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Abstract. In this article, we present a framework for taking into ac-
count user preferences in multi-objective Bayesian optimization in the
case where the objectives are expensive-to-evaluate black-box functions.
A novel expected improvement criterion to be used within Bayesian op-
timization algorithms is introduced. This criterion, which we call the
expected weighted hypervolume improvement (EWHI) criterion, is a gen-
eralization of the popular expected hypervolume improvement to the case
where the hypervolume of the dominated region is defined using an abso-
lutely continuous measure instead of the Lebesgue measure. The EWHI
criterion takes the form of an integral for which no closed form expression
exists in the general case. To deal with its computation, we propose an
importance sampling approximation method. A sampling density that is
optimal for the computation of the EWHI for a predefined set of points is
crafted and a sequential Monte-Carlo (SMC) approach is used to obtain
a sample approximately distributed from this density. The ability of the
criterion to produce optimization strategies oriented by user preferences
is demonstrated on a simple bi-objective test problem in the cases of a
preference for one objective and of a preference for certain regions of the
Pareto front.

Keywords: Bayesian optimization · Multi-objective optimization · User
preferences · Importance sampling · Sequential Monte-Carlo.

1 Introduction

In this article, we present a Bayesian framework for taking into account user
preferences in multi-objective optimization when evaluation results for the func-
tions of the problem are obtained using a computationally intensive computer
program. Such a setting is representative of engineering problems where finite el-
ements analysis or fluid dynamics are used. The number of runs of the computer
program that can be afforded is limited and the objective is to build a sequence
of observation points that rapidly provides a “good” approximation of the set
of Pareto optimal solutions, where “good” is measured using some user-defined
loss function.
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To this end, we formulate an expected improvement (EI) criterion (see, e.g.,
[20]) to be used within the BMOO algorithm of [17] that uses the weighted hy-

pervolume indicator (WHI) introduced by [29] as a loss function. This new cri-
terion, which we call the expected weighted hypervolume improvement (EWHI)
criterion, can be viewed as a generalization of the expected hypervolume improve-

ment (EHVI) criterion of [14] that enables practitionners to tailor optimization
strategies according to user preferences.

The article is structured as follows. First, we recall in Section 2 the frame-
work of Bayesian optimization. Then, we detail in Section 3 the construction of
the EWHI criterion and discuss computational aspects. The ability of the cri-
terion to produce optimization strategies according to user preferences is then
demonstrated on a simple bi-objective test problem in the cases of a preference
for one objective and of a preference for certain regions of the Pareto front in
Section 4. Finally, conclusions and perspectives are drawn in Section 5.

2 Bayesian optimization

2.1 The Bayesian approach to optimization

Consider a continuous optimization problem P defined over a search space X ⊂
R

d and let X = (X1, X2, X3 . . .) be a sequence of observation points in X. The
problem P can be, for example, an unconstrained single-objective optimization
problem or a constrained multi-objective problem. The quality at time n > 0 of
the sequence X viewed as an approximate solution to the optimization problem
P can be measured using a positive loss function

εn : X 7→ R
+ , (1)

such that εn(X) = 0 if and only if the set (X1, . . . , Xn) solves P and, given
two optimization strategies X1 and X2, εn(X1) < εn(X2) if and only if X1

offers a better solution to P than X2 at time n. Under this framework, one can
formulate the notion of improvement as a measure of the loss reduction yielded
by the observation of a new point Xn+1:

In+1 = εn(X)− εn+1(X) , n ≥ 0 . (2)

The improvement is positive if Xn+1 improves the quality of the solution at time
n+ 1 and zero otherwise.

Assume a statistical model with a vector-valued stochastic process model ξ
with probability measure P0 representing prior knowledge over the functions
involved in the optimization problem P . Under the Bayesian paradigm, opti-
mization algorithms are crafted to achieve, on average, a small value of εn(X)
when n increases; where the average is taken with respect to ξ. In this frame-
work, the choice of the observation points Xi is a sequential decision problem.
The associated Bayesian-optimal strategy for a finite budget of N observations
is, however, not tractable in the general case for N larger than a few units. To
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circumvent this difficulty, a common approach is to consider one-step look-ahead
strategies (also referred to as myopic strategies, see, e.g., [22, 24] and [8, 18] for
discussions about two-step look-ahead strategies) where observation points are
chosen one at a time to minimize the conditional expectation of the future loss
given past observations:

Xn+1 = argminx∈XEn

(
εn+1(X) | Xn+1 = x

)

= argmaxx∈XEn

(
εn(X)− εn+1(X) | Xn+1 = x

)

= argmaxx∈X
En

(
In+1(X) | Xn+1 = x

)
, n ≥ 0 , (3)

where En stands for the conditional expectation with respect to X1, ξ(X1), . . .,
Xn, ξ(Xn). The function

ρn : x 7→ En

(
In+1(X) | Xn+1 = x

)
, n ≥ 0 , (4)

is called the expected improvement (EI). It is a popular sampling criterion in
the Bayesian optimization literature for designing optimization algorithms (see,
e.g., [20, 26] for applications to constrained and unconstrained global optimiza-
tion problems).

