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Empirical Study of Robust Estimation Methods for PAR Models

with Application to the Air Quality Area

Carlo Correa Solci* Valdério Anselmo Reisen∗‡�

Alessandro Jose Queiroz Sarnaglia� Pascal Bondon§

Abstract

This paper compares three estimators for periodic autoregressive (PAR) models. The first
is the classical periodic Yule-Walker estimator (YWE) [McLeod, 1994]. The second is a robust
version of YWE (RYWE) which uses the robust autocovariance function [Ma and Genton, 2000]
in the periodic Yule-Walker equations [Sarnaglia et al., 2010], and the third is the robust least
squares estimator (RLSE) based on iterative least squares with robust versions of the original
time series [Shao, 2008]. The daily mean particulate matter concentration (PM10) data is used
to illustrate the methodologies in a real application, that is, in the Air Quality area.

Keywords: Robust estimation; PAR models; Outliers; PM10 pollutant.

1 Introduction

Classical time series analysis generally relies on stationarity assumptions, see, e.g., Fuller [1976],
Priestley [1981], Brockwell and Davis [1991], Shumway and Stoffer [2017]. Despite the broad use
of stationary tools, in some cases, this requirement is too restrictive. Examples of non-stationary
phenomena are unit roots, deterministic trends, heteroskedasticity, among others.

The periodic correlation (PC) or cyclostationarity property, introduced by the seminal paper of
Gladyshev [1961], deserves special attention due to the fact that this phenomenon is not revealed
by usual stationary tools, which may lead to a model misspecification [Tiao and Grupe, 1980].
Due to this fact, special methods to identify the presence of PC in time series have been proposed,
see, for example, Hurd and Gerr [1991] and Bloomfield et al. [1994]. PC appears in many areas
of application: Gardner and Franks [1975] investigate cyclostationarity in electrical engineering;
Lund et al. [1995] have found PC in climatological time series; Noakes et al. [1985] have discovered
PC in time series of monthly river flows, among others.

One of the most popular models for PC is the PAR model, which is a generalization of the
well-known AR model introduced by Box and Jenkins [1970] where the coefficients and orders vary
periodically in time. Estimation methods for the PAR model parameters have been studied by
many authors among, Basawa and Lund [2001], Anderson and Meerschaert [2005], Sarnaglia et al.
[2015].

Although the PAR model has been applied in several fields, to the best of our knowledge, it is
still relatively unexplored in the air quality research field, especially in the context of contaminated
data. Among the air pollutants, the particulate matter with diameter smaller than 10 µm (PM10),
is recognized for its effects on human health and is one of the most common and important
pollution variables collected by an air quality monitoring network, see, for example, Reisen et al.
[2014], Souza et al. [2018] and references therein. Note that, the air quality data usually present
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asymmetric distributions and large peeks of concentrations. Classical estimators such the sample
mean, variance and autocovariance functions are affected by these observations. This suggests to
consider robust estimators for PAR parameters, like the ones proposed by Shao [2008], Sarnaglia
et al. [2010, 2016]. One issue of this paper is to fit robust PAR models to PM10 concentrations.

To the best our knowledge, there are no empirical studies in the literature of cyclostationary
processes investigating the behaviour of robust estimators under asymmetric errors and observa-
tions which can be identified as atypical or outliers. This paper aims to investigate finite sample
properties of such estimators under asymmetric errors and atypical observations through a Monte
Carlo study. In addition, a pollutant PM10 concentration data set is used as an example of ap-
plication since it may present observations with high levels of pollutant concentrations that may
produce sample distributions with heavy tails.

The rest of the paper is organized as follows: Section 2 introduces the well-known PAR model
and describes three estimation methods; Section 3 presents and discusses the results of the Monte
Carlo experiment; Section 4 illustrates the use of the estimation methodologies with an application
to fit a regression model with PAR errors to PM10 concentrations; Section 5 concludes the paper.

2 The PAR Model and its Estimation Methods

Let {Yt}, t ∈ Z, be a stochastic process with E(Y 2
t ) < ∞, µt = E(Yt) and autocovariance γt(h) =

Cov(Yt, Yt−h). Process {Yt} has PC or is a periodically stationary process with period S ∈ N+

(PSS), if
µt+S = µt and γt+S(h) = γt(h), t, h ∈ Z, (1)

S being the smallest integer satisfying (1). Now, let t = rS + ν, where r ∈ Z and ν = 1, . . . ,S. It
follows from (1) that µrS+ν = µν and γrS+ν(h) = γν(h). Therefore, the autocorrelation ρt(h) =
Corr(Yt, Yt−h) satisfies ρrS+ν(h) = ρν(h). In addition, the partial autocorrelation (PACF) defined
as

αt(h) = Corr(Yt, Yt−h|Yt−1, . . . , Yt−h+1) t ∈ Z, h ∈ N+,

see, e.g., Brockwell and Davis [1991], is also periodic in time, i.e., αrS+ν(h) = αν(h). Clearly, the
above functions only depend on the period ν and the lag h. When they do not depend on ν, {Yt}
is a standard stationary time series in the terminology of Box-Jenkins.For more details, see for
example, McLeod [1994], Sarnaglia et al. [2010] and references therein.

