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Analysis and improvement of direct sampling

method in the mono-static configuration
Sangwoo Kang, Marc Lambert and Won-Kwang Park

Abstract—The recently introduced non-iterative imaging
method entitled “direct sampling method” (DSM) is known to
be fast, robust, and effective for inverse scattering problems
in the multi-static configuration but fails when applied to the
mono-static one. To the best of our knowledge no explanation
of this failure has been provided yet. Thanks to the framework
of the asymptotic and the far-field hypothesis in the 2D scalar
configuration an analytical expression of the DSM indicator
function in terms of the Bessel function of order zero and sizes,
shapes and permittivities of the inhomogeneities is obtained and
the theoretical reason of the limitation identified. A modified
version of DSM is then proposed in order to improve the imaging
method. The theoretical results are supported by numerical
results using synthetic data.

Index Terms—Non-iterative imaging method, direct sampling
method, mono-static configuration, Bessel function, numerical
results

I. INTRODUCTION

THE 2D inverse scattering problem is an important topic

due to potential applications in modern human life, e.g.,

biomedical imaging [1]–[3], non-destructive evaluation [4]–

[6], synthetic aperture radar (SAR) imaging [7]–[10], ground

penetrating radar (GPR) [11]–[13]. However, because of its

inherent non-linearity and ill-posedness, it is difficult to solve.

Among the various imaging methods, non-iterative-type al-

gorithms are of interest due to expected numerical simplic-

ity and low computational cost, for example, MUltiple SIg-

nal Classification (MUSIC), linear sampling method (LSM),

topological derivative, Kirchhoff migration, direct sampling

method (DSM), etc. Related works can be found in [14]–

[19] and references therein. Even though these methods can

provide good results with multi-static data, they may fail with

mono-static ones the due to lack of information arising to

great assumption from inherent limitation. However, since the

mono-static configuration is encountered in various applica-

tions such as GPR, SAR, deep understanding and development

of effective algorithms is needed.

In the present work, we focus only onto DSM in the

mono-static configuration because of its wide applicability,

and various advantages like (i) it only needs a few (e.g.,

one or two) incident fields, and (ii) it does not need any

additional operation (singular value decomposition, defining

an orthogonal projection operator and solving ill-posed linear
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integral equations, etc.). We refer to [17], [20] for details.

Though, a new intuitive indicator function of DSM in the

mono-static configuration has already been proposed in [21],

no theoretical explanation has been given yet to explain the

failure of the classical DSM approach in such a configu-

ration. Recently, in [22], the authors have investigated the

mathematical structure of the DSM indicator function in the

multi-static configuration using near-field data, proposed an

improved version and confirmed its link with the classical

Kirchhoff migration technique. Following a similar path but

under the far-field hypothesis the mathematical structure of the

indicator function of DSM based on the asymptotic formula

of the scattered fields is proposed here and the limitation of

traditional DSM in the mono-static configuration is identified.

According to our analysis, a new indicator function of the

direct sampling method is introduced and analyzed in order to

improve the imaging performance of DSM in this mono-static

configuration.

In Section II, the 2D direct scattering problem and its far-

field pattern are presented. The traditional DSM with far-field

pattern is reminded in Section III. Section IV is dedicated

to the mono-static configuration, the mathematical structure

of DSM being outlined and the modified DSM (MDSM)

proposed. Numerical simulations illustrating our theoretical re-

sults are presented in Section V. Conclusions and perspectives

follow in Section VI.

II. TWO-DIMENSIONAL DIRECT SCATTERING PROBLEM

AND FAR-FIELD PATTERN

In this section, the two-dimensional direct scattering prob-

lem is sketched in the presence of a set of small dielectric

inhomogeneities (Fig. 1a). We denote τm a small dielectric

inhomogeneity defined as τm = rm + αmDm, where rm is

the location of τm, Dm is a simply connected domain with

smooth boundary and αm characterizes its size (Fig. 1b). We

denote τ =
⋃

m
τm, m = 1, 2, · · · ,M a collection of τm and

Ω the region of interest (ROI) such that τm ⊂ Ω for all m.

We assume that τm are well-separated small balls with radius

αm, i.e., there exists d0 ∈ R such that 0 < d0 < |rm − rm′ |
for all m 6= m′, m = 1, 2, · · · ,M .

