniform random variable P̂ with P̂ ∼ U(P − ∆P, P + ∆P) and
∆P = 100 Pa.
New samples will be drawn from their respective distributions, namely T̂ and P̂, for every time of the
simulation following the argument of time constants shorter than the scanning time. When several scans
are available, T and P will be replaced by the average gas temperature and gas pressure over the number of
scans. In such situation, ∆T and ∆P shall be re-adjusted.
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Appendix A.4. Viscosity of air (Mulholland et al., 2006)

The viscosity of air η0 is used to compute the dynamic gas viscosity ηg that will be used to determine
the particle electrical mobility Zd. (Birge, 1945) reported the weighted average value of the viscosity of
air, η0 = (1.83245 ± 0.00069) × 10−5 kg.m−1.s−1 from six different results. For a new temperature T , the
viscosity ηg can be obtained using the Sutherland formula

ηg = η0 ×
(

T

T0

)3/2

×
(

T0 + S

T + S

)

, (A.2)

Statistical Modeling. The viscosity of air is modeled as a sample drawn from the normal random variable
η0 with η0 ∼ N(η0, σ2η0) and ση0 = 0.00069 × 10

−5 kg.m−1.s−1.

Appendix A.5. Geometric factors

The geometry of the DMA defines the air flow field inside the classification region, the electric field and the
trajectory of the particle inside the column. (Kinney et al., 1991) have computed the uncertainty associated
with the values of the center rod radius r1 (±0.2%), the outer cylinder radius r2 (±0.3%) and the length of the
DMA column l (±0.5%) for the electrostatic classifier TSI Model 3071 (Long DMA). For the nano-DMA
mainly used to size ultra-fine aerosol particles, only a tolerance is associated with each dimension.

Statistical Modeling. The manufacturer states that the tolerances represent the greatest deviations possible.
From such information, l, r1 and r2 are modeled as samples drawn from uniform random variables L, R1
and R2 whose bounds are taken as the given tolerances.

Appendix A.6. DMA flow rates

The sheath flow rate qsh is directly linked to the electrical mobility (see equation (1)), so any fluctuations of
qsh result in broadening the transfer function of the DMA. SMPS utilizes a recirculating flow scheme so that
qsh matches the exhaust flow qex. Such scheme secures equality of qsh and qex within 0.01% ((Mulholland
et al., 2006)). This is why the leakage rate in the recirculation system has not been investigated here. The
DMA controller ensures a laminar flow in order to minimize the flow disturbances that cause decreasing
resolution, it also ensures balanced flows (qa = qm). The internal flow-meters which control the sheath and
bypass flow are NIST traceable, micro-processor controlled, and they adjust for differences of temperature
T and pressure P. The flow-meter uncertainty is stated measuring dry gas (less than 10 % Relative Humid-
ity) at standard conditions of 21.1◦C and 101.3 kPa. The computed uncertainty accounts for the reading
repeatability, the resolution (display) and the correction due to the calculations to retrieve the volumetric
flow rate7 from the measured standard flow rate8.
The sheath flow rate was measured by a flow-meter Model 4140 manufactured by TSI Incorporated during
1000 s (more than 15 minutes) for 3 set-point values: 3 lpm, 6 lpm and 10 lpm. The flow rate is recorded
with a sampling rate of 1 Hz.
Table A.6 gives some descriptive statistics (min value, 1st and 3rd quartiles, median, mean, standard de-
viation and %RSD) for the measured sheath air flow for every set-point value. The results reflect a well-
controlled sheath flow rate with very small dispersion around the setpoint value.
The percent relative standard deviations (%RSD) are 0.28% for 3 lpm, 0.41% for 6 lpm and 0.35% for 10
lpm. The flow-meter reading uncertainty varies between 0.005 and 0.010 lpm, depending on the measured

7The volumetric flow rate is the true volume flow of the gas exiting the flow-meter.
8The standard flow rate is the flow rate the air would be moving if T and P were at 21.1◦C and 101.3 kPa.