The standard stationary linear model can be extended to the PSS process {YrS+ν} via

YrS+ν =
∑
j∈Z

ψj(ν)εrS+ν−j ,

where
∑

j∈Z |ψj(ν)| < ∞ for ν = 1, . . . ,S. The model is causal when ψj(ν) = 0 for j < 0. In the
same way, the model is invertible when∑

j≥0
πj(ν)YrS+ν−j = εrS+ν ,

where
∑

j≥0 |πj(ν)| <∞ for ν = 1, . . . ,S, see Sarnaglia et al. [2010] and references therein.
The PAR model is a generalization of the well-known AR process and is one of the most used

models to fit a PSS time series. The PAR model is given in the following definition.

Definition 1. A zero-mean PSS process {YrS+ν} follows a PAR(pν) model if it satisfies the
difference equation

YrS+ν −
pν∑
i=1

φi(ν)YrS+ν−i = σνεrS+ν , (2)
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where {εt} is a sequence of uncorrelated random variables with E(εt) = 0, E(ε2t ) = 1 and, for each
cycle ν = 1, . . . ,S, φν = (φ1(ν), . . . , φpν (ν))′ is the AR coefficient vector with order pν and σ2ν is
the error variance.

Conditions to ensure causality of a PAR model can be derived from its vector AR representation,
see, e.g., Sarnaglia et al. [2010]. In particular, for a PAR(1) model, the causality condition is∣∣∣∣∣

S∏
ν=1

φ1(ν)

∣∣∣∣∣ < 1. (3)

It is assumed here that p1 = · · · = pS = p and the following notation φ = (φ′1, . . . ,φ
′
S)′ =

(φ1(1), . . . , φp(1), . . . , φ1(S), . . . , φp(S))′.

2.1 The Yule-Walker Estimator (YWE)

Let Y1, . . . , YnS be a sample from the process {Yt}. The estimates of the periodic mean µν and
autocovariance function γν(h) for ν = 1, . . . ,S are, respectively, Ȳν = 1

n

∑n−1
r=0 YrS+ν , and

γ̂ν(h) =
1

n

n−1∑
r=0

(YrS+ν − Ȳν)(YrS+ν−h − Ȳν−h),

where YrS+ν−h is set to zero whenever rS + ν − h < 1 or rS + ν − h > nS. Therefore, the sample
ACF is

ρ̂ν(h) =
γ̂ν(h)

[γ̂ν(0)γ̂ν−h(0)]
1
2

.

The sample PACF can be obtained as in Sakai [1982] and Shao and Lund [2004].
The YWE of the PAR coefficients are obtained through the linear equations system

p∑
i=1

φi(ν)γν−i(h− i) = γν(h), h = 1, . . . , p, (4)

in which γν(h) is replaced by γ̂ν(h). The YWE of φ is defined as φ̂ = (φ̂
′
1, . . . , φ̂

′
S)′ where, for

each ν, φ̂ν = (φ̂1(ν), . . . , φ̂p(ν))′. Asymptotics results for YWE can be derived under the following
assumption.

Assumption 1. {Yt} is a zero-mean causal PAR process and E(Y 4
t ) <∞, t ∈ Z.

The following result is due to Sarnaglia et al. [2010]: Under Assumption 1, the YWE estimator
φ̂ satisfies √

n(φ̂− φ) ; NpS(0, G), n→∞,

where the ; symbol denotes convergence in distribution.
Other asymptotically equivalent estimators of PAR coefficients are the Least Squares Estimator

(LSE) [Basawa and Lund, 2001] and the Maximum Likelihood Estimator (MLE) [Lund and Basawa,
1999]. Due to this equivalence, these estimators will not be considered in this paper.