Here, we assume that all materials are non-magnetic

(µ(x) ≡ µ0 = 1.256× 10−6H/m) and characterized by

their dielectric permittivity at angular frequency ω = 2πf ,

f being the frequency. Let us denote εm and ε0 the value of

electrical permittivity of τm and R
2, respectively. In so doing

the following piecewise constant function can be introduced:

ε(x) :=

{

εm for x ∈ τm,
ε0 for R

2\τ.
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Fig. 1. Configuration of the scattering problem for M = 3 (left) and sketch
of the inhomogeneity τm (right).

Let k0 = ω
√
ε0µ0 = 2π/λ be the wavenumber with positive

wavelength λ, satisfying αm

√

εm/ε0 ≪ λ/2 for all m =
1, 2, · · · ,M (refer to [23]).

In this contribution, we consider the plane-wave illumina-

tion: let ui(x) = eikd̂·x, x ∈ R
2 be an incident field with

direction of propagation d̂ ∈ S
1, where S

1 denotes the two-

dimensional unit circle. Let u(x, d̂) be the time-harmonic total

field that satisfies the Helmholtz equation

∆u(x, d̂) + ω2µ0ε(x)u(x, d̂) = 0

with transmission conditions at boundaries ∂τm. It is well-

known that the total field can be written as the sum of the

incident field ui(x, d̂) and the scattered field us(x, d̂), where

us(x, d̂) satisfies the Sommerfeld radiation condition

lim
|x|→∞

√

|x|
(

∂us(x, d̂)

∂|x| − ik0u
s(x, d̂)

)

= 0

uniformly into all directions x̂ = x/|x|. We denote u∞(x̂, d̂)
the far-field pattern of us(x, d̂) defined on S

1 that satisfies

us(x, d̂) =
eik0d̂·x

√

|x|

[

u∞(x̂, d̂) +O
(

1

|x|

)]

uniformly into all directions x̂ = x/|x| and |x| −→ ∞. Based

on [24], the asymptotic expansion formula of u∞(x̂, d̂) can

be written as .

u∞(x̂, d̂) =
k20(1 + i)

4
√
k0π

M
∑

m=1

α2
m

(

εm − ε0√
ε0µ0

)

|Dm|

× eik0(d̂−x̂)·rm +O(α2
m
) (1)

which plays a key role of the theoretical analysis of indicator

function of DSM in mono-static configuration introduced in

Section IV

III. INTRODUCTION OF DIRECT SAMPLING METHOD

According to [17], the indicator function of the classical

DSM with a set of measured far-field pattern data F =
{u∞(x̂n, d̂) : n = 1, 2, · · · , N} for a fixed incident direction

d̂ is defined by

IDSM(z, d̂) :=
|〈u∞(x̂n, d̂), e

−ik0x̂n·z〉L2(S1)|
‖u∞(x̂n, d̂)‖L2(S1)

(2)

where

〈a(x̂n), b(x̂n)〉L2(S1) :=
N
∑

n=1

a(x̂n)b(x̂n)

‖a(x̂n)‖2L2(S1) := 〈a(x̂n), a(x̂n)〉L2(S1).

Based on [22, Theorem 4.1], IDSM(z, d̂) can be represented

by

IDSM(z, d̂) =
|Ψ1(z, d̂)|

max
z∈Ω

|Ψ1(z, d̂)|
,

where

Ψ1(z, d̂) =

M
∑

m=1

α2
m
(εm − ε0)e

ik0d̂·rm J0(k0|z− rm|). (3)

Here, J0 denotes the Bessel function of order zero of the first

kind. Thanks to (3) we can observe that IDSM(z) exhibits a

maximum when z = rm and 0 < IDSM(z) < 1 at z /∈ τ so

that the location rm of τm can be identified.

In the multiple impinging case
(

d̂l, l = 1, 2, · · · , L
)

, L

being the number of incident directions, the indicator function

of DSM is defined by

IDSM(z; k0) := max{IDSM(z; d̂1, k0), IDSM(z; d̂2, k0), · · · ,
IDSM(z; d̂L, k0)} (4)

Note that (2) and (4) are equivalent when L = 1.

IV. ANALYSIS AND IMPROVEMENT OF DIRECT SAMPLING

METHOD IN MONO-STATIC CONFIGURATION

Let us now deal with the monostatic configuration in

which an antenna acts as receiver and transmitter, implying

d̂n = −x̂n, and is moved from place to place giving a

set of measured far-field pattern data defined by M =
{u∞(x̂n, d̂n) : n = 1, 2, · · · , N}

As examplified in [21], the direct sampling method in such

a configuration failed to provide a proper localisation of the

defects (see also Fig.2) when using the indicator function

Imono
DSM (z) directly deduced from (2) and defined as

Imono
DSM (z) :=

|〈u∞(x̂n, d̂n), e
−ik0x̂n·z〉L2(S1)|

‖u∞(x̂n, d̂n)‖L2(S1)

. (5)

In [21], a modified indicator involving a heuristic factor is

proposed to solve the problem, yet no theoretical explanation

is provided. In the following the theoretical reason of this

miss-localization is exhibited and a modified version of the

DSM is introduced. Let us analyze the indicator function

Imono
DSM (z) to explain the inaccurate localization in the mono-

static configuration.