2.2 Multi-objective Bayesian optimization

We focus in this work on unconstrained multi-objective optimization problems.
Given a set of objective functions fj : X → R, j = 1, . . . , p, to be minimized,
the objective is to build an approximation of the Pareto front and of the set of
corresponding solutions

Γ = {x ∈ X : ∄x′ ∈ X such that f(x′) ≺ f(x)} , (5)

where ≺ stands for the Pareto domination rule defined on R
p by

y = (y1, . . . , yp) ≺ z = (z1, . . . , zp) ⇐⇒

{
∀i ≤ p, yi ≤ zi ,

∃j ≤ p, yj < zj .
(6)

In this setting, it is common practice to measure the quality of optimization
strategies using the hypervolume loss function (see, e.g., [21, 23, 30]) defined by

εn(X) = |H \Hn| , (7)

where | · | denotes the usual (Lebesgue) volume measure in R
p and where, given

an upper-bounded set B of the form B = {y ∈ R
p; y ≤ yupp} for some yupp ∈

R
p, the subsets

H = {y ∈ B ; ∃x ∈ X , f(x) ≺ y} , (8)

and

Hn = {y ∈ B ; ∃i ≤ n , f(Xi) ≺ y} , (9)



4 P. Feliot et al.

denote respectively the subset of points of B dominated by the points of the
Pareto front and the subset of points of B dominated by (f(X1), . . . , f(Xn)).
The set B is introduced to ensure that the volumes of H and Hn are finite.

Using the loss function (7), the improvement function (2) takes the form

In+1 (X) = |H \Hn| − |H \Hn+1| = |Hn+1 \Hn| , (10)

and an expected improvement criterion can be formulated as

ρn(x) = En

(
In+1(X) | Xn+1 = x

)

= En

(∫

B\Hn

1ξ(x)≺y dy

)

=

∫

B\Hn

En

(
1ξ(x)≺y

)
dy

=

∫

B\Hn

Pn (ξ(x) ≺ y) dy , (11)

where Pn stands for the probability P0 conditioned onX1, ξ(X1), . . . , Xn, ξ(Xn).
The multi-objective sampling criterion (11) is called the expected hypervolume

improvement (EHVI) criterion. It has been proposed and studied by Emmerich
and coworkers [12, 14, 15].

3 Expected weighted hypervolume improvement (EWHI)

3.1 Formulation of the criterion

To measure the quality of Pareto approximation sets according to user prefer-
ences, Zitzler et al. (2007) proposed to use a user-defined continuous measure
in the definition of the hypervolume indicator3 instead of the Lebesgue mea-
sure (see [29]):

εn(X) = µ(H \Hn) , (12)

where the measure µ is defined by µ(dy) = ω(y) dy using a positive weight
function ω : Rp → R

+. The value ω(y) for some y ∈ R
p can be seen as a reward

for dominating y that the user may specify. Optimization strategies crafted using
the loss function (12) have been studied by [3, 4, 13, 29].

Observe that, as discussed by [13], assuming that µ possesses the bounded
improper integral property, (12) is well defined and upper-bounding values are
no longer required in the definition of the sets H and Hn, which can be redefined
as: {

H = {y ∈ R
p ; ∃x ∈ X , f(x) ≺ y} ,

Hn = {y ∈ R
p ; ∃i ≤ n , f(Xi) ≺ y} .

(13)

3 In the original definition, the authors introduce additional terms to weight the axis.
In this work, one of our objective is to get rid of the bounding set B, as proposed
by [13]. Therefore we do not consider these terms.
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Similarly to (7), the improvement function associated to the loss function (12)
takes the form

In+1 (X) = µ(H \Hn)− µ(H \Hn+1) = µ(Hn+1 \Hn) , (14)

and an expected improvement criterion can be formulated as:

ρn(x) = En

(
In+1(X) | Xn+1 = x

)

= En

(∫

Hc
n

1ξ(x)≺y µ(dy)

)

=

∫

Hc
n

Pn (ξ(x) ≺ y) ω(y) dy , (15)

where Hc
n denotes the complementary of Hn in R

p. By analogy with the EHVI
criterion, we call the expected improvement criterion (15) the expected weighted

hypervolume improvement (EWHI) criterion.