As well known, the estimators YWE, LSE and MLE, are not resistant in the presence of atypical
observations (outliers) see, for example, Shao [2008], Sarnaglia et al. [2010]. The lack of robustness
of classical estimators has motivated the investigation of robust approaches in the literature. In
the following subsections the robust methods introduced by Sarnaglia et al. [2010] and Shao [2008]
are summarized and the empirical comparison with YWE estimator is presented in the Simulation
Section.
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2.2 The Robust Yule-Walker Estimator (RYWE)

Sarnaglia et al. [2010] have proposed a Robust Yule-Walker Estimator (RYWE) which is based
on the autocovariance function proposed in Ma and Genton [2000]. Let y = (y1, . . . , yn) ∈ Rn,
the robust scale estimator of y proposed by Rousseeuw and Croux [1993], Qn(y), is defined as the
following kth order statistic

Qn(y) = d {|yi − yj | ; 1 ≤ i < j ≤ n}(k) , (5)

where d is a constant factor to ensure Fisher-consistency and k =
(
c
2

)
≈ 0.25

(
n
2

)
, where c = [n/2]+1

is half of the size n of the vector y. For Gaussian random variables, d = 2.2191. Given a PSS time
series, Y1, . . . , YnS , based on (5) Sarnaglia et al. [2010] define the robust sample (periodic) ACV
function by

γ̃ν(h) =
1

4
[Q2

n−r+1(uν + vν)−Q2
n−r+1(uν − vν)], 0 ≤ h < [(n− 1)S + ν], (6)

where uν = (YrS+ν−h, . . . , Y(n−1)S+ν−h), vν = (YrS+ν , . . . , Y(n−1)S+ν). Note that, γ̂ν(h) does not
posses the positive definite property. The RYWE is defined similarly to the YWE. For each
ν = 1, . . . ,S, replace, in (4), the theoretical ACV, γν(h), by its sample robust estimator in Equation
6, γ̃ν(h), and solve the resulting linear equations system

p∑
i=1

φi(ν)γ̃ν−i(h− i) = γ̃ν(h), k = 1, . . . , p, (7)

for φ1(ν), . . . , φp(ν). The RYWE estimator is defined as φ̃ = (φ̃
′
1, . . . , φ̃

′
S)′. The white noise vari-

ance σ2ν can also be robustly estimated by the same argument as in Equation 4 with h = 0.

Assumption 2. For any ν = 1, . . . ,S, {YrS+ν ; r ∈ Z} is a mean-zero Gaussian process with
strong mixing coefficients αn satisfying: αn ≤ Cn−a, for some a > 1 and C ≥ 1.

The following result is due to Sarnaglia et al. [2010]. Under Assumptions 1 and 2, the RYWE
estimator φ̃i(ν) satisfies

φ̃i(ν)− φi(ν) = Op(n
−1/2),

for i = 1, . . . , p, ν = 1, . . . ,S.

2.3 The Robust Least Squares Estimator (RLSE)

Shao [2008] proposes an alternative to the conditional Least Squares Estimator (LSE). The LSE
of φ can be defined as the solution of the pS-dimensional estimating equations

Sn(φν) =
1

σν

n−1∑
r=0

εrS+νYrS+ν−i = 0, 1 ≤ i ≤ p, 1 ≤ ν ≤ S, (8)

where the error terms are given by εrS+ν = εrS+ν(φν) = (YrS+ν−
∑p

i=1 φi(ν)YrS+ν−i)/σν , 0 ≤ r <
n, 1 ≤ ν ≤ S. Asymptotic properties for the LSE have been studied by Basawa and Lund [2001].

Shao [2008] aims to achieve robustness by replacing, in Equation (8), εrS+ν and YrS+ν by their
robust versions ε̆rS+ν and Y̆rS+ν , respectively, which are defined as

ε̆rS+ν = ψ(εrS+ν) (9)

and

Y̆rS+ν =

{
YrS+ν , if ε̆rS+ν = εrS+ν ,∑p

i=1 φi(ν)Y̆rS+ν−i + σν ε̆rS+ν , if ε̆rS+ν 6= εrS+ν .
(10)
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Therefore, the Robust LSE (RLSE) is the solution of the robustified estimating equations

S̆n(φν) =
1

σν

n−1∑
r=0

ψ

(
YrS+ν −

∑p
i=1 φi(ν)YrS+ν−i
σν

)
Y̆rS+ν−i = 0, 1 ≤ i ≤ p, 1 ≤ ν ≤ S. (11)

Shao [2008] has considered ψ(·) as the Huber type function, defined by

ψ(x) = ψc(x) =

{
x, if |x| ≤ c,
c sign(x), if |x| > c,

(12)

because it is monotonic, which ensures existence and uniqueness of solution to Equation 11. Nev-
ertheless, any odd bounded and differentiable function can be a candidate for the ψ(·) function, in-
cluding the so-called redescending functions, such as Bisquare, Hampel, Generalized Gauss-Weight,
among others. However, they have many zeroes, which may lead to non-optimal solutions.