Theorem 1. Assume that the total number N of incident and

observation directions is sufficiently large. Then, Imono
DSM (z) can

be represented as:

Imono
DSM (z) ≈ |Ψ1(z)|

max
z∈Ω

|Ψ1(z)|
,

parkwk
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where

Ψ1(z) =

M
∑

m=1

α2
m(εm − ε0)|Dm| J0(k0|2rm − z|). (6)

Proof: If N is sufficiently large, the following relation

holds for z ∈ R
2 (see [19])

1

N

N
∑

n=1

e−ik0x̂n·z ≈ 1

2π

∫

S1

e−ik0x̂·zdx̂ = J0(k0|z|). (7)

Since d̂n = −x̂n, applying (1) and (7) to (2), we can evaluate

〈u∞(x̂n, d̂n), e
−ik0x̂n·z〉L2(S1)

≈ k2(1 + i)

4
√
kπ

M
∑

m=1

α2
m

(

εm − ε0√
ε0µ0

)

|Dm|
(

N
∑

n=1

e−ikx̂n·(2rm−z)

)

≈ k2(1 + i)π

2
√
kπ

M
∑

m=1

α2
m

(

εm − ε0√
ε0µ0

)

|Dm| J0(k0|2rm − z|).

Finally, applying Hölder’s inequality

|〈u∞(x̂n, d̂), e
−ik0x̂n·z〉L2(S1)| ≤ ‖u∞(x̂n, d̂)‖L2(S1)

leads to (6) which completes the proof.

The structure of (6) explains that DSM within the

mono-static configuration is no longer proportional to

|J0(k0|rm − z|)| but to |J0(k0|2rm − z|)|. This means that

Imono
DSM (z) reaches its maximum value at shifted locations

z = 2rm. Due to this reason, traditional application of DSM

will lead to miss-localization of the inhomogeneities.

Thanks to (6), an alternative indicator function of DSM

Imono
MDSM(z) can be proposed: for z ∈ Ω,

Imono
MDSM(z) :=

|〈u∞(x̂n, d̂n), e
−2ik0x̂n·z〉L2(S1)|

‖u∞(x̂n, d̂n)‖L2(S1)

. (8)

Following the same path (omitted here) than for Theorem 1

leads to

Theorem 2. Assume that the total number N of incident and

observation directions is sufficiently large. Then, Imono
MDSM(z)

can be represented as:

Imono
MDSM(z) =

|Ψ2|
max
z∈Ω

|Ψ2|
,

where

Ψ2(z) =

M
∑

m=1

α2
m
(εm − ε0)|Dm| J0(2k0|rm − z|). (9)

As shown in (9) Imono
MDSM(z) is proportional to

|J0(2k0|rm − z|)| which, on the contrary of (6), has

its maximum values at z = rm, m = 1, 2, · · · ,M ,

which corresponds to the localization of the defects to

be identified. It is interesting to observe that, according

to [17], [20], [22], [25]–[27], the traditional DSM in the

multi-static configuration is proportional to |J0(k0|rm − z|)|.
By comparing the oscillation property of J0(k0|x|) and

J0(2k0|x|), it can be shown that Imono
MDSM(z) will contain more

artifacts than IDSM(z).

V. NUMERICAL EXPERIMENTS

Numerical experiments are provided to support the results

presented in Theorem 1 and 2. For the simulation, a fixed

frequency f = c0/λ ≈ 749.481MHz where c0 = 1/
√
ε0µ0 is

the speed of light and λ = 0.4m is considered. The number of

incident and observation directions is set to N = 36, the latter

being uniformly distributed on S
1 except stated otherwise. We

set Ω as a square of side length 4λ uniformly discretized with

50 × 50 square pixels. The far-field patterns u∞(x̂n, d̂n) are

generated via FEKO (EM simulation software), where

x̂n =

(

cos
2π(n− 1)

N
, sin

2π(n− 1)

N

)

with N = 36. A 20 dB white Gaussian random noise is added

to unperturbed data using MATLAB function awgn included

in the signal processing package.