Page 32 of 39AUTHOR SUBMITTED MANUSCRIPT - MST-106463.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Table A.6: Statistics summary for the sheath flow rate monitoring experiment.

Setpoint values \ Statistics min 1st quartile median mean 3rd quartile max standard deviation %RSD

3 lpm 2.97 3.00 3.00 3.00 3.00 3.03 0.01 0.28
6 lpm 5.90 5.99 6.00 6.00 6.00 6.13 0.02 0.41
10 lpm 9.86 9.98 9.99 9.99 10.01 10.14 0.03 0.35

gas and its resolution varies between 0.001 and 0.010 lpm depending on the flow rate measurement range
(0.001 lpm when the flow rate is less than 9 lpm and 0.01 lpm otherwise). On the basis of this short
analysis, the total %RSD is no more than 1%. Standard (ISO 15900, 2009) gives a sheath air flow standard
uncertainty of ±0.06 lpm when qsh is set to 3 lpm which corresponds to a relative standard uncertainty of
2%.

Statistical Modeling. The sampled flow rates are normally distributed for low flow rates and tend to follow
a t-distribution for higher flow rates since larger tails are observed. To simplify the process, the sheath air
flow rate is sampled from a Gaussian random variable Qsh such that Qsh ∼ N(qsh0 , σqsh), qsh0 being the
set-point value and σqsh = 0.02 × qsh0 . We decide to apply the relative standard uncertainty of 2% for any
qsh0 : for qsh0 = 6 lpm, the standard uncertainty is 0.12 lpm and for qsh0 = 10 lpm, it is 0.2 lpm. Such
modeling seems appropriate since these estimates are consistent with the experimental results presented in
table A.6. As no leakage is assumed as well as balanced flows, the other flow rates (mean value and standard
deviation) are directly deduced from Qsh: Qsh = Qex, Qa = Qsh/10 9 and Qm = Qa.

Appendix A.7. Diffusion losses

When particles are smaller than 100 nm, Brownian motion creates a net flux of particles from regions with
high concentrations towards regions with low concentrations. The walls of a tube are a sink for small
particles creating a region of low concentration near them. This is why diffusion always generates a net
transport of particles to the walls where they deposit. This mechanism affects the measured particle count
and, as a consequence, the estimated PSD will under represent small particles.
Diffusion losses in the SMPS are frequently characterized in terms of penetration efficiencies. To compute
the total penetration through the system, η, five different flow paths are distinguished:

• the penetration through the impactor inlet, ηinlet,

• the penetration through the neutralizer and internal plumbing, ηneutralizer,

• the penetration through the tubing to the DMA and CPC, ηtube,

• the penetration through the DMA, ηDMA,

• the penetration through the CPC, ηCPC.

The DMA transfer function and the CPC detection efficiency that will be presented later in section 3.12 and
3.13 stand for the penetration through the DMA and through the CPC, respectively.
The penetration efficiency through the tubing, ηtube, is computed based on the (Gormley and Kennedy, 1949)
equation:

910 corresponds to an aerosol-to-sheath ratio of 0.1. This value must be updated if the ratio changes.
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ηtube = 0.819 exp(−14.63∆) + 0.0976 exp(−89.22∆) + 0.0325 exp(−228∆), (A.3)

where ∆ is the diffusion parameter for a circular tube

∆ =
DLtube

4vR2tube
, (A.4)

Rtube and Ltube being respectively the tube radius and length, v the mean velocity in the tube and D the
diffusion coefficient related to Dp via the Stokes-Einstein relation

D =
kbTCc(Dp)

3πηgDp

. (A.5)

The penetration efficiency through the impactor inlet, ηinlet is computed based on the (Gormley and Kennedy,
1949) modified equation using an effective length:

ηinlet = 0.82 exp(−11.5µ) + 0.10 exp(−70.0µ) + 0.03 exp(−180µ) + 0.02 exp(−340µ), (A.6)

where µ = (DLeff)/qm, qm being the sampling flow rate and Leff the effective tube length. The penetration
efficiency through the neutralizer and internal plumbing, ηneutralizer, is computed in a similar fashion with a
different value of Leff.