3.2 Computation of the criterion

Under the assumption that the components ξi of ξ are mutually independent
stationary Gaussian processes, which is a common modeling assumption in the
Bayesian optimization literature (see, e.g., [25]), the term Pn (ξ(x) ≺ y) in the
expression (15) of the EWHI can be expressed in closed form: for all x ∈ X and
y ∈ Hc

n,

Pn (ξ(x) ≺ y) =

p∏

i=1

Φ

(
yi − ξ̂i,n(x)

σi,n(x)

)
, (16)

where Φ denotes the Gaussian cumulative distribution function and ξ̂i,n(x) and
σ2
i,n(x) denote respectively the kriging mean and variance at x for the ith com-

ponent of ξ (see, e.g., [25, 28]).
The integration of (16) over Hc

n on the other hand, is a non-trivial problem.
Besides, it has to be done several times to solve the optimization problem (3)
and choose Xn+1. To address this issue, we propose to choose Xn+1 among a set
of predefined candidate points obtained using sequential Monte-Carlo techniques
as in [17], and derive a method to compute approximations of (15) with arbitrary
weight functions ω for this set.

Let then Xn = (xn,k)1≤k≤mx
∈ X

mx be a set of mx points where ρn is to be
evaluated and denote

ρn,k = ρn(xn,k) =

∫

Hc
n

ω(y)Pn (ξ(xn,k) ≺ y) dy , 1 ≤ k ≤ mx . (17)

Using a sample Yn = (yn,i)1≤i≤my
of my points obtained from a density πn

on Hc
n with un-normalized density γn and with normalizing constant

Zn =

∫

Hc
n

γn(y) dy , (18)
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an importance sampling approximation of the (ρn,k)1≤k≤mx
can be written as

ρ̂n,k =
Zn

my

my∑

i=1

ω(yn,i)Pn (ξ(xn,k) ≺ yn,i)

γn(yn,i)
, 1 ≤ k ≤ mx . (19)

To obtain a good approximation for all ρ̂n,k using a single sample Yn, the
un-normalized density γn can be chosen to minimize the average sum of squared
approximation errors:

E

(
mx∑

k=1

(ρ̂n,k − ρn,k)
2

)

=
1

my

mx∑

k=1

(
Zn

∫

Hc
n

ω(y)2 Pn (ξ(xn,k) ≺ y)
2

γn(y)2
γn(y) dy − ρ2n,k

)

=
1

my

(
Zn

∫

Hc
n

∑mx

k=1 ω(y)
2
Pn (ξ(xn,k) ≺ y)

2

γn(y)2
γn(y) dy −

mx∑

k=1

ρ2n,k

)
.

(20)

This leads, using the Cauchy-Schwarz inequality (see, e.g., [7]), to the defi-
nition of the following density on Hc

n:

L
opt
2 (y) ∝ γn(y) =

√√√√
mx∑

k=1

ω(y)2 Pn (ξ(xn,k) ≺ y)
2
. (21)

To obtain a sample distributed from the L
opt
2 density and carry out the ap-

proximate computation of the EWHI using (19), we resort to sequential Monte-
Carlo techniques as well (see, e.g., [2, 11, 17]). The algorithm that we use is not
detailed here for the sake of brevity. The reader is referred to Section 4 of [17]
for a discussion about this aspect. Details about the computation of the normal-
izing constant Zn and about the variance of the proposed estimator are given in
Appendix A.

4 Numerical experiments

In our experiments, we illustrate the operation of the EWHI criterion on the bi-
objective BNH problem as defined in [10] for the following two weight functions
adapted from [29]:





ω1(y1, y2) =
1

15
e−

y1
15 ·

1[0,150](y1)

150
·
1[0,60](y2)

60
,

ω2(y1, y2) =
1

2
(ϕ (y, µ1, C) + ϕ (y, µ2, C)) ,

(22)

where ϕ(y, µ, C) denotes the Gaussian probability density function with mean
µ and covariance matrix C, evaluated at y. The ω1 weight function is based
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on an exponential distribution and encodes preference for the minimization of
the first objective. The ω2 weight function is a sum of two bivariate Gaussian
distributions and encodes preference for improving upon two reference points µ1

and µ2, chosen as µ1 = (80, 20) and µ2 = (30, 40) with C = RS(RS)T , where

R =

[
cos
(
π
4

)
− sin

(
π
4

)

sin
(
π
4

)
cos
(
π
4

)
]
and S =

[
20 0
0 3

]
. (23)