Assumption 3. The marginal density function fε(·) of the error εrS+ν in Equation 2 is symmetric
about the origin.

The following result has been derived by Shao [2008]: Under Assumptions 1 and 3, the RLSE
φ̆ satisfies √

n(φ̆− φ) ; NpS(0, A), n→∞,

where the covariance matrix A is given in Equation 14 of Shao [2008].
In practice, the estimates are obtained using the following iterative procedure starting with an

appropriate initial guess value for the RLSE. Suppose φ̆
(l)

represents the vector of estimates at
the lth iteration. Then, at the (l + 1)th iteration, calculate the residuals

e
(l)
rS+ν = YrS+ν −

p∑
i=1

φ̆
(l)
i (ν)YrS+ν−i, 1 ≤ ν ≤ S,

where Yt = 0, t ≤ 0, estimate the white noise standard deviation at the period ν, σν , by

σ̆(l)ν = Median
(∣∣∣e(l)ν ∣∣∣ , ∣∣∣e(l)S+ν∣∣∣ , . . . , ∣∣∣e(l)(n−1)S+ν∣∣∣) , 1 ≤ ν ≤ S,

calculate the robust version of e
(l)
rS+ν through (9), ĕ

(l)
rS+ν = ψ(e

(l)
rS+ν), obtain Y̆

(l)
rS+ν by (10) with

ε̆rS+ν substituted for the robust residual ĕ
(l)
rS+ν and σν replaced with σ̆

(l)
ν , and evaluate the solution

φ̆
(l+1)

of the robustified estimating equations in (11) replacing Y̆rS+ν with Y̆
(l)
rS+ν and σν with σ̆

(l)
ν .

Stop the procedure according to some convergence criterion.

3 Monte Carlo Study

In order to investigate the impact of atypical observations on the estimates obtained from the
methods discussed previously, series of periodically stationary processes were generated with and
without additive outliers. Let {XrS+ν} be defined as follows

XrS+ν = YrS+ν + ωVrS+ν (13)

where {YrS+ν} is a PAR model with S = 4 and coefficients given in Table 1. The parameter
values were chosen to have examples of time series models with low (Model 1) and strong (Model
2) correlation dependencies, that is, Model 2 is closer to the non-causality region than Model
1. {Vt} is a sequence of independent random variables with P(Vt = −1) = P(Vt = 1) = ξ/2 and
P(Vt = 0) = 1−ξ, 0 ≤ ξ < 1, Yt and Vs are independent processes for all t, s and ω is the magnitude
of the outlier. The sample sizes were taken as small (N = 400) and large (N = 1600), .i.e., n = 100
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and n = 400 cycles, respectively, which are common sample sizes in practical situation. The initial
value for RLSE was taken as the true parameter vector.

The simulation study is divided in these two cases; uncontaminated and contaminated series.
The contaminated series were generated from model in (13) with the following specifications: ω = 7
and ξ = 0.01. The effect of the normality departure in the white noise sequence was also studied
by generating the random variables εt such that εt ∼ N (0, 1) and

√
2εt + 1 ∼ χ2

(1). In both cases,

E(εt) = 0 and E(ε2t ) = 1. For each of these scenarios, 1000 replicates of {Yt} were generated
to compute the mean of the empirical Bias and Root Mean Squared Error (RMSE). For the
RLSE, according to Shao [2008], c = 3.06 was fixed in the Huber function (Equation 12) such that,
residuals greater than 3.06 (in absolute value) are regarded as outliers. Other model configurations
were also considered in the simulation study such as heavy-tailed distributions, different period
lengths, sample sizes and coefficient values and other outlier magnitudes. However, in general,
the results leaded to similar conclusions and are not displayed here, but they are available upon
request.

Table 1: Parameters of PAR(1) models used in the simulation.

Parameter Model 1 Model 2

φ1(1) 0.9 1.5
φ1(2) 0.8 0.8
φ1(3) 0.7 1.2
φ1(4) 0.6 0.5

λ 0.3024 0.7200

Tables 2 and 3 display the Bias and RMSE for Models 1 and 2, respectively. For illustration
purpose, the empirical distributions of