Statistical Modeling. The total penetration efficiency η is simply the product of the individual efficiencies,

η = ηinlet × ηneutralizer × ηtube × ηDMA × ηCPC, (A.7)

where η is a function of the particle diffusion coefficient D, effective length Leff and flow rate qm. Obviously,
the effective lengths vary among SMPSs and shall be adjusted depending on the device in use (for instance,
Leff = 0.4 m (He and Dhaniyala, 2014) in the calculations of ηneutralizer for the Model TSI 3077 Neutralizer
and Leff = 0.57 m in the calculations of ηinlet for an inertial impactor size of 0.0457 cm). Then, they will
be considered as fixed and no additional uncertainty will be introduced for it. . The uncertainty in the total
penetration efficiency directly comes from D and qm. As a reminder, D is a function of the slip correction,
the gas temperature T and the dynamic gas viscosity ηg that are all uncertain quantities as described in
previous sections.

Appendix B. Dynamic voltage measurement

Appendix B.1. Experimental results

A high voltage calibration facility was set up to measure the voltage of the DMA rod using a high voltage
divider and a digital voltmeter in a similar fashion as what was done in (Mulholland et al., 2006). The
output signal was measured using a Hewlett Packard 3458A digital multimeter. 2 configurations have been
studied where only the scanning time ts varies: 120 s and 180 s. 8 measurements are recorded for every
configuration with a 10 Hz sampling rate.
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Figure B.8 shows the standard relative voltage uncertainty (repeatability uncertainty) in percent as a func-
tion of the voltage for the two scanning times. The results reveal a high level of repeatability of the voltage
ramp. Indeed, the relative voltage uncertainty is almost constant over the range of voltages being measured
for ts = 120 s and ts = 180 s with their maximum values close to 1.5 % and 1 %, respectively. For this
reason, we recommend to lengthen the scanning time in order to ensure a slowly-varying voltage ramp.

Appendix B.2. Model versus measurement

Since the voltage is not measured during the day-to-day measurements, a validation step is required for
ensuring the adequacy between voltage ramp model and experimental results. SMPS embedded software
provides the users with the estimates of VAIM

min and VAIM
max for every scan.

Let V i the voltage ramp calculated according to equation (6) with the estimates V
AIM,i
min and V

AIM,i
max for scan i

and V i
exp the measured voltage for scan i. The mean voltage offset (or mean bias), denoted δV , is given by

δV [t] = 1
8

8
∑

i=1

(

V i
exp(t) − V i(t)

)

.

Figure B.9 shows the computed mean voltage bias for the two scanning times. The offsets are not centered
around zero as would be expected for an unbiased model. Still, the maximum offset value is about ±20 V
within the time range.

Figure B.8: Voltage relative uncertainty
(

σ(V)
V

)

in percent as a function of the voltage for the two scanning times: 120 s and 180 s.
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Figure B.9: Voltage mean bias δ as a function of the voltage for the two scanning times: 120 s and 180 s.
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Appendix C. Calculations of the combination coefficient of positive and negative ions with a particle

carrying p elementary units of charge by (Fuchs, 1963)

The combination coefficient β±p of positive and negative ions with a particle carrying p elementary units
of charge (p is considered positive, if the charges of the ion and the particle are of the same sign) can be
written as:

β±p =
πv±

I
α±pδ

±2
I
exp

(

− ςp(δ±I )
kbT

)

