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Abstract—This study focused on the evaluation of the electric 

field induced in the brain grey matter of a 5 years child when 

exposed to uniform magnetic field at 50 Hz with uncertain 

orientation. An innovative approach that combines Principal 

Component Analysis (PCA) and Gaussian process regression 

(Kriging method) in order to build space-dependent surrogate 

models was applied and validated. Preliminary results showed 

the feasibility of the approach. 

Keywords— stochastic dosimetry, ELF-MF exposure, 

surrogate modelling. 

I. INTRODUCTION 

HE ubiquity of Extremely Low-Frequency Magnetic 

Fields (ELF-MF), such as those generated by 

transmission of electricity power lines, contributes to the 

raising of public awareness over the potential adverse health 

effects due to the interaction of ELF-MF with the human 

body. The exposure to ELF-MF of high amplitude causes 

well known acute biological effects on the nervous system, 

such as nerve stimulation and induction of retinal phosphenes 

[1]. Starting from the late 1970s, many studies focused on a 

possible association, firstly suggested by [2], between long-

term exposure to ELF-EMF and an increased risk of 

childhood cancer (see e.g. [3]), leading the International 

Agency for Research on Cancer (IARC) [4] to classify ELF-

MF as “possibly carcinogenic to humans” (2002). 

Many studies investigated the exposure to magnetic field at 

the specific frequency of 50 Hz, particularly focusing on 

children [5], [6] and fetuses [5], [7]–[10], for their precocity 

of exposure. Most of these studies investigated the 

assessment of the compliance to exposure guidelines when 

considering few specific exposure scenarios, providing no 

information about how the exposure changes in realistic and 

highly variable scenarios. Such an assessment is indeed a 

challenging task, due to the intrinsic variability of the 

parameters that influence the exposure, (e.g. morphology, 

anatomy and posture of the exposed subject, reciprocal 

position of the source and the exposed subject, polarization of 

the EMF field [11]). Classical electromagnetic computational 

techniques typically involve highly time-consuming 

simulations to obtain 3D spatial distributions of the 

electromagnetic fields induced in human tissues, making 

almost impossible to characterize how the exposure changes 

in variable conditions. Recently, stochastic dosimetry has 

been proposed as a method to face variability of the EMF 

exposure scenario in the assessment of exposure. Stochastic 

dosimetry uses statistics to build surrogate models able to 

replace by analytical equations the heavy numerical 

simulations that would be needed to describe the highly 

variable exposure by electromagnetic computational 

techniques. Stochastic dosimetry proved to be a useful 

method to assess the EMF exposure both at radio frequency 

[12], [13] and at low frequency [10]. All these studies were 

exclusively dealing with surrogate models of EMF univariate 

variables, e.g. the 99th percentile calculated on the 3D domain 

of root mean square tissue-specific values of the electric field 

induced by ELF-MF [14]. However, a complete assessment 

should involve the complete description of the 3D spatial 

distribution the induced electric field in each tissue of the 

exposed subjects in variable conditions, as different spatial 

localization could involve different effect on the tissues. Such 

an assessment involves creating surrogate models able to 

describe the 3-dimensional spatial localization of the electric 

field induced in each tissue. Some recent studies focused on 

the developing of non-intrusive methods (i.e. methods in 

which the phenomenon to be approximated is treated as a 

“black-box”) for building surrogate models of space-temporal 

variables [15]–[17]. To the best of our knowledge, these 

methods were never applied before in the stochastic 

dosimetry framework.  

In this study, the variability of the 3-dimensional spatial 

distribution of electric field induced in children brain tissues 

when exposed to a uniform 50 Hz magnetic field with 

uncertain orientation was investigated. An innovative 

approach that combines Principal Component Analysis 

(PCA) and Gaussian process regression (Kriging method) 

[15] in order to build space-dependent surrogate models was 

applied and validated. 

II. MATERIALS AND METHODS 

Fig. 1 shows a schematic view of the exposure scenarios 

(left side) and the flow chart of the experimental procedure 

(right side). The electric field induced in the brain grey 

matter of a 5 years child was assessed by varying the 

orientation of a perfectly homogeneous 50 Hz B-field of 200 

𝜇T of amplitude, using 3D surrogate models. Each surrogate 

model describes how the 3D variable of interest Y (i.e., the 

electric field induced in the brain) was affected by the 

variability in the input parameters X (i.e., the different 

orientation of the B-field). Three main steps composed the 

experimental procedure. The first step, namely, “design of 

the experiment,” consisted of using deterministic dosimetry, 

that is, dosimetry based on computational methods, for the 

evaluation of a set of 𝑁 experimental observations 𝑌0 of the 

variable of interest Y, needed for the construction of the 

surrogate models. The second step, namely, “3D surrogate 

modelling,” focused on the development of a surrogate model 
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Ŷ. The surrogate model thus obtained was validated in the 

“validation” step. Details about each step are as follows.  

 

 
Fig. 1: Schematic view of the exposure scenarios and flow chart of the 

experimental procedure. 