√
n(φ̂i(ν)−φi(ν)),

√
n(φ̃i(ν)−φi(ν)) and

√
n(φ̆i(ν)−φi(ν))

for Model 1, with n = 400, under the uncontaminated and contaminated Gaussian scenarios, are
presented in Figures 1 and 2, respectively. The same plots for the uncontaminated case with
asymmetric errors are displayed in Figure 3. For Model 1 (Table 2), under the uncontaminated
Gaussian case, the reduction of the Bias and RMSE when increasing the sample size suggests that
all estimators are consistent. It is observed that, in this scenario, YWE and RLSE present better
results. The findings for the asymmetric uncontaminated case show that the RYWE is extremely
affected by skewness of the data, presenting a persistent Bias which does not seem to vanish by
increasing the sample size. The results for heavy tailed errors are similar, which show that the
RYWE method is very sensitive to departures from normality. This indicates that the normality
requirement in Assumption 2 is crucial to ensure asymptotic properties of the RYWE. The YWE
and RLSE do not seem to be affected by non-Gaussian errors (both asymmetric and heavy tailed).
This gives empirical evidence that the technical requirement of symmetric errors (Assumption
3) may be over restrictive to ensure asymptotic normality of the RLSE. As expected, atypical
observations increase the Bias and RMSE of the YWE. Under normally distributed errors, both
RYWE and RLSE show robustness with Bias and RMSE almost unchanged with the presence of
outliers. For asymmetric errors, the RLSE is the only one which presents good performance.

The conclusions for Model 2 (Table 3) are similar to the previous case. It is worth noting
that in this stronger dependence scenario, there is a overall reduction of the Bias and RMSE.
Another remarkable fact is that, in this case, the RYWE does not seem to be strongly affected by
asymmetric errors in both uncontaminated and contaminated scenarios.

From Figure 1, it can be seen that the empirical distributions are virtually the same and they
have shape very close to the N(0,1) distribution. This corroborates the asymptotic results of the
standardized estimators even for a small sample size. However, the scale of the RYWE distribution
is slightly greater than of those of the YWE and RLSE. Figure 2 shows the robustness to outliers
of RYWE and RLSE methods under Gaussian errors, while the distribution of YWE is shifted
to the left due to the well-known memory loss property. Its scale is also increased as a result of
the contamination. Figure 3 illustrates the prominent shift to the right of the RYWE distribution
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Table 2: Bias and RMSE for Model 1 and outliers with probability ξ = 0.01.

ω εt n φ1(ν)
YWE RYWE RLSE

Bias RMSE Bias RMSE Bias RMSE

0

N (0, 1)

100

0.9 -0.007 0.077 -0.003 0.103 0.003 0.079
0.8 -0.002 0.065 0.004 0.084 -0.002 0.065
0.7 0.000 0.063 -0.001 0.083 -0.001 0.063
0.6 -0.005 0.066 -0.003 0.083 -0.005 0.067

400

0.9 -0.001 0.037 -0.001 0.047 0.002 0.038
0.8 -0.001 0.031 0.000 0.038 -0.001 0.031
0.7 -0.001 0.032 0.001 0.038 -0.001 0.032
0.6 0.000 0.032 0.000 0.039 0.000 0.033

χ2
(1)
−1
√
2

100

0.9 -0.006 0.076 0.178 0.209 0.006 0.063
0.8 -0.007 0.065 0.117 0.147 -0.003 0.055
0.7 -0.004 0.065 0.088 0.119 -0.003 0.052
0.6 -0.005 0.069 0.077 0.108 -0.004 0.056

400

0.9 -0.001 0.037 0.179 0.185 0.002 0.030
0.8 0.000 0.033 0.115 0.122 0.000 0.026
0.7 -0.001 0.033 0.089 0.096 -0.001 0.026
0.6 -0.001 0.034 0.085 0.093 0.000 0.028

7

N (0, 1)

100

0.9 -0.181 0.247 0.014 0.120 -0.031 0.095
0.8 -0.118 0.176 0.012 0.096 -0.027 0.076
0.7 -0.105 0.157 0.015 0.091 -0.024 0.077
0.6 -0.097 0.151 0.012 0.091 -0.027 0.081

400

0.9 -0.183 0.203 0.017 0.055 -0.027 0.050
0.8 -0.129 0.144 0.012 0.046 -0.021 0.041
0.7 -0.108 0.124 0.013 0.044 -0.019 0.041
0.6 -0.103 0.119 0.014 0.043 -0.022 0.043

χ2
(1)
−1
√
2

100

0.9 -0.172 0.243 0.213 0.251 -0.019 0.076
0.8 -0.126 0.180 0.142 0.175 -0.021 0.063
0.7 -0.105 0.158 0.112 0.144 -0.018 0.061
0.6 -0.096 0.151 0.103 0.134 -0.023 0.067

400

0.9 -0.182 0.202 0.211 0.219 -0.021 0.041
0.8 -0.129 0.145 0.142 0.149 -0.017 0.033
0.7 -0.112 0.127 0.111 0.119 -0.017 0.033
0.6 -0.106 0.121 0.106 0.114 -0.019 0.037

caused by the skewness of the errors.