1 + exp
(

− ςp(δ±I )
kbT

)

v±
I
α±pδ

±2
I

4D±
I

Rp

Rp

δ±
I

∫

0

exp
(

ςp

(

Rp

ξ

)

kbT

)

dξ

, (C.1)

where α±p is the probability of an ion (positive or negative) entering the limiting-sphere to collide and transfer
its charge to the particle (collision probability), δI is the limiting sphere radius and ςp is the electrostatic
potential energy of an ion in the field of the particle given as:

ςp(r) =
∫ +∞

r

Fintdr =
1
4πǫ0















pe2

r
− κ

R3p

2r2(r2 − R2p)















, κ =
(ǫ1 − 1)e2
ǫ1 + 1

, (C.2)

where Fint is the force of electrostatic interaction between the ion and the particle, r is the distance of the
ion from the center of the particle and κ is the image force parameter for particles with dielectric constant
ǫ1. The radius of the limiting sphere δI is given as follows:

δ±I =
R3p

λ±2
I

















1
5

(

1 +
λ±

I

Rp

)5

− 1
3













1 +
λ±2

I

R2p













(

1 +
λ±

I

Rp

)3

+
2
15

(

1 +
λ±

I

Rp

)
5
2

















. (C.3)

In the absence of electrical forces, α±p is given as the square of the ratio of the particle radius to the limiting
sphere:

α±p =

(

Rp

δ±
I

)2

. (C.4)
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For the case of charged particles, α±p is calculated according to the impact parameter b of the minimum
apsoidal distance, denoted as bmin:

α±p =

(

bmin

δ±
I

)2

. (C.5)

The equation that relates the impact parameter b to the apsoidal distance ra comes from the two-body theory
of classical mechanics, so bmin is computed as the minimum of

b2 = r2a

(

1 +
2

3kbT

(

ςp(δI) − ςp(ra)
)

)

. (C.6)

At this stage, 4 ionic properties are required to compute the ion-aerosol attachment coefficients β±p : the
electrical mobilities and the masses of small ions (positive and negative), denoted as z±

I
and m±

I
. Indeed, the

diffusion D±
I
, the ionic mean thermal velocity v±

I
and the mean free path of small ions λ±

I
are deduced from

them with the following relations:

D±
I =

kbTz±
I

e
, v±I =

√

8kbT

πm±
I

, λ±I =
16
√
2

3π

D±
I

v±
I

(

M

M + m±
I

)
1
2

. (C.7)

The expression for the mean free path of small ions is taken from (Fuchs and Sutugin, 1970) following the
argument of consistency of (Reischl et al., 1996).

Appendix D. DMA transfer functions: ideal and diffusive

Appendix D.1. Non-diffusive transfer function

(Knutson and Whitby, 1975) developed DMA theory based on particle trajectory equations for a fixed volt-
age V . Neglecting particle diffusivity and assuming that the electric field is ramped exponentially with
time, (Wang and Flagan, 1990) derived the expression of the non-diffusive transfer function ωnd for a scan-
ning DMA

ωnd(Dp, p, t) = max
[

0,min
(

s(Dp, p, t) + qm − qsh

qa
,
−s(Dp, p, t) + qa + qsh

qa
,

qm

qa
, 1

)]

, (D.1)

where s is the so called mobility parameter that is computed for particles that reach the sample extraction
slot at time t − td and it is given by the following expression

s(Dp, p, t) = 2πr1Zd(p,Dp)l
Vminτv

t f

(

1 − exp
(−t f

τv

))

exp
(

t − td

τv

)

. (D.2)

Later, (Collins et al., 2004) have simulated ω for a long DMA (TSI Model 3081). They exhibit distortions
in that configuration and brought simplified corrections to adjust the concentration and mobility of size
distributions recovered with fixed voltage transfer function. Their corrections only apply for an aerosol to
sheath flow ratio of 0.1.
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Appendix D.2. Diffusive transfer function

The most widely used approach that includes particle diffusivity on the transfer function of the DMA is that
of (Stolzenburg, 1988). He convoluted the non-diffusive transfer function with a Gaussian distribution to
model the diffusive deviations of the particles along their ideal trajectories. Its expression can be modified,
replacing the fixed voltage V by V(t) (cf equation (7)), such that ωd can be written as follows