To compare the accuracy of the results the Jaccard index

[28] is used. It measures the similarity of two finite sample

sets A and B and is defined as

J (A,B)(%) :=
|A ∩B|
|A ∪B| × 100.

In our work, the Jaccard index is calculated by comparing

IEXACT(z) with an index map Iκ(z) defined for a threshold

κ ∈ [0, 1] as

IEXACT(z) :=

{

1 for z ∈ τ
0 for z ∈ R

2\τ,
and

Iκ(z) :=

{

I(z) if I(z) ≥ κ
0 if I(z) < κ,

respectively. Here, I(z) is either IDSM(z) (4), Imono
DSM (z) (5)

or Imono
MDSM(z) (9).

For each example the map of the indicator function is

presented in the multi-static case (4) using the N2 collected

data and in the mono-static case using the N collected data

thanks to either (5) or (9).

Example 1 (Small disks of same radii and permittivity). First,

we consider small dielectric disks τm with αm ≡ 0.075λ
and εm ≡ 5ε0, m = 1, 2, 3. The locations rm of τm
are r1 = (0.75λ,−0.75λ), r2 = (−λ,−0.5λ), and r3 =
(−0.75λ, λ). According to the results in Fig. 2, the location

of rm ∈ τm can be identified using the classical DSM

indicator function IDSM(z) (4) when using the multi-static

data (Fig. 2a) but failed when using the mono-static ones

(Fig. 2b) whereas more accurate locations are retrieved via

the map of Imono
MDSM(z) (Fig. 2c); however, due to the intrinsic

lack of information of the monostatic configuration, only two

of the three defects are properly identified. As expected in the

mono-static configuration a number of artifacts is also included

in the map as discussed in the previous section.

Example 2 (Large disk). In order to verify that our approach

still behaves properly when the small obstacle hypothesis is

no longer verified, we are considering the identification of an

extended target designed as a single disk circle τ located at

r = (−0.75λ,−0.75λ) with radius α ≡ 1λ and permittivity

ε = 5ε0. Here also the shifting problem occurs in Imono
DSM (z)

parkwk
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(a) IDSM(z) (b) Imono

DSM
(z) (c) Imono

MDSM
(z) (d) Jaccard index

Fig. 2. Simulation results of Example 1

(a) IDSM(z) (b) Imono

DSM
(z) (c) Imono

MDSM
(z) (d) Jaccard index

Fig. 3. Simulation results of Example 2

(a) Map of IDSM(z) (b) Map of Imono

DSM
(z) (c) Map of Imono

MDSM
(z) (d) Jaccard index

Fig. 4. Simulation results in Example 3. Red-colored solid-line describes the limited range of incident and observation directions.

as shown in Fig. 3b whereas, when using Imono
MDSM(z), a better

localisation of the center of target is obtained (Fig. 3c) even if

none of them is able to estimate neither the shape nor the size

of the defect. As expected better results are obtained when

using the mutli-static data (Fig. 3a).

Example 3 (Limited view). Motivated by the application in

GPR and SAR, we apply the designed indicator function

Imono
MDSM(z) when the range of incident and observation di-

rections is limited. It is important to emphasize that due to

the use of the far-field hypothesis such a configuration is not

directly related to a GPR configuration, even if the influence

of the limited aspect of the data is exemplified.

The configuration is the same as for Example 1 except the

range of incident and observation directions which is limited to

the upper half-circle with only N = 19 collected far-field data.

The simulation results are displayed in Fig. 4. As for the two

previous examples the results using the multi-static scattered

field provide the best localisations (Fig. 4a) whereas the mono-

static case using the classical DSM does not provide any good

results since the shifting problem still occurs (Fig. 4b). As

expected the mono-static modified DSM is able to localize

two obstacles among the three (Fig. 4c) as it was the case

with full-view aperture (Fig. 2c).

VI. CONCLUSION AND PERSPECTIVE

In this study, the application of DSM in the mono-static

configuration for finding the location of small targets is

considered in a 2D scalar configuration. Thanks to the use

of the asymptotic expansion formula in the presence of small

inhomogeneities and the far-field hypothesis, the mathematical

structure of the indicator function of the traditional DSM is

established and the reason for which it fails to image the

defects is clearly identified. To overcome this miss-localization

of the defects a modified DSM (MDSM) is proposed and

its efficiency is theoretically shown. Numerical simulations

are provided to support our theoretical results for various

obstacles.

Nevertheless, some improvements are still required as for,

as an example, the near-field case for which the provided

equations are no longer correct, while the multi-frequency

version is also of interest and should be treated.
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