4 An Application to the Air Quality Area (the PM10 Data)

The application is based on a data set (air pollutant variables) collected at Automatic Air Quality
Monitoring Network (RAMQAr) in the Great Vitória Region GVR-ES, Brazil, which is composed
by nine monitoring stations placed in strategic locations and accounts for the measuring of several
atmospheric pollutants and meteorological variables in the area. GVR is comprised of seven cities
with a population of approximately 1.9 million inhabitants in an area of 2319 km2. The region
is situated along the South Atlantic coast of Brazil (latitude 20°19′15′′S, longitude 40°20′10′′W)
and has a tropical humid climate, with average temperatures ranging from 24 °C to 30 °C. This
data set has been previously investigated in different contexts of time series modeling, such as
periodic models, robustness in long-memory models, heteroskedastic long memory process, time
series regression with principal component analysis, among others. See, for instance, Sarnaglia
et al. [2015], Reisen et al. [2014], Sarnaglia et al. [2010], Souza et al. [2018], Fajardo et al. [2018],
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Table 3: Bias and RMSE for Model 2 and outliers with probability ξ = 0.01.

ω εt n φ1(ν)
YWE RYWE RLSE

Bias RMSE Bias RMSE Bias RMSE

0

N (0, 1)

100

1.5 -0.009 0.055 -0.009 0.100 0.000 0.055
0.8 -0.004 0.033 -0.005 0.050 -0.004 0.034
1.2 -0.006 0.040 -0.008 0.066 -0.006 0.040
0.5 -0.008 0.033 -0.008 0.043 -0.008 0.033

400

1.5 -0.003 0.026 -0.003 0.037 -0.001 0.026
0.8 -0.001 0.016 -0.001 0.021 -0.001 0.016
1.2 -0.002 0.019 -0.002 0.027 -0.002 0.020
0.5 -0.002 0.015 -0.003 0.018 -0.003 0.015

χ2
(1)
−1
√
2

100

1.5 -0.009 0.055 0.025 0.098 0.001 0.043
0.8 -0.007 0.036 0.011 0.048 -0.005 0.028
1.2 -0.007 0.040 0.019 0.069 -0.005 0.033
0.5 -0.009 0.033 -0.004 0.039 -0.006 0.027

400

1.5 -0.002 0.026 0.032 0.050 0.000 0.021
0.8 -0.001 0.016 0.016 0.026 -0.001 0.013
1.2 -0.002 0.019 0.023 0.035 -0.002 0.015
0.5 -0.003 0.015 0.003 0.017 -0.002 0.012

7

N (0, 1)

100

1.5 -0.174 0.246 -0.023 0.122 -0.014 0.061
0.8 -0.047 0.076 -0.011 0.058 -0.014 0.040
1.2 -0.079 0.125 -0.013 0.079 -0.013 0.048
0.5 -0.029 0.056 -0.010 0.046 -0.013 0.038

400

1.5 -0.167 0.189 -0.020 0.052 -0.013 0.032
0.8 -0.042 0.050 -0.007 0.025 -0.007 0.019
1.2 -0.080 0.093 -0.015 0.038 -0.008 0.022
0.5 -0.023 0.032 -0.006 0.021 -0.007 0.018

χ2
(1)
−1
√
2

100

1.5 -0.180 0.253 0.022 0.120 -0.013 0.054
0.8 -0.049 0.081 0.011 0.057 -0.008 0.032
1.2 -0.082 0.126 0.016 0.083 -0.009 0.036
0.5 -0.029 0.053 -0.003 0.041 -0.010 0.028

400

1.5 -0.172 0.193 0.022 0.054 -0.010 0.025
0.8 -0.041 0.050 0.015 0.028 -0.005 0.015
1.2 -0.083 0.097 0.012 0.039 -0.007 0.018
0.5 -0.024 0.033 0.003 0.020 -0.005 0.014

Reisen et al. [2018], Reisen et al. [2017] and references therein. The data set considered in this
paper is the pollutant Particulate Matter with diameter smaller than 10 µm (PM10), measured
hourly, in µg/m3, collected at the station located in Enseada do Suá area.