ωd(Dp, p, t) =
σ̃

√
2β(1 − δ)





















ǫω





















Zd(p,Dp)

Z∗(V(t))
− (1 + β)

√
2σ̃(p,Dp, t)





















+ ǫω





















Zd(p,Dp)

Z∗(V(t))
− (1 − β)

√
2σ̃(p,Dp, t)





















− ǫω





















Zd(p,Dp)

Z∗(V(t))
− (1 + βδ)

√
2σ̃(p,Dp, t)





















− ǫω





















Zd(p,Dp)

Z∗(V(t))
− (1 − βδ)

√
2σ̃(p,Dp, t)









































,(D.3)

The dimensionless flow parameters β and δ in equation (D.3) are defined as

β =
qa + qm

qsh + qex
, δ =

qm − qa

qm + qa
, (D.4)

and the function ǫω is given by

ǫω(x) =
∫ x

0
erf(u)du = x erf(x) +

exp(−x2)
√
π
. (D.5)

Stolzenburg derived the expression of the diffusive motion of particles inside the column of the classifier,
denoted σ̃, where

σ̃(p,Dp, t) =

√

G
Zd(p,Dp)

Z∗(V(t))
ln

(

r2

r1

)

kbT

peZ∗(V(t))
, (D.6)

and it depends on the geometric parameter G

G =
4(1 + β)2

1 − r21
r22

















I













r21

r22













+













r22 − r21

2(1 + β)lr2













2














, (D.7)

and on the function I that was derived for plug flow (Iplug) and for fully developed flow (Ifulldev)

Iplug(x) =
1 + x

2
, Ifulldev(x) =

1
4 (1 − x2)(1 − x)2 + 5

18 (1 − x3)(1 − x) ln(x) + 1
12 (1 − x4) ln2(x)

(1 − x)
[

− 12 (1 + x) ln(x) − (1 − x)
]2

(D.8)

Appendix E. Statistical diameters calculations

For a given simulation q, the total concentration N
[q]
tot , the mode diameter D

[q]
p,mod, the median diameter D

[q]
p,50,

the mean diameter Dp
[q]
, the geometric mean diameter Dp,g

[q]
and the geometric standard deviation σ[q]g are
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computed as follows:

N
[q]
tot =

J
∑

j=1

~̂N[ j][q], (E.1)

D
[q]
p,mod = Dp

(

max
j

~̂N[ j][q]
)

, (E.2)

D
[q]
p,50 = Dp















N
[q]
tot

2















, (E.3)

Dp
[q]
=

J
∑

j=1

~̂N[ j][q]Dp[ j]

N
[q]
tot

, (E.4)

Dp,g
[q]
= exp



































J
∑

j=1

~̂N[ j][q] ln(Dp[ j])

N
[q]
tot



































, (E.5)

σ
[q]
g = exp



































J
∑

j=1

~̂N[ j][q]
[

ln(Dp[ j]) − ln(Dp,g
[q]
)
]2

N
[q]
tot



































1/2

. (E.6)
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Nomenclature

Math symbols

◦ Hadamard product or element-wise product

λ̂ Estimate of the regularization parameter

~̂N Vector of estimated solution elements [#.m−3]

~̂N[λ] Vector of estimated solution elements for a given regularization parameter λ [#.m−3]

λ Regularization parameter
~~H0 Nominal inversion matrix
~~H Inversion matrix
~~In Unit matrix of size n
~E Vector of measurement errors
~N Vector of solution elements [#.m−3]

~w Vector of Simpson quadrature’ s weights
~Y Vector of measured raw data points
~Ya Vector of actual raw data points