To carry out the experiments, we use the BMOO algorithm of [16] with mx =
my = 1000 particles for both SMC algorithms. The functions of the problem are
modeled using stationnary Gaussian processes with a constant mean and an
anisotropic Matérn covariance kernel. A log-normal prior distribution is placed
on the parameters of the kernel and these are updated at each iteration of the
algorithm using maximum a posteriori substition (see, e.g., [5]). The algorithm is
initialized with a pseudo-maximin latin hypercube design of N = 10 experiments
and is iterated over 20 iterations. To handle the constraints of the BNH problem,
the EWHI criterion is multiplied by the probability of feasibility, as is common
practice in the Bayesian optimization litterature (see, e.g., [26]).

In Figure 1, results obtained by the algorithm using the weight functions
ω1 and ω2 in the EWHI definition are compared to results obtained by the
same algorithm using the EHVI criterion. Observe in Figures 1(d) and 1(f) that
observations are concentrated in regions of the Pareto front that correspond to
high ω values, whereas observations are spread along the front in Figure 1(b)
where the EHVI is used. In practice, this means that less iterations would have
been required to satisfyingly populate the interesting regions of the Pareto front.

5 Conclusions and perspectives

It is shown in this paper how user-defined weight functions can be leveraged by
a Bayesian framework to produce optimization strategies that focus on preferred
regions of the Pareto front of multi-objective optimization problems. Two ex-
ample weight functions from [29] which encode respectively a preference for one
objective and a preference toward specific regions of the Pareto front are used,
and the demonstration of the effectiveness of the proposed approach is carried
out on a simple bi-objective optimization problem.

On more practical problems, crafting sensible weight functions can be a dif-
ficult task, especially when one has no prior knowledge about the approximate
location of the Pareto front. The use of desirability functions (see, e.g. [13, 19,
27]) or utility functions (see, e.g., [1]) might provide useful insights on that is-
sue and shall be the object of future investigations to provide a more principled
approach.

In the presented framework, optimization strategies are built sequentially us-
ing an expected improvement sampling criterion called the expected weighted
hypervolume improvement (EWHI) criterion. The exact computation of the cri-
terion being intractable in general, an approximate computation prodecure using
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(a) EHVI (N = 10)
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(b) EHVI (N = 30)
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(c) EWHI with ω1 (N = 10)
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(d) EWHI with ω1 (N = 30)
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(e) EWHI with ω2 (N = 10)
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(f) EWHI with ω2 (N = 30)

Fig. 1. Distributions obtained after 20 iterations of the optimization algorithm on the
BNH problem when the weight functions ω1 and ω2 are used. The results obtained
using the EHVI criterion are shown for reference. The contours of the weight functions
are represented as black lines and the non-dominated solutions as red disks. Black disks
indicate feasible dominated solutions and black circles indicate non-feasible solutions.
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importance sampling is proposed. A sampling density that is optimal for the si-
multaneous computation of the criterion for a set of candidate points is crafted
and a sequential Monte-Carlo algorithm is used to produce samples from this
density.

This choice triggers an immediate question: What is the sample size my

required by the algorithm? In fact, the problem is not so much to obtain a precise
approximation of ρn for all x ∈ Xn, which would require a large sample size to
distinguish very close points, but to deal with the optimization problem (3)
and to identify with good confidence the points of Xn that correspond to high
values of ρn. A first step toward a solution to this problem is to compute an
approximation of the variance of ρ̂n, as carried out in Appendix A. Further
investigations on this issue are left for future work.

A Approximate variance of the EI estimator

We derive in this appendix the variance of the SMC estimator for ρn. In the
SMC procedure that we consider, the particles (yn,i)1≤i≤m

are obtained from a

sequence of densities (πn,t)0≤t≤T , where πn,0 is an easy-to-sample initial density
and πn,T = πn is the target density. Let (γn,t)0≤t≤T and (Zn,t)0≤t≤T denote the
corresponding sequences of un-normalized densities and normalizing constants.

First, observe that, for 1 ≤ t ≤ T ,

Zn,t =

∫

Hc
n

γn,t(y) dy

= Zn,t−1

∫

Gn

γn,t(y)

γn,t−1(y)
πn,t−1(y) dy .