The PM10 data set corresponds to daily average concentrations from January 1st, 2014 to
December 29th, 2015 which kept the sample size multiple of the natural choice to the period
length S = 7. Due to skewness and some evidences of time varying variance, the natural logarithm
transformation (log) was used and the plot of the log(PM10) is displayed in Figure 4. From
this figure, one can see large peeks of PM10 concentration which may be viewed here as outliers
and, as mentioned previously, these high levels can provoke serious damage to some statistics,
such as the mean and the standard deviation and, therefore, may affect the sample correlation
structure of the series, causing misleading results. The existence of any outlier’s effect will be
discussed in the estimation parameter model (next subsection). It can also be seen the presence of
sinusoidal deterministic trends. Analysis of the periodogram (Figure 5) corroborates to this result
and indicates that the frequency 2/N , corresponding approximately to a yearly cycle, has a large
contribution to the overall variance of the data. The high frequency peaks of the periodogram
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Figure 1: Empirical Distributions of
√
n(φ̂i(ν)−φi(ν)) (blue lines),

√
n(φ̃i(ν)−φi(ν)) (green lines)

and the
√
n(φ̆i(ν)− φi(ν)) (red lines) for Model 1 with ω = 0, n = 400 and normal errors.
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Figure 2: Empirical Distributions of
√
n(φ̂i(ν)−φi(ν)) (blue lines),

√
n(φ̃i(ν)−φi(ν)) (green lines)

and the
√
n(φ̆i(ν)− φi(ν)) (red lines) for Model 1 with ω = 7, n = 400 and normal errors.

correspond to weekly periodicity and, according to the daily periodic boxplots displayed in Figure
6, they can be explained by a level decrease in the weekends. This is an expected finding due to
fact that the traffic and civil construction decrease in the region in the weekend days.
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Figure 3: Empirical Distributions of
√
n(φ̂i(ν)−φi(ν)) (blue lines),

√
n(φ̃i(ν)−φi(ν)) (green lines)

and the
√
n(φ̆i(ν)− φi(ν)) (red lines) for Model 1 with ω = 0, n = 400 and asymmetric errors.
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Figure 4: Plot of the log(PM10) time series.

The above preliminary analysis of the series suggests that a deterministic trend must be firstly
removed from log(PM10) before further analysis and this is discussed in the next subsection in
which a linear model with errors following a PAR model is fitted to the series.

4.1 Estimated Model

According to the previous statistical analysis of the log(PM10) series, the following model is sug-
gested here to fit the data

log(PM10,t) = µ+ α1satt + α2sunt + β1 cost +β2t+ Yt; (14)

Yt =

pt∑
i=1

φi(t)Yt−i + σtεt, (15)

10
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Figure 5: Periodogram of the log(PM10) time series.
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Figure 6: Daily box-plots of the log(PM10) time series.

with the sinusoidal covariate: cost = cos( 2πt
365.25), t = 1, . . . , 728; the linear term t; and a “day of

the week” factor with the levels: Week (the reference level); Saturday (represented by the dummy
variable satt which takes value 1 for Saturdays); and Sunday (sunt which takes value 1 for Sundays)
and S = 7. The above model means that in the business days the regular level of log(PM10) is µ,
on Saturdays it suffers an increase of α1 and on Sundays it is increased by α2 and it has a long-run
cyclic trend, represented by cost and a linear term t. The terms sint and cost turned out to be
statistically insignificant and they were removed from the model.

The model in Equations 14 and 15 will be fitted based on following two steps procedure: (1)
the linear model in (14) will be estimated through the ordinary least squares procedure; and (2)
the PAR model in (15) will be fitted to the residuals of the linear model in step (1), where the AR
orders p1, . . . , pS will be identified through the Schwartz Information Criterion (BIC) proposed by
Schwarz [1978] and adapted to the periodic scenario by McLeod [1994].

At the first step, the linear model in Equation 14 was fitted and the estimated coefficients are
displayed in Table 4. As expected, there were negative effects of Saturday and Sunday, which led
to a decrease of log(PM10) levels during the weekends.

Table 4: Estimated coefficients of the linear model.

Parameter µ α1 α2 β1 β2

Estimate 3.2650 -0.0921 -0.2579 0.0640 0.0003

The BIC criterion was used to identify the order of the model (see Sarnaglia et al. [2010] for
more details) and the results are displayed in Table 5. In order to keep consistency with the
simulation study, c = 3.06 was fixed in the Huber function (Equation 12). Note that the PAR

11



model with better (smaller) BIC was obtained by the RYWE, which indicates that this estimator
provides a good compromise between adjustment and parsimony.

Table 5: Selected AR orders using the BIC.

Estimator BIC p1 p2 p3 p4 p5 p6 p7
YWE −2156.25 1 1 1 1 1 1 1

RYWE −2205.94 1 1 4 2 2 1 1
RLSE −2200.15 1 1 4 1 2 1 1

The estimates of the PAR coefficients provided by YWE, RYWE and RLSE methods are given
in Table 6. Based on these results, it is clear the presence of Periodic Correlation in the data,
since the AR coefficients and orders are not constant over the seasons. In general, the methods
selected different orders and presented quite different coefficient estimates. This indicate that the
high levels of the pollutant were stronger enough to provoke changes in the parameter estimates,
that is, this reveals that the high levels of the pollutant PM10 presented the effects of additive
outliers according to the discussion presented in the Simulation Section.