‖.‖ Euclidean norm
T Transpose operator

D2 Second order finite difference matrix

I Number of channels

J Number of solution elements

W Lambert W function

SMPS model parameters

(a, b, c) Constants for slip correction factor calculation

∆ Diffusion parameter for a circular tube

η0 Reference dynamic gas viscosity at reference temperature T0 [kg.m−1.s−1]

ηCPC Counting efficiency of the CPC [%]

ηDMA Penetration efficiency through entrance and exit regions of the DMA [%]

ηinlet Penetration efficiency through the impactor inlet [%]

ηneutralizer Penetration efficiency through the neutralizer and internal plumbing [%]

ηtube Penetration efficiency through the tubing to the DMA and CPC [%]

ηg Dynamic gas viscosity [kg.m−1.s−1]

λm,0 Reference mean free path for gas molecules at reference temperature T0 and pressure P0

[m]

λm Gas molecule mean free path [m]

n Aerosol size distribution [#.m−3]

ω DMA transfer function

ωd DMA diffusive transfer function

ωnd DMA non-diffusive transfer function

η Bin averages of the efficiency [%]

λ̂ Mean estimate of the regularization parameter

ωi Classifier mean transfer function through channel i

V(t) Mean voltage for a counting time t [V]

Page 1 of 39 AUTHOR SUBMITTED MANUSCRIPT - MST-106463.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



v Mean velocity in the tube [m.s−1]

φ(p,Dp) Aerosol charge fraction as a function of the particle mobility diameter Dp and the number

of carried charges p

τv Time constant of the voltage ramp [s]

τcpc Per-event dead time of the CPC [s]

Cc Slip correction

D Diffusion coefficient of a particle in air [m2.s−3]

Dtube Plumbing tube diameter [m]

Dp Particle mobility diameter [m]

ki Nonnegative kernel function for the time range corresponding to the channel i

Kn Knudsen number

l Length of the DMA column [m]

Leff Effective tube length

ltube Plumbing tube length [m]

Nscans Number of scans

P Gas pressure inside the classifier [Pa]

p number of elementary charges

P0 Reference gas pressure, P0 = 101.3 kPa [Pa]

qa Aerosol inlet flow rate [m3.s−1]

qex Excess air outlet flow rate [m3.s−1]

qm Aerosol sampling outlet flow rate [m3.s−1]

qsh0
Set point value for the clean sheath air inlet flow rate [m3.s−1]

qsh Clean sheath air inlet flow rate [m3.s−1]

r1 Outer radius of axial classifier center rod [m]

r2 Inner radius of axial classifier housing [m]

Rtube Plumbing tube radius [m]

s Mobility parameter of (Wang and Flagan, 1990)

T Gas temperature inside the classifier [K]

t Time [s]

t[i] Arrival time of the particle in channel i [s]

T0 Reference gas temperature, T0 = 296.15 K [K]

tc[i] Counting time in channel i [s]

td Tubing time between the DMA outlet and the CPC detection point [s]

t f Residence time inside the classifier [s]

tr Retrace time [s]

ts Scanning time [s]

V(t) Voltage as a function of the time [V]

Vmax Maximum voltage for the scan [V]

Vmin Minimum voltage for the scan [V]

Z Electrical mobility [m2.V−1.s−1]

Z∗ Transfer function centroid electric mobility for a given voltage V [m2.V−1.s−1]

Zd Particle electrical mobility [m2.V−1.s−1]

erf(x) Gaussian error function, erf(x) = 2√
π

∫ x

0
exp(−t2)dt

Ionic properties

α±p Fuchs’ parameter: collision probability of small ions (positive and negative) with a particle
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that represents the fraction of ions emerging from the limiting sphere that actually reach

the particle

β±p Attachment coefficient of small ions (positive and negative) with a particle carrying p

elementary units of charge (p is considered positive, if the charges of the ion and the

particle are of the same sign) [m3.s−1]

δ±
I

Radius of Fuchs’ limiting sphere: radius of a sphere that divides the free molecular regime

near the particle and the continuum regime far from the particle [m]