 

A. Design of the experiment 

The random input vector 𝑋 was defined as the two 

spherical angles theta (𝜃) and phi (𝜑), which characterized 

the B-field orientation (see Fig. 1). The experimental design 

X0 has been generated using a Latin Hypercube Sampling 

(LHS), using a selection criterion based on the maximum of 

the minimum distance between the points [18]. The variable 

of interest 𝑌 is the root mean square value of electric field 

induced in the child grey brain matter averaged on a 2 mm 

side cube, obtained by deterministic dosimetry based on 

Magneto Quasi-Static low frequency solver implemented on 

the simulation platform SEMCAD X (Schmid & Partner 

Engineering). The simulations were conducted using the 5 

years Roberta model from the Virtual Classroom [19]. The 

dielectric properties (permittivity and conductivity values) in 

each tissue of the children were assigned according to the 

data available in literature [20], [21]. A total number of N = 

150 simulations, corresponding to 150 different orientations 

of B-field were carried out to obtain the set of observation Y0. 

Each observation is a matrix with dimensions 452x258x1494. 

B. 3D Surrogate modelling 

Similarly to the approach proposed by [15], the 3D 

surrogate modelling procedure is based on three main steps. 

First, a kernel PCA with linear kernel was applied. The 

rationale of using PCA is that the electric field induced at 

nearby spatial coordinates could be hypothesized to be highly 

correlated [22], and thus can be efficiently represented by a 

few d components. 

As a second step, the Kriging method (see, e.g. [15]) was 

applied to develop a separate surrogate model for each of the 

d components identified by PCA. Kriging (a.k.a. Gaussian 

process modelling) is a stochastic interpolation algorithm that 

assumes that a model output a realization of a Gaussian 

process indexed by x ∈ DX ⊂ ℝM. A Kriging surrogate model 

is described by the following equation: 

 

𝑀𝐾(𝑥, 𝜔) =  𝛽𝑇𝑓(𝑥) + 𝜎2𝑍(𝑥, 𝜔)   (1) 

where βTf(x), is the mean value of the Gaussian process and 

it consists of the regression coefficients {βj , j = 1, . . . , P} 

and the basis functions {fj , j = 1, . . . , P}, σ2 is the variance 

of the Gaussian process and Z(x, ω), a zero mean, unit 

variance, stationary Gaussian process. The underlying 

probability space is represented by ω and is defined in terms 

of a correlation function R (a.k.a. correlation family) and its 

hyperparameters θ. In this study, a Matérn correlation 

function R was used and its hyperparameters σ2 and θ were 

estimated by Maximum Likelihood Estimation (MLE). 

The third step in the 3D surrogate modelling procedure 

consisted of using the inverse Principal Component analysis 

to reconstruct, from the univariate surrogate models 𝑓1, 

 𝑓2,…, 𝑓d obtained by Kriging method, the 3D spatial 

distribution of the electric field induced in the brain of the 

child. For more details about each step and about the whole 

3D surrogate modelling procedure, see [15]. 

C. Validation 

The validation of the 3D surrogate model was based on a 
leave-one-out cross-validation approach, a technique 
developed in statistical learning theory (see, e.g., [23]) and 
here used to reduce at minimum the size of the experimental 
design. To that purpose, the set of observation Y0, obtained by 
deterministic dosimetry from the experimental design of size 
N, was recursively divided into two subsets: Ytraining, 
containing all the observations except for the ith one, and Ytest, 
containing only the excluded observation. A 3D surrogate 

model 𝑌̂ was built using the subset Ytraining and then its 

prediction of the excluded ith point (𝑌̂𝑇(𝜃𝑖 , 𝜑𝑖)) was compared 
with Ytest. The normalized Mean Square Error (MSE) was 
calculated by computing the mean of the errors calculated at 
each iteration, as: 

 

𝑀𝑆𝐸 = 100 ∗ ∑
‖𝑌̂𝑇(𝜃𝑖,𝜑𝑖)−𝑌𝑇‖2

‖𝑌𝑇−𝑚𝑒𝑎𝑛(𝑌0)‖2
𝑁
𝑖=1    (2) 

III. RESULTS  

Fig. 2 shows the leave-one-out MSE versus the number d 

of principal components considered in the 3D surrogate 

modelling procedure. For d equal to 5, the MSE was equal to 

0.34%, thus indicating that a very low number of components 

was sufficient to represent the 3D distribution of the electric 

field induced in the brain grey matter. 

 

 
Fig. 2: Leave-one-out MSE versus the number d of components 

considered in the 3D surrogate modelling procedure 

 

Fig. 3 shows, as an example, the spatial distribution of the 

electric field induced on one slice of the brain obtained for 

one specific orientation (θ and φ equal to 89° and 72°, 

respectively) of the incident B-field by the 3D surrogate 

model (fig. 3a) and by deterministic dosimetry (fig. 3b). Fig. 

3a and fig. 3b appear to be almost identical, confirming the 
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feasibility of the proposed approach 

 

 
Fig. 3: Spatial distribution of the electric field induced on one slice of the 

brain grey matter obtained by 3D surrogate model (a) and deterministic 

dosimetry (b). 

IV. CONCLUSION 

Preliminary results showed that the proposed approach is 

feasible to assess the 3D spatial distribution of the electric 

field induced in human tissues when exposed to a uniform 

magnetic field with variable orientation. 3D surrogate models 

will be created to assess the variability of the spatial 

distribution of the electric field induced in different tissues of 

children of different ages. The proposed method will allow 

not only to assess the exposure to ELF-MF in variable 

conditions in terms of univariate variables resuming the level 

of exposures, but to investigate how the spatial distribution of 

the EMF field induced in the human tissue is influenced by 

the variability intrinsic to realistic exposure scenarios. 
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