(24)

Thus, we can derive a sequence of approximations Ẑn,t of Zn,t, t ≥ 1, using the
following recursion formula:

{
Ẑn,0 = Zn,0 =

∫
Gn

γn,0(y) dy,

Ẑn,t = Ẑn,t−1

(
1
m

∑m

i=1
γn,t(yn,t−1,i)

γn,t−1(yn,t−1,i)

)
,

(25)

where the particles (yn,t−1,i)1≤i≤m ∼ πn,t−1 are obtained using an SMC proce-
dure (see, e.g., [6]). The estimator of ρn(x) that we actually consider is then

ρ̂n(x) =
Ẑn

m

m∑

i=1

ω(y)Pn (ξ(x) ≺ yn,i)

γn(yn,i)
= Ẑnα̂n(x) (26)

where

α̂n(x) =
1

m

m∑

i=1

ω(y)Pn (ξ(x) ≺ yn,i)

γn(yn,i)
, (27)

and

Ẑn = Ẑn,T = Zn,0

T∏

u=1

θ̂n, u , (28)
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with

θ̂n,t =
1

m

m∑

i=1

γn,t(yn,t−1,i)

γn,t−1(yn,t−1,i)
. (29)

Now, assume the idealized setting, as usual in the SMC literature (see, e.g.,
[9]), where

(i) yn,t,i
i.i.d
∼ πn,t, 1 ≤ i ≤ m,

(ii) the samples Yn,t = (yn,t,i)1≤i≤m are independent, 0 ≤ t ≤ T .

Observe from (19) and (24) that under (i), α̂n(x) is an unbiased estimator

of αn(x) =
ρn(x)
Zn

, and θ̂n,t is an unbiased estimator of θn,t =
Zn,t

Zn,t−1

, 1 ≤ t ≤ T .

Moreover, under (ii), α̂n(x) and the (θ̂n,t)1≤t≤T are independent. Thus,

Var ρ̂n(x) = E
(
α̂2
n

)
E
(
Ẑ2
n

)
− E

(
α̂n(x)

)2
E
(
Ẑn

)2

=
(
Var α̂n(x)+αn(x)

2
)(
Var Ẑn + Z2

n

)
− αn(x)

2Z2
n

= Var α̂n(x)Var Ẑn + αn(x)
2Var Ẑn + Z2

nVar α̂n(x) .

We obtain the coefficient of variation of ρ̂n(x)

Var ρ̂n(x)

ρn(x)2
= Λn(x)

2 +
(
1 + Λn(x)

2
)
∆2

n,T , (30)

where Λn(x)
2 = Var α̂n(x)

αn(x)2
and ∆2

n,t =
VarẐn,t

Z2

n,t

are the coefficients of variation of

α̂n(x) and Ẑn,t respectively.
Using the same ideas as above, we have

∆2
n,t = δ2n,t +

(
1 + δ2n,t

)
∆2

n,t−1, (31)

where δ2n,t =
Var θ̂n,t

θ2

n,t

is the coefficient of variation of θ̂n,t.

Estimators of Λn(x)
2, ∆2

n,t and δ2n,t can be derived under (ii). For instance,
observe that

δ2n,t =
1

m

Var

(
γn,t(yn,t−1, 1)

γn,t−1(yn,t−1, 1)

)

E

(
γn,t(yn,t−1, 1)

γn,t−1(yn,t−1, 1)

)2 . (32)

Thus, an estimator of δ2n,t is

δ̂2n,t =

∑m

i=1
γn,t(yn,t−1,i)

2

γn,t−1(yn,t−1,i)2(∑m
i=1

γn,t(yn,t−1,i)
γn,t−1(yn,t−1,i)

)2 −
1

m
. (33)

Plugging (33) in (31), we obtain an estimator of ∆2
n,t:

∆̂2
n,t = δ̂2n,t +

(
1 + δ̂2n,t

)
· ∆̂2

n,t−1. (34)
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Similarly, an estimator of Λn(x)
2 is

Λ̂n(x)
2 =

∑m
i=1

ω(y)2 Pn(ξ(x)≺yn,i)
2

γn(yn,i)2(∑m

i=1
ω(y)Pn(ξ(x)≺yn,i)

γn(yn,i)

)2 −
1

m
. (35)

As a result, we obtain the following numerically tractable approximation of
the variance of ρ̂n(x):

Var (ρ̂n(x)) ≈ ρ̂n(x)
2 ·
(
Λ̂n(x)

2 +
(
1 + Λ̂n(x)

2
)
· ∆̂2

n,t

)
, (36)

where Ẑn,t and ∆̂2
n,t are obtained recursively using (25) and (34), Λ̂n(x)

2 is
computed using (35) and ρ̂n(x) is computed using (26).
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