κ Image force parameter

λ±
I

Mean free path of small ions (positive and negative) [m]

ςp Electrostatic potential energy of an ion when it moves in the electrostatic field of a charged

particle (p being positive if the charges of the ion and the particle are of the same sign)

ai(p) Charge fraction matrix coefficients

b Impact parameter between the ion and the particle

bmin Impact parameter of the minimum apsoidal distance

D±
I

Diffusion coefficient of small ions (positive and negative) in air [m2.s−3]

K Number of listed authors that published values of the ionic properties for dry air

m±
I

Mass of small ions (positive and negative) [amu]

r Distance of the ion from the center of the particle

Rp Aerosol particle radius [m]

ra Apsoidal distance between the ion and the particle [amu]

v±
I

Thermal velocity of small ions (positive and negative) [m.s−1]

z±
I

Electrical mobility of small ions (positive and negative) [m2.V−1.s−1]

Fint Force of the electrostatic interaction between the ion and the particle

Statistical modeling

(aA, bA, cA) Slip correction factors of (Allen and Raabe, 1985)

(aH , bH , cH) Slip correction factors of (Hutchins et al., 1995)

(aJ , bJ , cJ) Slip correction factors of (Jung et al., 2012)

(aK , bK , cK) Slip correction factors of (Kim et al., 2005)

∆P Modeled tolerance around P

∆T Modeled tolerance around T

∆thres Diameter range for the transition between ωd and ωnd

ǫV Uniform random variable used to scale the voltage ramp

T̂ Uniform random variable that models the gas carrier temperature inside the classifier

V̂max Gaussian random variable that models the maximum voltage dispersion

V̂min Gaussian random variable that models the minimum voltage dispersion

µΦp,samp
J-dimensional mean vector of Φp,samp

δV Mean voltage offset

η0 Normal random variable that models the reference gas viscosity

Dp,g Geometric mean diameter [m]

Dp Mean diameter [m]

φk(p,Dp) Bipolar charging law calculated with the kth quadruplet of table 3

Φp,samp J × K matrix containing the J-dimensional vectors φk(p,Dp)

Φp Multivariate normal random vector that models the bipolar charging law with p charges

σg Geometric standard deviation

σ2
η0

Variance of η0
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σΦp,samp
J-dimensional standard deviation vector of Φp,samp

ΣθA,B,C Covariance matrix of θA,B,C

Σ~Y
Covariance matrix of ~Y

ΣCΦp,samp
Diagonal matrix with non-negative real numbers known as the singular values of CΦp,samp

on the diagonal

θA,B,C Multivariate truncated normal vector containing A, B and C

~̃Y Multivariate normal random vector that models the measured particle count

~̃Ypoisson Multivariate Poisson random vector that models the measured particle count

A, B,C Truncated normal variables that models the slip correction factors a, b and c

CΦp,samp
J × J rank correlation matrix of ΦT

p,samp

Dp,50 Median diameter [m]

Dp,mod Mode diameter [m]

Dp,thres Uniform random variable that models the diameter from which the transition from ωd to

ωnd begins

Dlow
p,thres

Lower bound of Dp,thres

D
up

p,thres
Upper bound of Dp,thres

g Mixing function that handles the transition between ωd and ωnd

L, R1, R2 Uniform random variables that model the geometrical parameters of the DMA

Ntot Total concentration [#.m−3]

Q Number of simulations of Monte Carlo

Qsh, Qa, Qm, Qex Normal random variables that model the DMA flow rate

UCΦp,samp
Orthogonal matrix or rotation matrix of the singular value decomposition of CΦp,samp

Physical constants

ǫ0 Vacuum permittivity [F.m−1]

ǫ1 Dielectric constant [F.m−1]

e Charge of an electron [C]

kb Boltzmann constant [J.K−1]

M Average molecular mass of air [amu]

S Sutherland constant, S = 110.4 K [K]
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