Table 6: Estimates of the AR coefficients for YWE, RYWE and RLSE.

Estimator i
ν

1 2 3 4 5 6 7

φ̂i(ν) 1 0.626 0.532 0.485 0.374 0.595 0.312 0.498

φ̃i(ν)

1 0.614 0.482 0.630 0.529 0.595 0.361 0.474
2 0.000 0.000 -0.107 -0.143 -0.258 0.000 0.000
3 0.000 0.000 0.451 0.000 0.000 0.000 0.000

4 0.000 0.000 -0.374 0.000 0.000 0.000 0.000

φ̆i(ν)

1 0.661 0.513 0.479 0.376 0.638 0.293 0.522
2 0.000 0.000 -0.018 0.000 -0.167 0.000 0.000
3 0.000 0.000 0.271 0.000 0.000 0.000 0.000

4 0.000 0.000 -0.240 0.000 0.000 0.000 0.000

The fitting performance will be accessed through the in-sample Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), symmetric MAPE (sMAPE) and Median
of Absolute Deviation (MAD). The RMSE and the MAD are well-known and, for a discussion of
MAPE and sMAPE quantities see Flores [1986]. The results are presented in Table 7. As can
be seen, the RLSE are RYWE very competitive by presenting very similar results and they are
slightly smaller than YWE method. This may corroborate the previous discussion related the
effect of high level concentrations on the model estimation.

Table 7: Fitting performance of the estimated models.

Estimator
Statistic YWE RYWE RLSE

RMSE 0.2246 0.2245 0.2235
MAPE 5.3420 5.2545 5.2707
sMAPE 2.6454 2.6024 2.6104
MAD 0.2120 0.1988 0.2078

Figures 7, 8 and 9 present the classic ACF of the residuals of each model. It can be seen that
all the models were able to fully explain the correlation structure of the data, despite the eventual
outliers effect. Based on the ACF of the residuals, the three estimation methods are comparable
since all the estimated residuals look like a white noise process.
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Finally, for all models, the residuals have not passed the Jarque-Bera normality test [Jarque and
Bera, 1980], presenting p-values < 0.05 which is an expected result due to the skewness revealed
in the data.
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Figure 7: ACF of the residuals of the YWE fit.
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Figure 8: ACF of the residuals of the RYWE fit.
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Figure 9: ACF of the residuals of the RLSE fit.
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5 Conclusions

This paper reviews different estimation methodologies for PAR models. More specifically, the
method considered are: the so-called YWE [McLeod, 1994], the RYWE [Sarnaglia et al., 2010] and
the RLSE [Shao, 2008]. The finite sample performance of these methods was compared through
a Monte Carlo experiment. The performance of RLSE is remarkably good under uncontaminated
and contaminated scenarios, even under asymmetric errors, which violates Assumption 3. The
RYWE is quite resistant to outliers, however it has a poor performance under asymmetric errors,
mainly under weak correlation scenarios. As expected, YWE empirical distribution is resistant
to departures from normality, however this estimator is completely affected by the presence of
outliers. In order to illustrate the methodologies considered in this paper, the daily mean PM10

concentrations collected at the air quality monitoring station, located at Enseada do Suá, ES,
Brazil, was considered as an application. The estimation and modelling results revealed outlier
effects on the estimates.
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A. J. Q. Sarnaglia, V. A. Reisen, and C. Lévy-Leduc. Robust estimation of periodic autoregressive
processes in the presence of additive outliers. Journal of Multivariate Analysis, 101(9):2168–
2183, 2010.

A. J. Q. Sarnaglia, V. A. Reisen, and P. Bondon. Periodic ARMA models: Application to partic-
ulate matter concentrations. In 23rd European Signal Processing Conference, pages 2181–2185,
2015.

A. J. Q. Sarnaglia, V. A. Reisen, P. Bondon, and C. Lévy-Leduc. A robust estimation approach
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additive model with principal component analysis: An application to time series of respiratory
disease and air pollution data. JRSS-Appl. Statist., Series C, 6(2):453––480, 2018.

G. Tiao and M. Grupe. Hidden periodic autoregressive-moving average models in time series data.
Biometrika, pages 365–373, 1980.

16


	Introduction
	The PAR Model and its Estimation Methods
	The Yule-Walker Estimator (YWE)
	The Robust Yule-Walker Estimator (RYWE)
	The Robust Least Squares Estimator (RLSE)

	Monte Carlo Study
	An Application to the Air Quality Area (the PM10 Data)
	Estimated Model

	Conclusions
	Acknowledgements

